1
|
Sarkar M, Sarkar J. Therapeutic drug monitoring in tuberculosis. Eur J Clin Pharmacol 2024; 80:1659-1684. [PMID: 39240337 DOI: 10.1007/s00228-024-03749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE Therapeutic drug monitoring (TDM) is a standard clinical procedure that uses the pharmacokinetic and pharmacodynamic parameters of the drug in the body to determine the optimal dose. The pharmacokinetic variability of the drug(s) is a significant contributor to poor treatment outcomes, including the development of acquired drug resistance. TDM aids in dose optimization and improves outcomes while lessening drug toxicity. TDM is used to manage patients with tuberculosis (TB) who exhibit a slow response to therapy, despite good compliance and drug-susceptible organisms. Additional indications include patients at risk of malabsorption or delayed absorption of TB drugs and patients with drug-drug interaction and drug toxicity, which confirm compliance with therapy. TDM usually requires two blood samples: the 2 h and the 6 h post-dose. This narrative review will discuss the pharmacokinetics and pharmacodynamics of TB drugs, determinants of poor response to therapy, indications of TDM, methods of performing TDM, and its interpretations. METHODS This is a narrative review. We searched PubMed, Embase, and the CINAHL from inception to April 2024. We used the following search terms: tuberculosis, therapeutic drug monitoring, anti-TB drugs, pharmacokinetics, pharmacodynamics, limited sample strategies, diabetes and TB, HIV and TB, and multidrug-resistant TB. All types of articles were selected. RESULTS TDM is beneficial in managing TB, especially in patients with slow responses, drug-resistance TB, recurrent TB, and comorbidities such as diabetes mellitus and human immunodeficiency virus infection. CONCLUSION TDM is beneficial for improving outcomes, reducing the risk of acquired drug resistance, and avoiding side effects.
Collapse
Affiliation(s)
- M Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, 171001, Himachal Pradesh, India.
| | - J Sarkar
- MRes Neuroscience, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Maranchick NF, Peloquin CA. Role of therapeutic drug monitoring in the treatment of multi-drug resistant tuberculosis. J Clin Tuberc Other Mycobact Dis 2024; 36:100444. [PMID: 38708036 PMCID: PMC11067344 DOI: 10.1016/j.jctube.2024.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
Tuberculosis (TB) is a leading cause of mortality worldwide, and resistance to anti-tuberculosis drugs is a challenge to effective treatment. Multi-drug resistant TB (MDR-TB) can be difficult to treat, requiring long durations of therapy and the use of second line drugs, increasing a patient's risk for toxicities and treatment failure. Given the challenges treating MDR-TB, clinicians can improve the likelihood of successful outcomes by utilizing therapeutic drug monitoring (TDM). TDM is a clinical technique that utilizes measured drug concentrations from the patient to adjust therapy, increasing likelihood of therapeutic drug concentrations while minimizing the risk of toxic drug concentrations. This review paper provides an overview of the TDM process, pharmacokinetic parameters for MDR-TB drugs, and recommendations for dose adjustments following TDM.
Collapse
Affiliation(s)
- Nicole F. Maranchick
- Infectious Disease Pharmacokinetics Lab, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Charles A. Peloquin
- Infectious Disease Pharmacokinetics Lab, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Osorio-González A, Álvarez N, Realpe T, Robledo J. Protocol for the selection of Mycobacterium tuberculosis spontaneous resistant mutants to d-cycloserine. MethodsX 2024; 12:102690. [PMID: 38638452 PMCID: PMC11024651 DOI: 10.1016/j.mex.2024.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
Mycobacterium tuberculosis (MTB) is known for its adaptive capability in developing resistance to antibiotics, through the selection of spontaneous mutations that arise during treatment. Generating spontaneous antibiotic-resistant mutants in vitro is challenging but necessary for studying this phenomenon. A protocol was designed and tested to select stable, MTB spontaneous, d-cycloserine (DCS) resistant mutants. Twenty-four colonies resistant to DCS were selected, demonstrating an increase between 1 and 4 times the Minimum Inhibitory Concentration (MIC) set for Mycobacterium tuberculosis H37Rv ATCC 27294 reference strain.
Collapse
Affiliation(s)
- Alejandra Osorio-González
- Unidad de Bacteriología y Micobacterias. Corporación para Investigaciones Biológicas, Medellín, Colombia
- Escuela de Ciencias de la Salud. Universidad Pontificia Bolivariana, Medellín, Colombia
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología (Maestría en biología), Universidad de Antioquia, Medellín, Colombia
| | - Nataly Álvarez
- Unidad de Bacteriología y Micobacterias. Corporación para Investigaciones Biológicas, Medellín, Colombia
- Escuela de Ciencias de la Salud. Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Teresa Realpe
- Unidad de Bacteriología y Micobacterias. Corporación para Investigaciones Biológicas, Medellín, Colombia
- Escuela de Ciencias de la Salud. Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Jaime Robledo
- Unidad de Bacteriología y Micobacterias. Corporación para Investigaciones Biológicas, Medellín, Colombia
- Escuela de Ciencias de la Salud. Universidad Pontificia Bolivariana, Medellín, Colombia
| |
Collapse
|
4
|
Loeffler DA. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: a review of experimental approaches. Front Aging Neurosci 2024; 16:1368200. [PMID: 38872626 PMCID: PMC11170721 DOI: 10.3389/fnagi.2024.1368200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Clearance of amyloid-beta (Aβ) from the brain is impaired in both early-onset and late-onset Alzheimer's disease (AD). Mechanisms for clearing cerebral Aβ include proteolytic degradation, antibody-mediated clearance, blood brain barrier and blood cerebrospinal fluid barrier efflux, glymphatic drainage, and perivascular drainage. ATP-binding cassette (ABC) transporters are membrane efflux pumps driven by ATP hydrolysis. Their functions include maintenance of brain homeostasis by removing toxic peptides and compounds, and transport of bioactive molecules including cholesterol. Some ABC transporters contribute to lowering of cerebral Aβ. Mechanisms suggested for ABC transporter-mediated lowering of brain Aβ, in addition to exporting of Aβ across the blood brain and blood cerebrospinal fluid barriers, include apolipoprotein E lipidation, microglial activation, decreased amyloidogenic processing of amyloid precursor protein, and restricting the entrance of Aβ into the brain. The ABC transporter superfamily in humans includes 49 proteins, eight of which have been suggested to reduce cerebral Aβ levels. This review discusses experimental approaches for increasing the expression of these ABC transporters, clinical applications of these approaches, changes in the expression and/or activity of these transporters in AD and transgenic mouse models of AD, and findings in the few clinical trials which have examined the effects of these approaches in patients with AD or mild cognitive impairment. The possibility that therapeutic upregulation of ABC transporters which promote clearance of cerebral Aβ may slow the clinical progression of AD merits further consideration.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, United States
| |
Collapse
|
5
|
Mukherjee A, Gowtham L, Kabra SK, Lodha R, Velpandian T. Pharmacokinetic-Pharmacodynamic (PK-PD) Analysis of Second-Line Anti-Tubercular Drugs in Indian Children with Multi-Drug Resistance. Indian J Pediatr 2024:10.1007/s12098-024-05135-9. [PMID: 38802673 DOI: 10.1007/s12098-024-05135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/12/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVES To conduct a thorough pharmacokinetic (PK) - pharmacodynamic (PD) analysis of second-line anti-tubercular therapy (ATT) in children diagnosed with multi-drug resistant tuberculosis (MDR-TB). METHODS Twenty-seven children undergoing second-line ATT, including kanamycin (KM, n = 13), fluoroquinolones (FQs, n = 26), ethionamide (ETH, n = 20), para amino salicylic acid (PASA, n = 4), and cycloserine (CS, n = 15), were sampled at 0 (pre-dose), 1, 2, 3, and 4 h post-drug administration. Plasma drug levels were determined using a mass spectrometer and the collected dataset underwent non-compartmental PK analysis using PK solver ver2.0. PK/PD assessments involved individual drug simulation studies on 1000 subjects using Modviz Pop ver 1.0 in R-software. RESULTS A total of 22 and 5 children were considered as responders and non-responders, respectively. Non-compartmental PK analysis revealed mean plasma drug levels of this study cohort attained the targeted maximum drug plasma concentration (Cmax). The ratio of Cmax /minimum inhibitory concentration (MIC) or the area under the curve (AUC)/MIC of the studied drugs had not shown a significant difference between responders and non-responders. Non-responders of ETH and ofloxacin had shown deviation from the derived dose-response profile for the simulated population. CONCLUSIONS The management of MDR-TB with second-line ATT following national guidelines had cured the majority of the children (> 80%) who participated in the study. Inter-individual variability in few children from the targeted Cmax range suggests the need for future investigations on pharmacogenomic aspects of drug metabolism.
Collapse
Affiliation(s)
- Aparna Mukherjee
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Lakshminarayanan Gowtham
- Ocular Pharmacology and Pharmacy Division, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Thirumurthy Velpandian
- Ocular Pharmacology and Pharmacy Division, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
6
|
Singh S, Gumbo T, Boorgula GD, Thomas TA, Philley JV, Srivastava S. Omadacycline pharmacokinetics/pharmacodynamics and efficacy against multidrug-resistant Mycobacterium tuberculosis in the hollow fiber system model. Antimicrob Agents Chemother 2024; 68:e0108023. [PMID: 38131673 PMCID: PMC10848755 DOI: 10.1128/aac.01080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
Seventy-five years ago, first-generation tetracyclines demonstrated limited efficacy in the treatment of tuberculosis but were more toxic than efficacious. We performed a series of pharmacokinetic/pharmacodynamic (PK/PD) experiments with a potentially safer third-generation tetracycline, omadacycline, for the treatment of multidrug-resistant tuberculosis (MDR-TB). Mycobacterium tuberculosis (Mtb) H37Rv and an MDR-TB clinical strain (16D) were used in the minimum inhibitory concentration (MIC) and static concentration-response studies in test tubes, followed by a PK/PD study using the hollow fiber system model of TB (HFS-TB) that examined six human-like omadacycline doses. The inhibitory sigmoid maximal effect (Emax) model and Monte Carlo experiments (MCEs) were used for data analysis and clinical dose-finding, respectively. The omadacycline MIC for both Mtb H37Rv and MDR-TB clinical strain was 16 mg/L but dropped to 4 mg/L with daily drug supplementation to account for omadacycline degradation. The Mycobacteria Growth Indicator Tube MIC was 2 mg/L. In the test tubes, omadacycline killed 4.39 log10 CFU/mL in 7 days. On Day 28 of the HFS-TB study, the Emax was 4.64 log10 CFU/mL, while exposure mediating 50% of Emax (EC50) was an area under the concentration-time curve to MIC (AUC0-24/MIC) ratio of 22.86. This translates to PK/PD optimal exposure or EC80 as AUC0-24/MIC of 26.93. The target attainment probability of the 300-mg daily oral dose was 90% but fell at MIC ≧4 mg/L. Omadacycline demonstrated efficacy and potency against both drug-susceptible and MDR-TB. Further studies are needed to identify the omadacycline effect in combination therapy for the treatment of both drug-susceptible and MDR-TB.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Medicine, School of Medicine, University of Texas at Tyler, Tyler, Texas, USA
| | - Tawanda Gumbo
- Quantitative Preclinical and Clinical Sciences Department, Praedicare Inc., Dallas, Texas, USA
- Hollow Fiber System and Experimental Therapeutics Laboratories, Praedicare Inc., Dallas, Texas, USA
| | - Gunavanthi D. Boorgula
- Department of Medicine, School of Medicine, University of Texas at Tyler, Tyler, Texas, USA
| | - Tania A. Thomas
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Julie V. Philley
- Section of Pulmonary and Critical Care, School of Medicine, University of Texas at Tyler, Tyler, Texas, USA
| | - Shashikant Srivastava
- Department of Medicine, School of Medicine, University of Texas at Tyler, Tyler, Texas, USA
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| |
Collapse
|
7
|
van der Laan LE, Garcia-Prats AJ, McIlleron H, Abdelwahab MT, Winckler JL, Draper HR, Wiesner L, Schaaf HS, Hesseling AC, Denti P. Optimizing dosing of the cycloserine pro-drug terizidone in children with rifampicin-resistant tuberculosis. Antimicrob Agents Chemother 2023; 67:e0061123. [PMID: 37971239 PMCID: PMC10720412 DOI: 10.1128/aac.00611-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/07/2023] [Indexed: 11/19/2023] Open
Abstract
There are no pharmacokinetic data in children on terizidone, a pro-drug of cycloserine and a World Health Organization (WHO)-recommended group B drug for rifampicin-resistant tuberculosis (RR-TB) treatment. We collected pharmacokinetic data in children <15 years routinely receiving 15-20 mg/kg of daily terizidone for RR-TB treatment. We developed a population pharmacokinetic model of cycloserine assuming a 2-to-1 molecular ratio between terizidone and cycloserine. We included 107 children with median (interquartile range) age and weight of 3.33 (1.55, 5.07) years and 13.0 (10.1, 17.0) kg, respectively. The pharmacokinetics of cycloserine was described with a one-compartment model with first-order elimination and parallel transit compartment absorption. Allometric scaling using fat-free mass best accounted for the effect of body size, and clearance displayed maturation with age. The clearance in a typical 13 kg child was estimated at 0.474 L/h. The mean absorption transit time when capsules were opened and administered as powder was significantly faster compared to when capsules were swallowed whole (10.1 vs 72.6 min) but with no effect on bioavailability. Lower bioavailability (-16%) was observed in children with weight-for-age z-score below -2. Compared to adults given 500 mg daily terizidone, 2022 WHO-recommended pediatric doses result in lower exposures in weight bands 3-10 kg and 36-46 kg. We developed a population pharmacokinetic model in children for cycloserine dosed as terizidone and characterized the effects of body size, age, formulation manipulation, and underweight-for-age. With current terizidone dosing, pediatric cycloserine exposures are lower than adult values for several weight groups. New optimized dosing is suggested for prospective evaluation.
Collapse
Affiliation(s)
- Louvina E. van der Laan
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anthony J. Garcia-Prats
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Mahmoud T. Abdelwahab
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jana L. Winckler
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Heather R. Draper
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - H. Simon Schaaf
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anneke C. Hesseling
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Bi Y, Wang J, Li J, Chou HH, Ren T, Li J, Zhang K. Engineering acetylation platform for the total biosynthesis of D-amino acids. Metab Eng 2023; 80:25-32. [PMID: 37689258 DOI: 10.1016/j.ymben.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Optically pure D-amino acids are key chemicals with various applications. Although the production of specific D-amino acids has been achieved by chemical synthesis or with in vitro enzyme catalysts, it is challenging to convert a simple carbon source into D-amino acids with high efficiency. Here, we design an artificial metabolic pathway by engineering bacteria to heterologously express racemase and N-acetyltransferase to produce N-acetyl-D-amino acids from L-amino acids. This new platform allows the cytotoxicity of D-amino acids to be avoided. The universal potential of this acetylation protection strategy for effectively synthesizing optically pure D-amino acids is demonstrated by testing sixteen amino acid targets. Furthermore, we combine pathway optimization and metabolic engineering in Escherichia coli and achieve practically useful efficiency with four specific examples, including N-acetyl-D-valine, N-acetyl-D-serine, N-acetyl-D-phenylalanine and N-acetyl-D-phenylglycine, with titers reaching 5.65 g/L, 5.25 g/L, 8.025 g/L and 130 mg/L, respectively. This work opens up opportunities for synthesizing D-amino acids directly from simple carbon sources, avoiding costly and unsustainable conventional approaches.
Collapse
Affiliation(s)
- Yanqi Bi
- Fudan University, 220 Handan Road, Shanghai, 201100, China; School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jingyu Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jialong Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Hsiang-Hui Chou
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Tianhua Ren
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jinlin Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Kechun Zhang
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
9
|
Rusu A, Moga IM, Uncu L, Hancu G. The Role of Five-Membered Heterocycles in the Molecular Structure of Antibacterial Drugs Used in Therapy. Pharmaceutics 2023; 15:2554. [PMID: 38004534 PMCID: PMC10675556 DOI: 10.3390/pharmaceutics15112554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Five-membered heterocycles are essential structural components in various antibacterial drugs; the physicochemical properties of a five-membered heterocycle can play a crucial role in determining the biological activity of an antibacterial drug. These properties can affect the drug's activity spectrum, potency, and pharmacokinetic and toxicological properties. Using scientific databases, we identified and discussed the antibacterials used in therapy, containing five-membered heterocycles in their molecular structure. The identified five-membered heterocycles used in antibacterial design contain one to four heteroatoms (nitrogen, oxygen, and sulfur). Antibacterials containing five-membered heterocycles were discussed, highlighting the biological properties imprinted by the targeted heterocycle. In some antibacterials, heterocycles with five atoms are pharmacophores responsible for their specific antibacterial activity. As pharmacophores, these heterocycles help design new medicinal molecules, improving their potency and selectivity and comprehending the structure-activity relationship of antibiotics. Unfortunately, particular heterocycles can also affect the drug's potential toxicity. The review extensively presents the most successful five-atom heterocycles used to design antibacterial essential medicines. Understanding and optimizing the intrinsic characteristics of a five-membered heterocycle can help the development of antibacterial drugs with improved activity, pharmacokinetic profile, and safety.
Collapse
Affiliation(s)
- Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.-M.M.); (G.H.)
| | - Ioana-Maria Moga
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.-M.M.); (G.H.)
| | - Livia Uncu
- Scientific Center for Drug Research, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 8 Bd. Stefan Cel Mare si Sfant 165, MD-2004 Chisinau, Moldova;
| | - Gabriel Hancu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.-M.M.); (G.H.)
| |
Collapse
|
10
|
Catumbela CSG, Giridharan VV, Barichello T, Morales R. Clinical evidence of human pathogens implicated in Alzheimer's disease pathology and the therapeutic efficacy of antimicrobials: an overview. Transl Neurodegener 2023; 12:37. [PMID: 37496074 PMCID: PMC10369764 DOI: 10.1186/s40035-023-00369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
A wealth of pre-clinical reports and data derived from human subjects and brain autopsies suggest that microbial infections are relevant to Alzheimer's disease (AD). This has inspired the hypothesis that microbial infections increase the risk or even trigger the onset of AD. Multiple models have been developed to explain the increase in pathogenic microbes in AD patients. Although this hypothesis is well accepted in the field, it is not yet clear whether microbial neuroinvasion is a cause of AD or a consequence of the pathological changes experienced by the demented brain. Along the same line, the gut microbiome has also been proposed as a modulator of AD. In this review, we focus on human-based evidence demonstrating the elevated abundance of microbes and microbe-derived molecules in AD hosts as well as their interactions with AD hallmarks. Further, the direct-purpose and potential off-target effects underpinning the efficacy of anti-microbial treatments in AD are also addressed.
Collapse
Affiliation(s)
- Celso S G Catumbela
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, 8370993, Santiago, Chile.
| |
Collapse
|
11
|
Xavier RM, Sharumathi SM, Kanniyappan Parthasarathy A, Mani D, Mohanasundaram T. Limited sampling strategies for therapeutic drug monitoring of anti-tuberculosis medications: A systematic review of their feasibility and clinical utility. Tuberculosis (Edinb) 2023; 141:102367. [PMID: 37429151 DOI: 10.1016/j.tube.2023.102367] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Therapeutic drug monitoring (TDM) is recommended for medications with high inter-individual variability, narrow therapeutic index drugs, possible drug-drug interactions, drug toxicity, and subtherapeutic concentrations, as well as to assess noncompliance. The area under the plasma concentration-time curve (AUC) is a significant pharmacokinetic parameter since it calculates the drug's total systematic exposure in the body. However, multiple blood samples from the patient are required to calculate the area under the curve, which is inconvenient for both the patient and the healthcare professional. To alleviate the issue, the limited sampling strategy (LSS) was devised, in which sampling is minimized while obtaining complete and precise findings to anticipate the area under the curve. One can reduce costs, labor, and discomfort for patients and healthcare workers by applying this limited sampling strategy. This article examines a systematic evaluation of all the limited sampling done in anti-tuberculosis (anti-TB) medications resulting from the literature search of several research papers. This article also briefly describes the two methodologies: Multiple regression analysis (MRA) and the Bayesian approach used to develop a limited sampling strategy model. Anti-TB medications have been found to have considerable inter-individual variability, and isoniazid has a narrow therapeutic index, both of which are criteria for therapeutic drug monitoring. To avoid multi-drug resistance and therapy failure, it is proposed that limited sampling strategy-based therapeutic drug monitoring of anti-TB medications be undertaken to generate an individualized dose regimen, particularly for individuals at high risk of treatment failure or delayed response.
Collapse
Affiliation(s)
- Rinu Mary Xavier
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643001, India.
| | - S M Sharumathi
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643001, India.
| | - Arun Kanniyappan Parthasarathy
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643001, India.
| | - Deepalakshmi Mani
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643001, India.
| | - Tharani Mohanasundaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643001, India.
| |
Collapse
|
12
|
Robbins L, Balaram A, Dejneka S, McMahon M, Najibi Z, Pawlowicz P, Conrad WH. Heterologous production of the D-cycloserine intermediate O-acetyl-L-serine in a human type II pulmonary cell model. Sci Rep 2023; 13:8551. [PMID: 37237156 DOI: 10.1038/s41598-023-35632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/21/2023] [Indexed: 05/28/2023] Open
Abstract
Tuberculosis (TB) is the second leading cause of death by a single infectious disease behind COVID-19. Despite a century of effort, the current TB vaccine does not effectively prevent pulmonary TB, promote herd immunity, or prevent transmission. Therefore, alternative approaches are needed. We seek to develop a cell therapy that produces an effective antibiotic in response to TB infection. D-cycloserine (D-CS) is a second-line antibiotic for TB that inhibits bacterial cell wall synthesis. We have determined D-CS to be the optimal candidate for anti-TB cell therapy due to its effectiveness against TB, relatively short biosynthetic pathway, and its low-resistance incidence. The first committed step towards D-CS synthesis is catalyzed by the L-serine-O-acetyltransferase (DcsE) which converts L-serine and acetyl-CoA to O-acetyl-L-serine (L-OAS). To test if the D-CS pathway could be an effective prophylaxis for TB, we endeavored to express functional DcsE in A549 cells as a human pulmonary model. We observed DcsE-FLAG-GFP expression using fluorescence microscopy. DcsE purified from A549 cells catalyzed the synthesis of L-OAS as observed by HPLC-MS. Therefore, human cells synthesize functional DcsE capable of converting L-serine and acetyl-CoA to L-OAS demonstrating the first step towards D-CS production in human cells.
Collapse
Affiliation(s)
- Laurel Robbins
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Ariane Balaram
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Stefanie Dejneka
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Matthew McMahon
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Zarina Najibi
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Peter Pawlowicz
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - William H Conrad
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA.
| |
Collapse
|
13
|
Zhu Y, Zhu L, Davies Forsman L, Paues J, Werngren J, Niward K, Schön T, Bruchfeld J, Xiong H, Alffenaar JW, Hu Y. Population Pharmacokinetics and Dose Evaluation of Cycloserine among Patients with Multidrug-Resistant Tuberculosis under Standardized Treatment Regimens. Antimicrob Agents Chemother 2023; 67:e0170022. [PMID: 37097151 PMCID: PMC10190270 DOI: 10.1128/aac.01700-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/23/2023] [Indexed: 04/26/2023] Open
Abstract
Although cycloserine is a recommended drug for the treatment of multidrug-resistant tuberculosis (MDR-TB) according to World Health Organization (WHO), few studies have reported on pharmacokinetics (PK) and/or pharmacodynamics (PD) data of cycloserine in patients with standardized MDR-TB treatment. This study aimed to estimate the population PK parameters for cycloserine and to identify clinically relevant PK/PD thresholds, as well as to evaluate the current recommended dosage. Data from a large cohort with full PK curves was used to develop a population PK model. This model was used to estimate drug exposure in patients with MDR-TB from a multicentre prospective study in China. The classification and regression tree was used to identify the clinically relevant PK/PD thresholds. Probability of target attainment was analyzed to evaluate the currently recommended dosing strategy. Cycloserine was best described by a two-compartment disposition model. A percentage of time concentration above MICs (T>MIC) of 30% and a ratio of area under drug concentration-time curve (AUC0-24h) over MIC of 36 were the valid predictors for 6-month sputum culture conversion and final treatment outcome. Simulations showed that with WHO-recommended doses (500 mg and 750 mg for patients weighing <45 kg and ≥45 kg), the probability of target attainment exceeded 90% at MIC ≤16 mg/L in MGIT for both T>MIC of 30% and AUC0-24h/MIC of 36. New clinically relevant PK/PD thresholds for cycloserine were identified in patients with standardized MDR-TB treatment. WHO-recommended doses were considered adequate for the MGIT MIC distribution in our cohort of Chinese patients with MDR-TB.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Limei Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Lina Davies Forsman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Jakob Paues
- Department of Biomedical and Clinical Sciences, Linköping, University, Linköping, Sweden
- Department of Infectious Diseases, Linköping University Hospital, Linköping, Sweden
| | - Jim Werngren
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
| | - Katarina Niward
- Department of Biomedical and Clinical Sciences, Linköping, University, Linköping, Sweden
- Department of Infectious Diseases, Linköping University Hospital, Linköping, Sweden
| | - Thomas Schön
- Department of Biomedical and Clinical Sciences, Linköping, University, Linköping, Sweden
- Department of Infectious Diseases, Linköping University Hospital, Linköping, Sweden
- Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Linköping University, Sweden
| | - Judith Bruchfeld
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Haiyan Xiong
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Jan-Willem Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, Australia
- Westmead Hospital, Sydney, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
| | - Yi Hu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Liu Y, Moodley M, Pasipanodya JG, Gumbo T. Determining the Delamanid Pharmacokinetics/Pharmacodynamics Susceptibility Breakpoint Using Monte Carlo Experiments. Antimicrob Agents Chemother 2023; 67:e0140122. [PMID: 36877034 PMCID: PMC10112185 DOI: 10.1128/aac.01401-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/29/2023] [Indexed: 03/07/2023] Open
Abstract
Antimicrobial susceptibility testing, based on clinical breakpoints that incorporate pharmacokinetics/pharmacodynamics (PK/PD) and clinical outcomes, is becoming a new standard in guiding individual patient therapy as well as for drug resistance surveillance. However, for most antituberculosis drugs, breakpoints are instead defined by the epidemiological cutoff values of the MIC of phenotypically wild-type strains irrespective of PK/PD or dose. In this study, we determined the PK/PD breakpoint for delamanid by estimating the probability of target attainment for the approved dose administered at 100 mg twice daily using Monte Carlo experiments. We used the PK/PD targets (0- to 24-h area under the concentration-time curve to MIC) identified in a murine chronic tuberculosis model, hollow fiber system model of tuberculosis, early bactericidal activity studies of patients with drug-susceptible tuberculosis, and population pharmacokinetics in patients with tuberculosis. At the MIC of 0.016 mg/L, determined using Middlebrook 7H11 agar, the probability of target attainment was 100% in the 10,000 simulated subjects. The probability of target attainment fell to 25%, 40%, and 68% for PK/PD targets derived from the mouse model, the hollow fiber system model of tuberculosis, and patients, respectively, at the MIC of 0.031 mg/L. This indicates that an MIC of 0.016 mg/L is the delamanid PK/PD breakpoint for delamanid at 100 mg twice daily. Our study demonstrated that it is feasible to use PK/PD approaches to define a breakpoint for an antituberculosis drug.
Collapse
Affiliation(s)
- Yongge Liu
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland, USA
| | | | - Jotam G. Pasipanodya
- Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, Texas, USA
| | - Tawanda Gumbo
- Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, Texas, USA
| |
Collapse
|
15
|
Alffenaar JWC, de Steenwinkel JEM, Diacon AH, Simonsson USH, Srivastava S, Wicha SG. Pharmacokinetics and pharmacodynamics of anti-tuberculosis drugs: An evaluation of in vitro, in vivo methodologies and human studies. Front Pharmacol 2022; 13:1063453. [PMID: 36569287 PMCID: PMC9780293 DOI: 10.3389/fphar.2022.1063453] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
There has been an increased interest in pharmacokinetics and pharmacodynamics (PKPD) of anti-tuberculosis drugs. A better understanding of the relationship between drug exposure, antimicrobial kill and acquired drug resistance is essential not only to optimize current treatment regimens but also to design appropriately dosed regimens with new anti-tuberculosis drugs. Although the interest in PKPD has resulted in an increased number of studies, the actual bench-to-bedside translation is somewhat limited. One of the reasons could be differences in methodologies and outcome assessments that makes it difficult to compare the studies. In this paper we summarize most relevant in vitro, in vivo, in silico and human PKPD studies performed to optimize the drug dose and regimens for treatment of tuberculosis. The in vitro assessment focuses on MIC determination, static time-kill kinetics, and dynamic hollow fibre infection models to investigate acquisition of resistance and killing of Mycobacterium tuberculosis populations in various metabolic states. The in vivo assessment focuses on the various animal models, routes of infection, PK at the site of infection, PD read-outs, biomarkers and differences in treatment outcome evaluation (relapse and death). For human PKPD we focus on early bactericidal activity studies and inclusion of PK and therapeutic drug monitoring in clinical trials. Modelling and simulation approaches that are used to evaluate and link the different data types will be discussed. We also describe the concept of different studies, study design, importance of uniform reporting including microbiological and clinical outcome assessments, and modelling approaches. We aim to encourage researchers to consider methods of assessing and reporting PKPD of anti-tuberculosis drugs when designing studies. This will improve appropriate comparison between studies and accelerate the progress in the field.
Collapse
Affiliation(s)
- Jan-Willem C. Alffenaar
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia,School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia,Westmead Hospital, Sydney, NSW, Australia,*Correspondence: Jan-Willem C. Alffenaar,
| | | | | | | | - Shashikant Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Sebastian G. Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| |
Collapse
|
16
|
Kempker RR, Smith AGC, Avaliani T, Gujabidze M, Bakuradze T, Sabanadze S, Avaliani Z, Collins JM, Blumberg HM, Alshaer MH, Peloquin CA, Kipiani M. Cycloserine and Linezolid for Tuberculosis Meningitis: Pharmacokinetic Evidence of Potential Usefulness. Clin Infect Dis 2022; 75:682-689. [PMID: 34849645 PMCID: PMC9464073 DOI: 10.1093/cid/ciab992] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The ability of antituberculosis drugs to cross the blood-brain barrier and reach the central nervous system is critical to their effectiveness in treating tuberculosis meningitis (TBM). We sought to fill a critical knowledge gap by providing data on the ability of new and repurposed antituberculosis drugs to penetrate into the cerebrospinal fluid (CSF). METHODS We conducted a clinical pharmacology study among patients treated for TBM in Tbilisi, Georgia, from January 2019 until January 2020. Serial serum and CSF samples were collected while patients were hospitalized. CSF was collected from routine lumbar punctures with the timing of the lumbar puncture alternating between 2 and 6 hours to capture early and late CSF penetration. RESULTS A total of 17 patients treated for TBM (8 with confirmed disease) were included; all received linezolid, with a subset receiving cycloserine (5), clofazimine (5), delamanid (4), and bedaquiline (2). All CSF measurements of bedaquiline (12), clofazimine (24), and delamanid (19) were below the limit of detection. The median CSF concentrations of cycloserine at 2 and 6 hours were 15.90 and 15.10 µg/mL with adjusted CSF/serum ratios of 0.52 and 0.66. CSF concentrations of linezolid were 0.90 and 3.14 µg/mL at 2 and 6 hours, with adjusted CSF/serum ratios of 0.25 and 0.59, respectively. CSF serum linezolid concentrations were not affected by rifampin coadministration. CONCLUSIONS Based on moderate to high CSF penetration, linezolid and cycloserine may be effective drugs for TBM treatment, whereas the utility of bedaquiline, delamanid, and clofazimine is uncertain given their low CSF penetration.
Collapse
Affiliation(s)
- Russell R Kempker
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | | | - Teona Avaliani
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Mariam Gujabidze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Tinatin Bakuradze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Shorena Sabanadze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Zaza Avaliani
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Jeffrey M Collins
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Henry M Blumberg
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Mohammad H Alshaer
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Charles A Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Maia Kipiani
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
- The University of Georgia, Tbilisi, Georgia
| |
Collapse
|
17
|
Wu X, Shang Y, Ren W, Wang W, Wang Y, Xue Z, Li S, Pang Y. Minimum inhibitory concentration of cycloserine against Mycobacterium tuberculosis using the MGIT 960 system and a proposed critical concentration. Int J Infect Dis 2022; 121:148-151. [PMID: 35577251 DOI: 10.1016/j.ijid.2022.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES We aimed to determine the breakpoint of cycloserine (CS) susceptibility in MGIT and to describe the molecular characteristics of CS-resistant Mycobacterium tuberculosis (MTB) isolates. METHODS A total of 124 MTB isolates were recruited in our analysis. Minimum inhibitory concentration (MIC) was determined using the MGIT system. The mutations of MTB isolates within alr, ddl, ald, and cycA, potentially conferring CS resistance were analyzed by the whole-genome sequencing. RESULTS In vitro drug susceptibility testing of isolates with doubling concentrations of CS revealed that the modal MIC values was 4 mg/L for MGIT, accounting for 35.5% (44/124) of isolates tested. Seven isolates harbored mutations conferring CS resistance, consisting of five with alr mutations and two with ald mutations. On the basis of the MIC distributions of wild-type and resistotype populations, we proposed a tentative epidemiologic cut-off value of 16 mg/l. The proportion of CS resistance in extensively drug-resistant TB was significantly higher than that of multidrug-resistant TB. CONCLUSION In conclusion, we propose critical concentration for MGIT 960 to properly diagnose CS-resistant MTB and demonstrate that mutations in alr and ald genes are the major mechanism conferring CS resistance in clinical isolates.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Weicong Ren
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wei Wang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yufeng Wang
- Innovation Alliance on Tuberculosis Diagnosis and Treatment, Beijing, People's Republic of China
| | - Zhongtan Xue
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
18
|
Bone Penetration of Cycloserine in Osteoarticular Tuberculosis Patients of China. Antimicrob Agents Chemother 2022; 66:e0222421. [PMID: 35400177 DOI: 10.1128/aac.02224-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cycloserine concentrations in plasma and bone that were collected during operations on 28 osteoarticular tuberculosis (TB) patients treated daily with a 500-mg cycloserine-containing regimen were determined. The median concentrations in plasma and bone were 16.29 μg/mL (interquartile range [IQR], 6.47 μg/mL) and 24.33 μg/g (IQR, 14.68 μg/g), respectively. The median bone/plasma penetration ratio was 0.76 (range, 0.33 to 1.98). Cycloserine could effectively penetrate bone and acquire concentrations comparable to those in plasma, which favors its usage in osteoarticular TB treatment.
Collapse
|
19
|
Tornheim JA, Udwadia ZF, Arora PR, Gajjar I, Gupte N, Sharma S, Karane M, Sawant N, Kharat N, Blum AJ, Shivakumar SVBY, Mullerpattan JB, Pinto LM, Ashavaid TF, Gupta A, Rodrigues C. Cycloserine did not increase depression incidence or severity at standard dosing for multidrug-resistant tuberculosis. Eur Respir J 2022; 59:2102511. [PMID: 34949698 PMCID: PMC8943271 DOI: 10.1183/13993003.02511-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022]
Abstract
In 2018 cycloserine was elevated to World Health Organization (WHO) group B status for multidrug-resistant tuberculosis (MDR-TB), and is recommended in longer MDR-TB treatment regimens [1]. Inclusion of cycloserine is associated with improved MDR-TB treatment success and reduced mortality, but is limited by treatment-associated depression, psychosis and neuropathy, forcing 9% of patients to stop therapy [1–3]. Cycloserine also demonstrates wide interindividual pharmacokinetic variation, with significant food and drug interactions, leaving nearly half of patients with inappropriate drug levels [4, 5]. Optimal dosing is unknown [6], but modelling studies suggest doses from 250 mg to 750 mg twice daily, with 500 mg twice daily for paucibacillary disease and 750 mg twice daily for cavitary pulmonary disease [7]. Therefore, clinicians must balance the known benefits of cycloserine with the dearth of susceptibility- and drug-monitoring capacity and the spectre of treatment-limiting side-effects. To evaluate the impact of cycloserine prescription and dose on incident depression during MDR-TB treatment, we analysed longitudinal cohort data from India. In a longitudinal cohort of MDR-TB patients receiving individualised, DST-based treatment, neither the inclusion of cycloserine in a multidrug regimen nor the dose used (up to 750 mg daily) significantly increased incidence of depression during treatment https://bit.ly/3GtQmOH
Collapse
Affiliation(s)
- Jeffrey A Tornheim
- Center for Clinical Global Health Education, Division of Infectious Diseases, Dept of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zarir F Udwadia
- Dept of Respiratory Medicine, P.D. Hinduja National Hospital and MRC, Mumbai, India
| | - Prerna R Arora
- Dept of Lab Medicine, P.D. Hinduja National Hospital and MRC, Mumbai, India
| | - Ishita Gajjar
- Dept of Lab Medicine, P.D. Hinduja National Hospital and MRC, Mumbai, India
| | - Nikhil Gupte
- Center for Clinical Global Health Education, Division of Infectious Diseases, Dept of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins University - India office (CCGHE), Pune, India
| | - Samridhi Sharma
- Dept of Lab Medicine, P.D. Hinduja National Hospital and MRC, Mumbai, India
| | - Megha Karane
- Dept of Lab Medicine, P.D. Hinduja National Hospital and MRC, Mumbai, India
| | - Namrata Sawant
- Dept of Lab Medicine, P.D. Hinduja National Hospital and MRC, Mumbai, India
| | - Nisha Kharat
- Dept of Lab Medicine, P.D. Hinduja National Hospital and MRC, Mumbai, India
| | | | | | - Jai B Mullerpattan
- Dept of Respiratory Medicine, P.D. Hinduja National Hospital and MRC, Mumbai, India
| | - Lancelot M Pinto
- Dept of Respiratory Medicine, P.D. Hinduja National Hospital and MRC, Mumbai, India
| | - Tester F Ashavaid
- Dept of Lab Medicine, P.D. Hinduja National Hospital and MRC, Mumbai, India
| | - Amita Gupta
- Center for Clinical Global Health Education, Division of Infectious Diseases, Dept of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Dept of International Health, Johns Hopkins Bloomberg School of Public Heath, Baltimore, MD, USA
| | - Camilla Rodrigues
- Dept of Microbiology, P.D. Hinduja National Hospital and MRC, Mumbai, India
| |
Collapse
|
20
|
Mbelele PM, Utpatel C, Sauli E, Mpolya EA, Mutayoba BK, Barilar I, Dreyer V, Merker M, Sariko ML, Swema BM, Mmbaga BT, Gratz J, Addo KK, Pletschette M, Niemann S, Houpt ER, Mpagama SG, Heysell SK. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac042. [PMID: 35465240 PMCID: PMC9021016 DOI: 10.1093/jacamr/dlac042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background Rifampicin- or multidrug-resistant (RR/MDR) Mycobacterium tuberculosis complex (MTBC) strains account for considerable morbidity and mortality globally. WGS-based prediction of drug resistance may guide clinical decisions, especially for the design of RR/MDR-TB therapies. Methods We compared WGS-based drug resistance-predictive mutations for 42 MTBC isolates from MDR-TB patients in Tanzania with the MICs of 14 antibiotics measured in the Sensititre™ MycoTB assay. An isolate was phenotypically categorized as resistant if it had an MIC above the epidemiological-cut-off (ECOFF) value, or as susceptible if it had an MIC below or equal to the ECOFF. Results Overall, genotypically non-wild-type MTBC isolates with high-level resistance mutations (gNWT-R) correlated with isolates with MIC values above the ECOFF. For instance, the median MIC value (mg/L) for rifampicin-gNWT-R strains was >4.0 (IQR 4.0–4.0) compared with 0.5 (IQR 0.38–0.50) in genotypically wild-type (gWT-S, P < 0.001); isoniazid-gNWT-R >4.0 (IQR 2.0–4.0) compared with 0.25 (IQR 0.12–1.00) among gWT-S (P = 0.001); ethionamide-gNWT-R 15.0 (IQR 10.0–20.0) compared with 2.50 (IQR; 2.50–5.00) among gWT-S (P < 0.001). WGS correctly predicted resistance in 95% (36/38) and 100% (38/38) of the rifampicin-resistant isolates with ECOFFs >0.5 and >0.125 mg/L, respectively. No known resistance-conferring mutations were present in genes associated with resistance to fluoroquinolones, aminoglycosides, capreomycin, bedaquiline, delamanid, linezolid, clofazimine, cycloserine, or p-amino salicylic acid. Conclusions WGS-based drug resistance prediction worked well to rule-in phenotypic drug resistance and the absence of second-line drug resistance-mediating mutations has the potential to guide the design of RR/MDR-TB regimens in the future.
Collapse
Affiliation(s)
- Peter M. Mbelele
- Kibong’oto Infectious Diseases Hospital (KIDH), Siha, Kilimanjaro, Tanzania
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
- Corresponding author. E-mail:
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Elingarami Sauli
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Emmanuel A. Mpolya
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Beatrice K. Mutayoba
- Ministry of Health, National AIDS Control Program, Department of Preventive Services, Dodoma, Tanzania
- CIHLMU Center for International Health, University Hospital, LMU Munich, Germany
| | - Ivan Barilar
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Viola Dreyer
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- Evolution of the Resistome, Research Center Borstel, Borstel, Germany
| | | | | | - Blandina T. Mmbaga
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Jean Gratz
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Kennedy K. Addo
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Michel Pletschette
- CIHLMU Center for International Health, University Hospital, LMU Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Stellah G. Mpagama
- Kibong’oto Infectious Diseases Hospital (KIDH), Siha, Kilimanjaro, Tanzania
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Scott K. Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
21
|
Maitra A, Solanki P, Sadouki Z, McHugh TD, Kloprogge F. Improving the Drug Development Pipeline for Mycobacteria: Modelling Antibiotic Exposure in the Hollow Fibre Infection Model. Antibiotics (Basel) 2021; 10:antibiotics10121515. [PMID: 34943727 PMCID: PMC8698378 DOI: 10.3390/antibiotics10121515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Mycobacterial infections are difficult to treat, requiring a combination of drugs and lengthy treatment times, thereby presenting a substantial burden to both the patient and health services worldwide. The limited treatment options available are under threat due to the emergence of antibiotic resistance in the pathogen, hence necessitating the development of new treatment regimens. Drug development processes are lengthy, resource intensive, and high-risk, which have contributed to market failure as demonstrated by pharmaceutical companies limiting their antimicrobial drug discovery programmes. Pre-clinical protocols evaluating treatment regimens that can mimic in vivo PK/PD attributes can underpin the drug development process. The hollow fibre infection model (HFIM) allows for the pathogen to be exposed to a single or a combination of agents at concentrations achieved in vivo-in plasma or at infection sites. Samples taken from the HFIM, depending on the analyses performed, provide information on the rate of bacterial killing and the emergence of resistance. Thereby, the HFIM is an effective means to investigate the efficacy of a drug combination. Although applicable to a wide variety of infections, the complexity of anti-mycobacterial drug discovery makes the information available from the HFIM invaluable as explored in this review.
Collapse
Affiliation(s)
- Arundhati Maitra
- Institute for Global Health, University College London, London WC1N 1EH, UK; (Z.S.); (F.K.)
- Correspondence:
| | - Priya Solanki
- Centre for Clinical Microbiology, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK; (P.S.); (T.D.M.)
| | - Zahra Sadouki
- Institute for Global Health, University College London, London WC1N 1EH, UK; (Z.S.); (F.K.)
- Centre for Clinical Microbiology, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK; (P.S.); (T.D.M.)
| | - Timothy D. McHugh
- Centre for Clinical Microbiology, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK; (P.S.); (T.D.M.)
| | - Frank Kloprogge
- Institute for Global Health, University College London, London WC1N 1EH, UK; (Z.S.); (F.K.)
| |
Collapse
|
22
|
Zheng X, Davies Forsman L, Bao Z, Xie Y, Ning Z, Schön T, Bruchfeld J, Xu B, Alffenaar JW, Hu Y. Drug exposure and susceptibility of second-line drugs correlate with treatment response in patients with multidrug-resistant tuberculosis: a multi-centre prospective cohort study in China. Eur Respir J 2021; 59:13993003.01925-2021. [PMID: 34737224 PMCID: PMC8943270 DOI: 10.1183/13993003.01925-2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/21/2021] [Indexed: 11/15/2022]
Abstract
Background Understanding the impact of drug exposure and susceptibility on treatment response of multidrug-resistant tuberculosis (MDR-TB) will help to optimise treatment. This study aimed to investigate the association between drug exposure, susceptibility and response to MDR-TB treatment. Methods Drug exposure and susceptibility for second-line drugs were measured for patients with MDR-TB. Multivariate analysis was applied to investigate the impact of drug exposure and susceptibility on sputum culture conversion and treatment outcome. Probability of target attainment was evaluated. Random Forest and CART (Classification and Regression Tree) analysis was used to identify key predictors and their clinical targets among patients on World Health Organization-recommended regimens. Results Drug exposure and corresponding susceptibility were available for 197 patients with MDR-TB. The probability of target attainment was highly variable, ranging from 0% for ethambutol to 97% for linezolid, while patients with fluoroquinolones above targets had a higher probability of 2-month culture conversion (56.3% versus 28.6%; adjusted OR 2.91, 95% CI 1.42–5.94) and favourable outcome (88.8% versus 68.8%; adjusted OR 2.89, 95% CI 1.16–7.17). Higher exposure values of fluoroquinolones, linezolid and pyrazinamide were associated with earlier sputum culture conversion. CART analysis selected moxifloxacin area under the drug concentration–time curve/minimum inhibitory concentration (AUC0–24h/MIC) of 231 and linezolid AUC0–24h/MIC of 287 as best predictors for 6-month culture conversion in patients receiving identical Group A-based regimens. These associations were confirmed in multivariate analysis. Conclusions Our findings indicate that target attainment of TB drugs is associated with response to treatment. The CART-derived thresholds may serve as targets for early dose adjustment in a future randomised controlled study to improve MDR-TB treatment outcome. Drug exposure and susceptibility were proved to be associated with treatment responses during multidrug-resistant tuberculosis treatment, and identified thresholds may serve as targets for dose adjustment in future clinical studies to improve treatment efficacyhttps://bit.ly/3pZQbFU
Collapse
Affiliation(s)
- Xubin Zheng
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Lina Davies Forsman
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Ziwei Bao
- The Fifth People's Hospital of Suzhou, Jiangsu, China
| | - Yan Xie
- Zigong City Centre for Disease Control and Prevention, Sichuan, China
| | - Zhu Ning
- Zigong City Centre for Disease Control and Prevention, Sichuan, China
| | - Thomas Schön
- Department of Infectious Diseases, Linköping University Hospital and Kalmar County Hospital, Sweden.,Division of Inflammation and Infectious Diseases, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Judith Bruchfeld
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Biao Xu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Jan-Willem Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, Australia.,Westmead hospital, Sydney, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| | - Yi Hu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| |
Collapse
|
23
|
A Review of Clinical Pharmacokinetic and Pharmacodynamic Relationships and Clinical Implications for Drugs Used to Treat Multi-drug Resistant Tuberculosis. Eur J Drug Metab Pharmacokinet 2021; 45:305-313. [PMID: 31925745 DOI: 10.1007/s13318-019-00604-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is becoming a global health crisis. The World Health Organization has released new guidelines for the use of tuberculosis-active drugs for the treatment of patients with MDR-TB. Despite documented activity against tuberculosis isolates, doses and exposure targets are yet to be optimized. Our objective was therefore to review the clinical pharmacokinetic and pharmacodynamic literature pertaining to drugs recommended to treat MDR-TB and to identify target areas for future research. To date, published research is limited but studies were identified that evaluated the pharmacokinetics and pharmacodynamics of these drugs. Exposure targets were assessed and summarized for each drug. Exposure-based targets (e.g., area under the concentration curve/minimum inhibitory concentration) appear to be most commonly associated with predicting drug efficacy. Dose variation studies based on these targets were largely inconclusive. Future research should focus on determining the risks and benefits of dose optimization to meet exposure targets and improve patient outcomes. The role of therapeutic drug monitoring also remains yet to be confirmed, both from a clinical perspective as well as a resource allocation perspective in regions where MDR-TB is active.
Collapse
|
24
|
Cahill C, O’Connell F, Gogan KM, Cox DJ, Basdeo SA, O’Sullivan J, Gordon SV, Keane J, Phelan JJ. The Iron Chelator Desferrioxamine Increases the Efficacy of Bedaquiline in Primary Human Macrophages Infected with BCG. Int J Mol Sci 2021; 22:ijms22062938. [PMID: 33805837 PMCID: PMC8001338 DOI: 10.3390/ijms22062938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022] Open
Abstract
For over 50 years, patients with drug-sensitive and drug-resistant tuberculosis have undergone long, arduous, and complex treatment processes with several antimicrobials. With the prevalence of drug-resistant strains on the rise and new therapies for tuberculosis urgently required, we assessed whether manipulating iron levels in macrophages infected with mycobacteria offered some insight into improving current antimicrobials that are used to treat drug-resistant tuberculosis. We investigated if the iron chelator, desferrioxamine, can support the function of human macrophages treated with an array of second-line antimicrobials, including moxifloxacin, bedaquiline, amikacin, clofazimine, linezolid and cycloserine. Primary human monocyte-derived macrophages were infected with Bacillus Calmette-Guérin (BCG), which is pyrazinamide-resistant, and concomitantly treated for 5 days with desferrioxamine in combination with each one of the second-line tuberculosis antimicrobials. Our data indicate that desferrioxamine used as an adjunctive treatment to bedaquiline significantly reduced the bacterial load in human macrophages infected with BCG. Our findings also reveal a link between enhanced bactericidal activity and increases in specific cytokines, as the addition of desferrioxamine increased levels of IFN-γ, IL-6, and IL-1β in BCG-infected human monocyte-derived macrophages (hMDMs) treated with bedaquiline. These results provide insight, and an in vitro proof-of-concept, that iron chelators may prove an effective adjunctive therapy in combination with current tuberculosis antimicrobials.
Collapse
Affiliation(s)
- Christina Cahill
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, 8 Dublin, Ireland; (C.C.); (K.M.G.); (D.J.C.); (S.A.B.); (J.K.)
| | - Fiona O’Connell
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, 8 Dublin, Ireland; (F.O.); (J.O.)
| | - Karl M. Gogan
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, 8 Dublin, Ireland; (C.C.); (K.M.G.); (D.J.C.); (S.A.B.); (J.K.)
| | - Donal J. Cox
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, 8 Dublin, Ireland; (C.C.); (K.M.G.); (D.J.C.); (S.A.B.); (J.K.)
| | - Sharee A. Basdeo
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, 8 Dublin, Ireland; (C.C.); (K.M.G.); (D.J.C.); (S.A.B.); (J.K.)
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, 8 Dublin, Ireland; (F.O.); (J.O.)
| | - Stephen V. Gordon
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, 4 Dublin, Ireland;
| | - Joseph Keane
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, 8 Dublin, Ireland; (C.C.); (K.M.G.); (D.J.C.); (S.A.B.); (J.K.)
| | - James J. Phelan
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, 8 Dublin, Ireland; (C.C.); (K.M.G.); (D.J.C.); (S.A.B.); (J.K.)
- Correspondence: ; Tel.: +353-18963265
| |
Collapse
|
25
|
Sturkenboom MGG, Märtson AG, Svensson EM, Sloan DJ, Dooley KE, van den Elsen SHJ, Denti P, Peloquin CA, Aarnoutse RE, Alffenaar JWC. Population Pharmacokinetics and Bayesian Dose Adjustment to Advance TDM of Anti-TB Drugs. Clin Pharmacokinet 2021; 60:685-710. [PMID: 33674941 PMCID: PMC7935699 DOI: 10.1007/s40262-021-00997-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Tuberculosis (TB) is still the number one cause of death due to an infectious disease. Pharmacokinetics and pharmacodynamics of anti-TB drugs are key in the optimization of TB treatment and help to prevent slow response to treatment, acquired drug resistance, and adverse drug effects. The aim of this review was to provide an update on the pharmacokinetics and pharmacodynamics of anti-TB drugs and to show how population pharmacokinetics and Bayesian dose adjustment can be used to optimize treatment. We cover aspects on preclinical, clinical, and population pharmacokinetics of different drugs used for drug-susceptible TB and multidrug-resistant TB. Moreover, we include available data to support therapeutic drug monitoring of these drugs and known pharmacokinetic and pharmacodynamic targets that can be used for optimization of therapy. We have identified a wide range of population pharmacokinetic models for first- and second-line drugs used for TB, which included models built on NONMEM, Pmetrics, ADAPT, MWPharm, Monolix, Phoenix, and NPEM2 software. The first population models were built for isoniazid and rifampicin; however, in recent years, more data have emerged for both new anti-TB drugs, but also for defining targets of older anti-TB drugs. Since the introduction of therapeutic drug monitoring for TB over 3 decades ago, further development of therapeutic drug monitoring in TB next steps will again depend on academic and clinical initiatives. We recommend close collaboration between researchers and the World Health Organization to provide important guideline updates regarding therapeutic drug monitoring and pharmacokinetics/pharmacodynamics.
Collapse
Affiliation(s)
- Marieke G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Elin M Svensson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Derek J Sloan
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Liverpool School of Tropical Medicine, Liverpool, UK.,School of Medicine, University of St Andrews, St Andrews, UK
| | - Kelly E Dooley
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Simone H J van den Elsen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy, Hospital Group Twente, Almelo, Hengelo, the Netherlands
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Charles A Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. .,Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia. .,Westmead Hospital, Westmead, NSW, Australia. .,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
26
|
Court R, Centner CM, Chirehwa M, Wiesner L, Denti P, de Vries N, Harding J, Gumbo T, Maartens G, McIlleron H. Neuropsychiatric toxicity and cycloserine concentrations during treatment for multidrug-resistant tuberculosis. Int J Infect Dis 2021; 105:688-694. [PMID: 33684562 PMCID: PMC8126338 DOI: 10.1016/j.ijid.2021.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Cycloserine, or its structural analogue terizidone, has been associated with neuropsychiatric toxicity (psychosis, depression, and neuropathy). Prospective clinical data on the incidence of and risk factors for neuropsychiatric toxicity in TB patients treated with cycloserine are limited. METHODS A prospective evaluation of neuropsychiatric toxicity was performed using validated screening tools in patients with multidrug-resistant tuberculosis treated with terizidone. Cox proportional hazard modelling was performed to explore the effects of clinical variables and measures of cycloserine pharmacokinetics in plasma. RESULTS A total 144 participants were recruited: 86 were male and 58 were female; their median age was 35.7 years and 91 (63%) were HIV-infected. Fifty-five (38%) participants developed at least one neuropsychiatric event (30 cases per 100 person-months): 50 (35%) neuropathy, 14 (10%) depression, and 11 (8%) psychosis. Neuropathy was independently associated with cycloserine clearance ((adjusted hazard ratio 0.34 (aHR), P = 0.03)) and high-dose pyridoxine (200 mg vs 150 mg daily, aHR: 2.79, P = 0.01). CONCLUSIONS A high incidence of early neuropsychiatric toxicity was observed in this cohort of patients treated with terizidone. Cycloserine clearance and higher doses of pyridoxine are associated with incident or worsening peripheral neuropathy.
Collapse
Affiliation(s)
- Richard Court
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - Chad M Centner
- Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa.
| | - Maxwell Chirehwa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | | | | | - Tawanda Gumbo
- Quantitative Preclinical and Clinical Sciences Department, Praedicare, Dallas, TX, USA.
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
27
|
Srivastava S, Chapagain M, van Zyl J, Deshpande D, Gumbo T. Potency of vancomycin against Mycobacterium tuberculosis in the hollow fiber system model. J Glob Antimicrob Resist 2021; 24:403-410. [PMID: 33508482 DOI: 10.1016/j.jgar.2021.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES To determine whether an inhaled vancomycin formulation resulting in high intrapulmonary 24-h area under the concentration-time curve (AUC0-24) could be optimised for tuberculosis treatment. We also explored vancomycin synergy and antagonism with d-cycloserine and benzylpenicillin. METHODS We determined MICs of two Mycobacterium tuberculosis (Mtb) laboratory strains (H37Ra and H37Rv) and two drug-susceptible and nine multidrug resistant clinical strains. Second, in the hollow fiber system model of TB [HFS-TB] using Mtb H37Ra strain, we recapitulated vancomycin intrapulmonary pharmacokinetics of eight doses administered twice daily over 28 days, mimicking a 6-h half-life. Using the HFS-TB, vancomycin was tested in combination with d-cycloserine and benzylpenicillin to determine synergy or antagonism between drugs targeting the same pathway. RESULTS Vancomycin MICs were 12 and 48 mg/L in drug-susceptible clinical isolates but >96 mg/L in all MDR isolates.In the HFS-TB, vancomycin killed 3.9 ± 0.6 log10 CFU/mL Mtb. The EC50 was calculated as AUC0-24/MIC of 184.6 ± 106.5. Compared with day 0, 1.0 and 2.0 log10 CFU/mL kill was achieved by AUC0-24/MIC of 168 and 685, respectively. Acquired vancomycin resistance developed to all vancomycin doses tested in the HFS-TB. In the HFS-TB, vancomycin was antagonistic to benzylpenicillin, which works downstream to glycopeptides in peptidoglycan synthesis, but synergistic with d-cycloserine, which inhibits upstream d-Ala-d-Ala ligase and alanine racemase. CONCLUSION Our proof-of-concept studies show that vancomycin optimal exposure target for Mtb kill could be achieved via inhalational drug delivery. Addition of drugs synergistic with vancomycin, e.g. d-cycloserine, may lower the vancomycin concentrations required to kill Mtb.
Collapse
Affiliation(s)
- Shashikant Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, USA; Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Moti Chapagain
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, USA; Quantitative Preclinical and Clinical Sciences Department, Praedicare Inc., Dallas, TX, USA
| | - Johanna van Zyl
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Devyani Deshpande
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Tawanda Gumbo
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, USA; Quantitative Preclinical and Clinical Sciences Department, Praedicare Inc., Dallas, TX, USA; Lung Infection and Immunity Unit, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
28
|
Alffenaar JWC, Gumbo T, Dooley KE, Peloquin CA, Mcilleron H, Zagorski A, Cirillo DM, Heysell SK, Silva DR, Migliori GB. Integrating Pharmacokinetics and Pharmacodynamics in Operational Research to End Tuberculosis. Clin Infect Dis 2021; 70:1774-1780. [PMID: 31560376 PMCID: PMC7146003 DOI: 10.1093/cid/ciz942] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) elimination requires innovative approaches. The new Global Tuberculosis Network (GTN) aims to conduct research on key unmet therapeutic and diagnostic needs in the field of TB elimination using multidisciplinary, multisectorial approaches. The TB Pharmacology section within the new GTN aims to detect and study the current knowledge gaps, test potential solutions using human pharmacokinetics informed through preclinical infection systems, and return those findings to the bedside. Moreover, this approach would allow prospective identification and validation of optimal shorter therapeutic durations with new regimens. Optimized treatment using available and repurposed drugs may have an increased impact when prioritizing a person-centered approach and acknowledge the importance of age, gender, comorbidities, and both social and programmatic environments. In this viewpoint article, we present an in-depth discussion on how TB pharmacology and the related strategies will contribute to TB elimination.
Collapse
Affiliation(s)
- Jan-Willem C Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia.,Westmead Hospital, Sydney, Australia
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Kelly E Dooley
- Division of Clinical Pharmacology, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, University of Florida College of Pharmacy, Gainesville, Florida, USA
| | - Helen Mcilleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Andre Zagorski
- Management Sciences for Health, Arlington, Virginia, USA
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Scott K Heysell
- University of Virginia, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - Denise Rossato Silva
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| |
Collapse
|
29
|
LeVine SM, Tsau S. Substrate Reduction Therapy for Krabbe Disease: Exploring the Repurposing of the Antibiotic D-Cycloserine. Front Pediatr 2021; 9:807973. [PMID: 35118033 PMCID: PMC8804370 DOI: 10.3389/fped.2021.807973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Krabbe disease is a lysosomal storage disease that is caused by a deficiency in galactosylceramidase. Infantile onset disease is the most common presentation, which includes progressive neurological deterioration with corresponding demyelination, development of globoid cells, astrocyte gliosis, etc. Hemopoietic stem cell transplantation (HSCT) is a disease modifying therapy, but this intervention is insufficient with many patients still experiencing developmental delays and progressive deterioration. Preclinical studies have used animal models, e.g., twitcher mice, to test different experimental therapies resulting in developments that have led to progressive improvements in the therapeutic impact. Some recent advances have been in the areas of gene therapy and substrate reduction therapy (SRT), as well as using these in combination with HSCT. Unfortunately, new experimental approaches have encountered obstacles which have impeded the translation of novel therapies to human patients. In an effort to identify a safe adjunct therapy, D-cycloserine was tested in preliminary studies in twitcher mice. When administered as a standalone therapy, D-cycloserine was shown to lengthen the lifespan of twitcher mice in a small but significant manner. D-Cycloserine is an FDA approved antibiotic used for drug resistant tuberculosis. It also acts as a partial agonist of the NMDA receptor, which has led to numerous human studies for a range of neuropsychiatric and neurological conditions. In addition, D-cycloserine may inhibit serine palmitoyltransferase (SPT), which catalyzes the rate-limiting step in sphingolipid production. The enantiomer, L-cycloserine, is a much more potent inhibitor of SPT than D-cycloserine. Previously, L-cycloserine was found to act as an effective SRT agent in twitcher mice as both a standalone therapy and as part of combination therapies. L-Cycloserine is not approved for human use, and its potent inhibitory properties may limit its ability to maintain a level of partial inactivation of SPT that is also safe. In theory, D-cycloserine would encompass a much broader dosage range to achieve a safe degree of partial inhibition of SPT, which increases the likelihood it could advance to human studies in patients with Krabbe disease. Furthermore, additional properties of D-cycloserine raise the possibility of other therapeutic mechanisms that could be exploited for the treatment of this disease.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sheila Tsau
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
30
|
Märtson AG, Burch G, Ghimire S, Alffenaar JWC, Peloquin CA. Therapeutic drug monitoring in patients with tuberculosis and concurrent medical problems. Expert Opin Drug Metab Toxicol 2020; 17:23-39. [PMID: 33040625 DOI: 10.1080/17425255.2021.1836158] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Therapeutic drug monitoring (TDM) has been recommended for treatment optimization in tuberculosis (TB) but is only is used in certain countries e.g. USA, Germany, the Netherlands, Sweden and Tanzania. Recently, new drugs have emerged and PK studies in TB are continuing, which contributes further evidence for TDM in TB. The aim of this review is to provide an update on drugs used in TB, treatment strategies for these drugs, and TDM to support broader implementation. AREAS COVERED This review describes the different drug classes used for TB, multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), along with their pharmacokinetics, dosing strategies, TDM and sampling strategies. Moreover, the review discusses TDM for patient TB and renal or liver impairment, patients co-infected with HIV or hepatitis, and special patient populations - children and pregnant women. EXPERT OPINION TB treatment has a long history of using 'one size fits all.' This has contributed to treatment failures, treatment relapses, and the selection of drug-resistant isolates. While challenging in resource-limited circumstances, TDM offers the clinician the opportunity to individualize and optimize treatment early in treatment. This approach may help to refine treatment and thereby reduce adverse effects and poor treatment outcomes. Funding, training, and randomized controlled trials are needed to advance the use of TDM for patients with TB.
Collapse
Affiliation(s)
- Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Gena Burch
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy and Emerging Pathogens Institute, University of Florida , Gainesville, FL, USA
| | - Samiksha Ghimire
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands.,Department of Pharmacy, Westmead Hospital , Sydney, Australia.,Sydney Pharmacy School, The University of Sydney , Sydney, New South Wales, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney , Sydney, Australia
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy and Emerging Pathogens Institute, University of Florida , Gainesville, FL, USA
| |
Collapse
|
31
|
Chirehwa MT, Court R, de Kock M, Wiesner L, de Vries N, Harding J, Gumbo T, Maartens G, Warren R, Denti P, McIlleron H. Population Pharmacokinetics of Cycloserine and Pharmacokinetic/Pharmacodynamic Target Attainment in Multidrug-Resistant Tuberculosis Patients Dosed with Terizidone. Antimicrob Agents Chemother 2020; 64:e01381-20. [PMID: 32816738 PMCID: PMC7577169 DOI: 10.1128/aac.01381-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/13/2020] [Indexed: 11/20/2022] Open
Abstract
Cycloserine is a WHO group B drug for the treatment of multidrug-resistant tuberculosis (TB). Pharmacokinetic/pharmacodynamic data for cycloserine when dosed as terizidone are sparse. The aim of this analysis was to describe the population pharmacokinetics of cycloserine when administered as terizidone and predict the doses of terizidone attaining cycloserine exposures associated with efficacy. The plasma cycloserine level was measured 2 to 6 weeks after treatment initiation in patients hospitalized for second-line tuberculosis treatment. The pretreatment MICs of cycloserine were determined for the clinical isolates. We enrolled 132 participants with rifampicin-resistant TB; 79 were HIV positive. The median pretreatment MIC was 16 mg/liter. A one-compartment disposition model with two clearance pathways, nonrenal (0.35 liters/h) and renal (0.43 liters/h), described cycloserine pharmacokinetics well. Nonrenal clearance and the volume of distribution were allometrically scaled using fat-free mass. Smoking increased nonrenal clearance by 41%. Simulations showed that with daily doses of terizidone (750 mg and 1,000 mg for patients weighing ≤45 kg and >45 kg, respectively), the probability of maintaining the plasma cycloserine concentration above the MIC for more than 30% of the dosing interval (30% T>MIC) (which is associated with a 1.0-log10-CFU/ml kill in vitro) exceeded 90% at MIC values of ≤16 mg/liter, but the proportion of patients achieving 100% T>MIC (which is associated with the prevention of resistance) was more than 90% only at MICs of ≤8 mg/liter. Based on a target derived in vitro, the WHO-recommended doses of terizidone are effective for cycloserine MICs of ≤8 mg/liter, and higher doses are required to prevent the development of resistance.
Collapse
Affiliation(s)
- Maxwell T Chirehwa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Richard Court
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Mariana de Kock
- NRF-DSI Centre of Excellence in Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | | | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rob Warren
- NRF-DSI Centre of Excellence in Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
32
|
Merker M, Kohl TA, Barilar I, Andres S, Fowler PW, Chryssanthou E, Ängeby K, Jureen P, Moradigaravand D, Parkhill J, Peacock SJ, Schön T, Maurer FP, Walker T, Köser C, Niemann S. Phylogenetically informative mutations in genes implicated in antibiotic resistance in Mycobacterium tuberculosis complex. Genome Med 2020; 12:27. [PMID: 32143680 PMCID: PMC7060619 DOI: 10.1186/s13073-020-00726-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A comprehensive understanding of the pre-existing genetic variation in genes associated with antibiotic resistance in the Mycobacterium tuberculosis complex (MTBC) is needed to accurately interpret whole-genome sequencing data for genotypic drug susceptibility testing (DST). METHODS We investigated mutations in 92 genes implicated in resistance to 21 anti-tuberculosis drugs using the genomes of 405 phylogenetically diverse MTBC strains. The role of phylogenetically informative mutations was assessed by routine phenotypic DST data for the first-line drugs isoniazid, rifampicin, ethambutol, and pyrazinamide from a separate collection of over 7000 clinical strains. Selected mutations/strains were further investigated by minimum inhibitory concentration (MIC) testing. RESULTS Out of 547 phylogenetically informative mutations identified, 138 were classified as not correlating with resistance to first-line drugs. MIC testing did not reveal a discernible impact of a Rv1979c deletion shared by M. africanum lineage 5 strains on resistance to clofazimine. Finally, we found molecular evidence that some MTBC subgroups may be hyper-susceptible to bedaquiline and clofazimine by different loss-of-function mutations affecting a drug efflux pump subunit (MmpL5). CONCLUSIONS Our findings underline that the genetic diversity in MTBC has to be studied more systematically to inform the design of clinical trials and to define sound epidemiologic cut-off values (ECOFFs) for new and repurposed anti-tuberculosis drugs. In that regard, our comprehensive variant catalogue provides a solid basis for the interpretation of mutations in genotypic as well as in phenotypic DST assays.
Collapse
Affiliation(s)
- Matthias Merker
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Parkallee 1, 23845, Borstel, Germany.
| | - Thomas A Kohl
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Parkallee 1, 23845, Borstel, Germany
| | - Ivan Barilar
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Parkallee 1, 23845, Borstel, Germany
| | - Sönke Andres
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Philip W Fowler
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Erja Chryssanthou
- Department of Clinical Microbiology, Karolinska University Hospital, Solna, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kristian Ängeby
- Department of Clinical Science and Education, Emergency Medicine, Stockholm South General Hospital, Karolinska Institute, Stockholm, Sweden
| | | | - Danesh Moradigaravand
- Center for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Thomas Schön
- Department of Infectious Diseases and Clinical Microbiology, Kalmar County Hospital, Kalmar, Sweden
- Department of Clinical and Experimental Medicine, Division of Medical Microbiology, Linköping University, Linköping, Sweden
| | - Florian P Maurer
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
- Institute of Medical Microbiology, Virology and Hospital Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timothy Walker
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Claudio Köser
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Stefan Niemann
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Parkallee 1, 23845, Borstel, Germany
| |
Collapse
|
33
|
Amount of Cycloserine Emanating from Terizidone Metabolism and Relationship with Hepatic Function in Patients with Drug-Resistant Tuberculosis. Drugs R D 2020; 19:289-296. [PMID: 31396892 PMCID: PMC6738357 DOI: 10.1007/s40268-019-00281-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background and objectives The dosing of cycloserine and terizidone is the same, as both drugs are considered equivalent or used interchangeably. Nevertheless, it is not certain from the literature that these drugs are interchangeable. Therefore, the amount of cycloserine resulting from the metabolism of terizidone and the relationship with hepatic function were determined. Methods This prospective clinical study involved 39 patients with drug-resistant tuberculosis admitted for an intensive phase of treatment. Cycloserine pharmacokinetic parameters for individual patients, like area under the curve (AUC), clearance (CLm/F), peak concentration (Cmax) and trough concentration (Cmin), were calculated from a previously validated joint population pharmacokinetic model of terizidone and cycloserine. Correlation and regression analyses were performed for pharmacokinetic parameters and unconjugated bilirubin (UB), conjugated bilirubin (CB), albumin, the ratio of aspartate transaminase to alanine aminotransferase (AST/ALT), or binding affinity of UB to albumin (Kaf), using R statistical software version 3.5.3. Results Thirty-eight patients took a daily dose of 750 mg terizidone, while one took 500 mg. The amount of cycloserine [median (range)] that emanated from terizidone metabolism was 51.6 (0.64–374) mg. Cmax (R2 = 22%, p = 0.003) and Cmin (R2 = 10.6%, p = 0.044) were significantly associated with increased CB concentration. Cmax was significantly associated with increased Kaf (R2 = 10.1%, p = 0.048), while high CLm/F was significantly associated with decreased AST/ALT (R2 = 21%, p = 0.003). Conclusions Cycloserine is not interchangeable with terizidone, as amounts are lower than expected. Cycloserine may be a predisposing factor to the development of hyperbilirubinaemia, as CLm/F is affected by hepatic function.
Collapse
|
34
|
Pharmacokinetic Modeling, Simulation, and Development of a Limited Sampling Strategy of Cycloserine in Patients with Multidrug-/Extensively Drug-Resistant Tuberculosis. Clin Pharmacokinet 2020; 59:899-910. [PMID: 31981103 DOI: 10.1007/s40262-020-00860-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Multidrug-resistant tuberculosis has much poorer treatment outcomes compared with drug-susceptible tuberculosis because second-line drugs for treating multidrug resistant tuberculosis are less effective and are frequently associated with side effects. Optimization of drug treatment is urgently needed. Cycloserine is a second-line tuberculosis drug with variable pharmacokinetics and thus variable exposure when programmatic doses are used. The objective of this study was to develop a population pharmacokinetic model of cycloserine to assess drug exposure and to develop a limited sampling strategy for cycloserine exposure monitoring. MATERIAL AND METHODS Patients with multidrug-/extensively drug-resistant tuberculosis who were treated for > 7 days with cycloserine were eligible for inclusion. Patients received cycloserine 500 mg (body weight ≤ 50 kg) or 750 mg (body weight > 50 kg) once daily. MW/Pharm 3.83 (Mediware, Groningen, The Netherlands) was used to parameterize the population pharmacokinetic model. The model was compared with pharmacokinetic values from the literature and evaluated with a bootstrap analysis, Monte Carlo simulation, and an external dataset. Monte Carlo simulations were used to develop a limited sampling strategy. RESULTS Cycloserine plasma concentration vs time curves were obtained from 15 hospitalized patients (nine male, six female, median age 35 years). Mean dose/kg body weight was 11.5 mg/kg (standard deviation 2.04 mg/kg). Median area under the concentration-time curve over 24 h (AUC0-24 h) of cycloserine was 888 h mg/L (interquartile range 728-1252 h mg/L) and median maximum concentration of cycloserine was 23.31 mg/L (interquartile range 20.14-33.30 mg/L). The final population pharmacokinetic model consisted of the following pharmacokinetic parameters [mean (standard deviation)]: absorption constant Ka_po of 0.39 (0.31) h-1, distribution over the central compartment (Vd) of 0.54 (0.26) L/kg LBM, renal clearance as fraction of the estimated glomerular filtration rate of 0.092 (0.038), and metabolic clearance of 1.05 (0.75) L/h. The population pharmacokinetic model was successfully evaluated with a bootstrap analysis, Monte Carlo simulation, and an external dataset of Chinese patients (difference of 14.6% and 19.5% in measured and calculated concentrations and AUC0-24 h, respectively). Root-mean-squared-errors found in predicting the AUC0-24 h using a one- (4 h) and a two- (2 h and 7 h) limited sampling strategy were 1.60% and 0.14%, respectively. CONCLUSIONS This developed population pharmacokinetic model can be used to calculate cycloserine concentrations and exposure in patients with multidrug-/extensively drug-resistant tuberculosis. This model was successfully validated by internal and external validation methods. This study showed that the AUC0-24 h of cycloserine can be estimated in patients with multidrug-/extensively drug-resistant tuberculosis using a 1- or 2-point limited sampling strategy in combination with the developed population pharmacokinetic model. This strategy can be used in studies to correlate drug exposure with clinical outcome. This study also showed that good target attainment rates, expressed by time above the minimal inhibitory concentration, were obtained for cycloserine with a minimal inhibitory concentration of 5 and 10 mg/L, but low rates with a minimal inhibitory concentration of 20 and 32.5 mg/L.
Collapse
|
35
|
Van Deun A, Decroo T, Tahseen S, Trébucq A, Schwoebel V, Ortuno-Gutierrez N, de Jong BC, Rieder HL, Piubello A, Chiang CY. World Health Organization 2018 treatment guidelines for rifampicin-resistant tuberculosis: uncertainty, potential risks and the way forward. Int J Antimicrob Agents 2020; 55:105822. [DOI: 10.1016/j.ijantimicag.2019.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023]
|
36
|
Nahid P, Mase SR, Migliori GB, Sotgiu G, Bothamley GH, Brozek JL, Cattamanchi A, Cegielski JP, Chen L, Daley CL, Dalton TL, Duarte R, Fregonese F, Horsburgh CR, Ahmad Khan F, Kheir F, Lan Z, Lardizabal A, Lauzardo M, Mangan JM, Marks SM, McKenna L, Menzies D, Mitnick CD, Nilsen DM, Parvez F, Peloquin CA, Raftery A, Schaaf HS, Shah NS, Starke JR, Wilson JW, Wortham JM, Chorba T, Seaworth B. Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. Am J Respir Crit Care Med 2019; 200:e93-e142. [PMID: 31729908 PMCID: PMC6857485 DOI: 10.1164/rccm.201909-1874st] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: The American Thoracic Society, U.S. Centers for Disease Control and Prevention, European Respiratory Society, and Infectious Diseases Society of America jointly sponsored this new practice guideline on the treatment of drug-resistant tuberculosis (DR-TB). The document includes recommendations on the treatment of multidrug-resistant TB (MDR-TB) as well as isoniazid-resistant but rifampin-susceptible TB.Methods: Published systematic reviews, meta-analyses, and a new individual patient data meta-analysis from 12,030 patients, in 50 studies, across 25 countries with confirmed pulmonary rifampin-resistant TB were used for this guideline. Meta-analytic approaches included propensity score matching to reduce confounding. Each recommendation was discussed by an expert committee, screened for conflicts of interest, according to the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology.Results: Twenty-one Population, Intervention, Comparator, and Outcomes questions were addressed, generating 25 GRADE-based recommendations. Certainty in the evidence was judged to be very low, because the data came from observational studies with significant loss to follow-up and imbalance in background regimens between comparator groups. Good practices in the management of MDR-TB are described. On the basis of the evidence review, a clinical strategy tool for building a treatment regimen for MDR-TB is also provided.Conclusions: New recommendations are made for the choice and number of drugs in a regimen, the duration of intensive and continuation phases, and the role of injectable drugs for MDR-TB. On the basis of these recommendations, an effective all-oral regimen for MDR-TB can be assembled. Recommendations are also provided on the role of surgery in treatment of MDR-TB and for treatment of contacts exposed to MDR-TB and treatment of isoniazid-resistant TB.
Collapse
|
37
|
Comparative fitness analysis of D-cycloserine resistant mutants reveals both fitness-neutral and high-fitness cost genotypes. Nat Commun 2019; 10:4177. [PMID: 31519879 PMCID: PMC6744398 DOI: 10.1038/s41467-019-12074-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 08/16/2019] [Indexed: 12/23/2022] Open
Abstract
Drug resistant infections represent one of the most challenging medical problems of our time. D-cycloserine is an antibiotic used for six decades without significant appearance and dissemination of antibiotic resistant strains, making it an ideal model compound to understand what drives resistance evasion. We therefore investigated why Mycobacterium tuberculosis fails to become resistant to D-cycloserine. To address this question, we employed a combination of bacterial genetics, genomics, biochemistry and fitness analysis in vitro, in macrophages and in mice. Altogether, our results suggest that the ultra-low rate of emergence of D-cycloserine resistance mutations is the dominant biological factor delaying the appearance of clinical resistance to this antibiotic. Furthermore, we also identified potential compensatory mechanisms able to minimize the severe fitness costs of primary D-cycloserine resistance conferring mutations. D-cycloserine (DCS) has been used for decades to treat Mycobacterium tuberculosis (Mtb) but resistance is rarely observed in clinical isolates. Here, the authors report ultra-low rate of emergence of resistance mutations as the underlying mechanism of DCS resistance evasion in Mtb.
Collapse
|
38
|
Alghamdi WA, Alsultan A, Al-Shaer MH, An G, Ahmed S, Alkabab Y, Banu S, Barbakadze K, Houpt E, Kipiani M, Mikiashvili L, Schmidt S, Heysell SK, Kempker RR, Cegielski JP, Peloquin CA. Cycloserine Population Pharmacokinetics and Pharmacodynamics in Patients with Tuberculosis. Antimicrob Agents Chemother 2019; 63:e00055-19. [PMID: 30858211 PMCID: PMC6496076 DOI: 10.1128/aac.00055-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/02/2019] [Indexed: 12/31/2022] Open
Abstract
Limited pharmacokinetic/pharmacodynamic (PK/PD) data exist on cycloserine in tuberculosis (TB) patients. We pooled several studies into a large PK data set to estimate the population PK parameters for cycloserine in TB patients. We also performed simulations to provide insight into optimizing the dosing of cycloserine. TB patients were included from Georgia, Bangladesh, and four U.S. sites. Monolix and mlxR package were used for population PK modeling and simulation. We used PK/PD targets for time above MIC of ≥30% and ≥64%, representing bactericidal activity and 80% of the maximum kill, to calculate the probability of target attainment (PTA). Optimal PK/PD breakpoints were defined as the highest MIC to achieve ≥90% of PTA. Data from 247 subjects, including 205 patients with drug-resistant TB, were included. The data were best described by a one-compartment model. In most cases, the PK/PD breakpoints for the simulated regimens were similar for both PK/PD targets. Higher PTA were achieved as the total daily dose was increased. The highest PK/PD breakpoint that resulted from the use of 250 mg dosages was 16 mg/liter. For MICs of >16 mg/liter, doses of at least 500 mg three times daily or 750 mg twice daily were needed. In conclusion, the current dosing for cycloserine, 250 to 500 mg once or twice daily, is not sufficient for MICs of >16mg/liter. Further studies are needed regarding the efficacy and tolerability of daily doses of >1,000 mg. Dividing the dose minimally affected the PK/PD breakpoints while optimizing exposure, which can potentially reduce adverse drug effects.
Collapse
Affiliation(s)
- Wael A Alghamdi
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Abdullah Alsultan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad H Al-Shaer
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Guohua An
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, USA
| | - Shahriar Ahmed
- Infectious Diseases Division, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yosra Alkabab
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Sayera Banu
- Infectious Diseases Division, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | - Eric Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Maia Kipiani
- National Center for TB and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Lali Mikiashvili
- National Center for TB and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Stephan Schmidt
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Russell R Kempker
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - J Peter Cegielski
- University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Charles A Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|