1
|
Côté JM, Desjardins M, Cailhier JF, Murray PT, Beaubien Souligny W. Risk of acute kidney injury associated with anti-pseudomonal and anti-MRSA antibiotic strategies in critically ill patients. PLoS One 2022; 17:e0264281. [PMID: 35271615 PMCID: PMC8912201 DOI: 10.1371/journal.pone.0264281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background An increased risk of acute kidney injury (AKI) with the widely prescribed piperacillin-tazobactam(PTZ)-vancomycin combination in hospitalized patients has recently been reported, but evidence in ICU patients remain uncertain. This study evaluates the association between the exposure of various broad-spectrum antibiotic regimens with Pseudomonas and/or methicillin-resistance Staphylococcus aureus (MRSA) coverage and the risk of AKI in critically ill patients. Methods and findings A retrospective cohort study based on the publicly available MIMIC-III database reporting hospitalization data from ICU patients from a large academic medical center between 2001 and 2012. Adult patients receiving an anti-pseudomonal or an anti-MRSA agent in the ICU for more than 24-hours were included. Non-PTZ anti-pseudomonal agents were compared to PTZ; non-vancomycin agents covering MRSA were compared to vancomycin; and their combinations were compared to the PTZ-vancomycin combination. The primary outcome was defined as new or worsening AKI within 7 days of the antibiotic exposure using an adjusted binomial generalized estimating equation. Overall, 18 510 admissions from 15 673 individual patients, cumulating 169 966 days of antibiotherapy were included. When compared to PTZ, exposure to another anti-pseudomonal agent was associated with lower AKI risk (OR, 0.85; 95% CI, 0.80–0.91; p < .001). When compared to vancomycin, exposure to another anti-MRSA was also associated with lower AKI risk (OR, 0.71; 95% CI, 0.64–0.80; p < .001). Finally, when compared to the PTZ-vancomycin combination, exposure to another regimen with a similar coverage was associated with an even lower risk (OR, 0.63; 95% CI; 0.54–0.73; p < .001). A sensitivity analysis of patients with high illness severity showed similar results. Conclusions These results suggest that the risk of AKI in ICU patients requiring antibiotherapy may be partially mitigated by the choice of antibiotics administered. Further clinical trials are required to confirm these findings.
Collapse
Affiliation(s)
- Jean-Maxime Côté
- Division of Nephrology, Centre hospitalier de l’Université de Montréal, Montréal, Canada
- Centre de recherche du centre hospitalier de l’Université de Montréal, Montréal, Canada
- Clinical Research Centre, University College Dublin, Dublin, Ireland
- * E-mail:
| | - Michaël Desjardins
- Centre de recherche du centre hospitalier de l’Université de Montréal, Montréal, Canada
- Division of Infectious disease, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Microbiology and Infectious disease, Centre hospitalier de l’Université de Montréal, Montréal, Canada
| | - Jean-François Cailhier
- Division of Nephrology, Centre hospitalier de l’Université de Montréal, Montréal, Canada
- Centre de recherche du centre hospitalier de l’Université de Montréal, Montréal, Canada
- Institut du Cancer de Montréal, Montréal, Canada
| | - Patrick T. Murray
- Clinical Research Centre, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - William Beaubien Souligny
- Division of Nephrology, Centre hospitalier de l’Université de Montréal, Montréal, Canada
- Centre de recherche du centre hospitalier de l’Université de Montréal, Montréal, Canada
| |
Collapse
|
2
|
He N, Su S, Ye Z, Du G, He B, Li D, Liu Y, Yang K, Zhang X, Zhang Y, Chen X, Chen Y, Chen Z, Dong Y, Du G, Gu J, Guo D, Guo R, Hu X, Jiao Z, Li H, Liu G, Li Z, Lv Y, Lu W, Miao L, Qu J, Sun T, Tong R, Wang L, Wang M, Wang R, Wen A, Wu J, Wu X, Xu Y, Yang Y, Yang F, Zhan S, Zhang B, Zhang C, Zhang H, Zhang J, Zhang J, Zhang J, Zhang W, Zhao L, Zhao L, Zhao R, Zhao W, Zhao Z, Zhou W, Zeng XT, Zhai S. Evidence-based Guideline for Therapeutic Drug Monitoring of Vancomycin: 2020 Update by the Division of Therapeutic Drug Monitoring, Chinese Pharmacological Society. Clin Infect Dis 2021; 71:S363-S371. [PMID: 33367582 DOI: 10.1093/cid/ciaa1536] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Clinical practice guidelines or recommendations often require timely and regular updating as new evidence emerges, because this can alter the risk-benefit trade-off. The scientific process of developing and updating guidelines accompanied by adequate implementation can improve outcomes. To promote better management of patients receiving vancomycin therapy, we updated the guideline for the therapeutic drug monitoring (TDM) of vancomycin published in 2015. METHODS Our updated recommendations complied with standards for developing trustworthy guidelines, including timeliness and rigor of the updating process, as well as the use of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. We also followed the methodology handbook published by the National Institute for Health and Clinical Excellence and the Spanish National Health System. RESULTS We partially updated the 2015 guideline. Apart from adults, the updated guideline also focuses on pediatric patients and neonates requiring intravenous vancomycin therapy. The guideline recommendations involve a broadened range of patients requiring TDM, modified index of TDM (both 24-hour area under the curve and trough concentration), addition regarding the necessity and timing of repeated TDM, and initial dose for specific subpopulations. Overall, 1 recommendation was deleted and 3 recommendations were modified. Eleven new recommendations were added, and no recommendation was made for 2 clinical questions. CONCLUSIONS We updated an evidence-based guideline regarding the TDM of vancomycin using a rigorous and multidisciplinary approach. The updated guideline provides more comprehensive recommendations to inform rational and optimized vancomycin use and is thus of greater applicability.
Collapse
Affiliation(s)
- Na He
- Department of Pharmacy, Peking University Third Hospital, Beijing, China.,School of Pharmaceutical Science, Peking University, Beijing, China
| | - Shan Su
- Department of Pharmacy, Peking University Third Hospital, Beijing, China.,School of Pharmaceutical Science, Peking University, Beijing, China
| | - Zhikang Ye
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bei He
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China
| | - Dakui Li
- Department of Pharmacy, Peking Union Medical College Hospital, Beijing, China
| | - Youning Liu
- Department of Respiratory and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Chinese GRADE Center, Lanzhou, China
| | - Xianglin Zhang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Yingyuan Zhang
- Institute of Antibiotics, Huashan Hospital affiliated with Fudan University, Shanghai, China
| | - Xiao Chen
- Department of Pharmacy, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaolong Chen
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Chinese GRADE Center, Lanzhou, China
| | - Zhigang Chen
- Clinical Trial Center of Beijing Jishuitan Hospital, Beijing, China
| | - Yalin Dong
- Department of Pharmacy, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Guang Du
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Gu
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Daihong Guo
- Drug Security Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Ruichen Guo
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Hu
- Department of Pharmacy, Beijing Hospital, Beijing, China
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Huande Li
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Gaolin Liu
- Department of Pharmacy, Shanghai First People's Hospital, Shanghai, China
| | - Zhiping Li
- Department of Pharmacy, National Children's Medical Center/Children's Hospital of Fudan University, Shanghai, China
| | - Yuan Lv
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Wei Lu
- School of Pharmaceutical Science, Peking University, Beijing, China
| | - Liyan Miao
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jieming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tieying Sun
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital affiliated with Fudan University, Shanghai, China
| | - Rui Wang
- Laboratory of Clinical Pharmacology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Xi'an, China
| | - Jiuhong Wu
- Department of Pharmacy, 306th Hospital of People's Liberation Army, Beijing, China
| | - Xin'an Wu
- Department of Pharmacy, Lanzhou University First Hospital, Lanzhou, China
| | - Yingchun Xu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Provincial People's Hospital, Chengdu, China
| | - Fan Yang
- Institute of Antibiotics, Huashan Hospital affiliated with Fudan University, Shanghai, China
| | - Siyan Zhan
- Center for Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Bikui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Zhang
- Department of Pharmacy, Beijing Tongren Hospital, Beijing, China
| | - Huizhi Zhang
- Nursing Department, Peking University Third Hospital, Beijing, China
| | - Jie Zhang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital affiliated with Fudan University, Shanghai, China
| | - Jun Zhang
- Pharmacy Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenting Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Libo Zhao
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rongsheng Zhao
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Wei Zhao
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhigang Zhao
- Pharmacy Department, Beijing Tiantan Hospital, Beijing, China
| | - Wei Zhou
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Suodi Zhai
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| |
Collapse
|