1
|
Nambiar RB, Elbediwi M, Ed-Dra A, Wu B, Yue M. Epidemiology and antimicrobial resistance of Salmonella serovars Typhimurium and 4,[5],12:i- recovered from hospitalized patients in China. Microbiol Res 2024; 282:127631. [PMID: 38330818 DOI: 10.1016/j.micres.2024.127631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Global emergence of multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium is a continuing challenge for modern healthcare. However, the knowledge, regarding the epidemiology of salmonellosis caused by the monophasic variant S. 4,[5],12:i:- in hospitalized patients, is limited in China. To bridge this gap, we carried out a retrospective study to determine the antimicrobial resistance, trends, and risk factors of S. Typhimurium and S. 4,[5],12:i:- (n = 329) recovered from patients in Zhejiang province between 2011 and 2019. The results showed that 90.57% (298/329) of the isolates were MDR; among them, 48.94% (161/329) and 12.46% (41/329) were phenotypically resistant to cephalosporins and fluoroquinolones, respectively, which are the drugs of choice used to treat salmonellosis in clinics. Additionally, we observed a higher incidence of infections among the young population (<5 years old). Notably, the higher prevalence of ST34 (sequence type 34) isolates, especially after 2014, with MDR (57.05%, 170/298) phenotype, and incidence of ST34 isolates co-harbouring mcr-1 (mobile colistin resistance gene) and blaCTX-M-14 (β-lactamase gene) suggest an association between STs and drug resistance. Together, the increasing prevalence of MDR ST34 calls for enhanced monitoring strategies to mitigate the spread and dissemination of MDR clones of S. Typhimurium and S. 4,[5],12:i-. Our study provides improved knowledge about non-typhoid Salmonella (NTS) infections, which could help in the effective recommendation of antimicrobials in hospitalized patients.
Collapse
Affiliation(s)
- Reshma B Nambiar
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mohammed Elbediwi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M'ghila Campus, Sultan Moulay Slimane University, BP: 591, Beni Mellal, Morocco
| | - Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Ly YT, Leuko S, Moeller R. An overview of the bacterial microbiome of public transportation systems-risks, detection, and countermeasures. Front Public Health 2024; 12:1367324. [PMID: 38528857 PMCID: PMC10961368 DOI: 10.3389/fpubh.2024.1367324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
When we humans travel, our microorganisms come along. These can be harmless but also pathogenic, and are spread by touching surfaces or breathing aerosols in the passenger cabins. As the pandemic with SARS-CoV-2 has shown, those environments display a risk for infection transmission. For a risk reduction, countermeasures such as wearing face masks and distancing were applied in many places, yet had a significant social impact. Nevertheless, the next pandemic will come and additional countermeasures that contribute to the risk reduction are needed to keep commuters safe and reduce the spread of microorganisms and pathogens, but also have as little impact as possible on the daily lives of commuters. This review describes the bacterial microbiome of subways around the world, which is mainly characterized by human-associated genera. We emphasize on healthcare-associated ESKAPE pathogens within public transport, introduce state-of-the art methods to detect common microbes and potential pathogens such as LAMP and next-generation sequencing. Further, we describe and discuss possible countermeasures that could be deployed in public transportation systems, as antimicrobial surfaces or air sterilization using plasma. Commuting in public transport can harbor risks of infection. Improving the safety of travelers can be achieved by effective detection methods, microbial reduction systems, but importantly by hand hygiene and common-sense hygiene guidelines.
Collapse
Affiliation(s)
| | | | - Ralf Moeller
- Department of Radiation Biology, Institute for Aerospace Medicine, German Aerospace Center, Cologne, Germany
| |
Collapse
|
3
|
Taha AE, Alduraywish AS, Alanazi AA, Alruwaili AH, Alruwaili AL, Alrais MM, Alyousef AA, Alrais AA, Alanazi MA, Alhudaib SN, Alazmi BM. High Bacterial Contamination Load of Self-Service Facilities in Sakaka City, Aljouf, Saudi Arabia, with Reduced Sensitivity to Some Antimicrobials. Microorganisms 2023; 11:2937. [PMID: 38138082 PMCID: PMC10745763 DOI: 10.3390/microorganisms11122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Although self-service facilities (SSFs) have been used on a large scale worldwide, they can be easily contaminated by microorganisms from the hands of their sequential users. This research aimed to study the prevalence and antimicrobial susceptibility/resistance of bacteria contaminating SSFs in Sakaka, Aljouf, Saudi Arabia. We randomly swabbed the surfaces of 200 SSFs, then used the suitable culture media, standard microbiological methods, and the MicroScan WalkAway Microbiology System, including the identification/antimicrobial susceptibility testing-combo panels. A high SSFs' bacterial contamination load was detected (78.00%). Ninety percent of the samples collected in the afternoon, during the maximum workload of the SSFs, yielded bacterial growth (p < 0.001 *). Most of the contaminated SSFs were supermarket payment machines, self-pumping equipment at gas stations (p = 0.004 *), online banking service machines (p = 0.026 *), and barcode scanners in supermarkets. In the antiseptic-deficient areas, 55.1% of the contaminated SSFs were detected (p = 0.008 *). Fifty percent of the contaminated SSFs were not decontaminated. The most common bacterial contaminants were Escherichia coli (70 isolates), Klebsiella pneumoniae (66 isolates), Staphylococcus epidermidis (34 isolates), methicillin-resistant Staphylococcus aureus (18 isolates), and methicillin-sensitive Staphylococcus aureus (14 isolates), representing 31.53%, 29.73%, 15.32%, 8.11%, and 6.31% of the isolates, respectively. Variable degrees of reduced sensitivity to some antimicrobials were detected among the bacterial isolates. The SSFs represent potential risks for the exchange of antimicrobial-resistant bacteria between the out-hospital environment and the hospitals through the hands of the public. As technology and science advance, there is an urgent need to deploy creative and automated techniques for decontaminating SSFs and make use of recent advancements in materials science for producing antibacterial surfaces.
Collapse
Affiliation(s)
- Ahmed E. Taha
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | | | - Ali A. Alanazi
- College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | | | | | - Mmdoh M. Alrais
- College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | | | | | | | | | - Bandar M. Alazmi
- College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
4
|
Ding D, Wang B, Zhang X, Zhang J, Zhang H, Liu X, Gao Z, Yu Z. The spread of antibiotic resistance to humans and potential protection strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114734. [PMID: 36950985 DOI: 10.1016/j.ecoenv.2023.114734] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance is currently one of the greatest threats to human health. Widespread use and residues of antibiotics in humans, animals, and the environment can exert selective pressure on antibiotic resistance bacteria (ARB) and antibiotic resistance gene (ARG), accelerating the flow of antibiotic resistance. As ARG spreads to the population, the burden of antibiotic resistance in humans increases, which may have potential health effects on people. Therefore, it is critical to mitigate the spread of antibiotic resistance to humans and reduce the load of antibiotic resistance in humans. This review briefly described the information of global antibiotic consumption information and national action plans (NAPs) to combat antibiotic resistance and provided a set of feasible control strategies for the transmission of ARB and ARG to humans in three areas including (a) Reducing the colonization capacity of exogenous ARB, (b) Enhancing human colonization resistance and mitigating the horizontal gene transfer (HGT) of ARG, (c) Reversing ARB antibiotic resistance. With the hope of achieving interdisciplinary one-health prevention and control of bacterial resistance.
Collapse
Affiliation(s)
- Dong Ding
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China; College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junxi Zhang
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Huanhuan Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinxin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhan Gao
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China; The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Wu Y, Jiang T, Bao D, Yue M, Jia H, Wu J, Ruan Z. Global population structure and genomic surveillance framework of carbapenem-resistant Salmonella enterica. Drug Resist Updat 2023; 68:100953. [PMID: 36841133 DOI: 10.1016/j.drup.2023.100953] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Due to the frequent international and intercontinental transmission of multidrug-resistant bacteria, it is imperative to understand the epidemiology, phylogeography, and population structure of carbapenem-resistant Salmonella enterica (CRSE) across the globe. During the period of 2015-2022, two blaNDM-carrying S. enterica strains were recovered from 3695 Salmonella strains in four hospitals in China. The global phylogenetic framework and geographical distribution of CRSE were defined by our recently updated bacterial whole genome sequence typing and source tracking database BacWGSTdb 2.0 to measure the diversity and evolutionary relatedness in context with epidemiological metadata. Phylogeny for all carbapenemase gene-harboring plasmids in S. enterica based on the pairwise Mash differences was also constructed to evaluate the potential transmission of these plasmids in a global context. A large-scale phylogenetic analysis grouped global CRSE into nine distinct clades. The small genetic distance (< 20 SNPs) between 198 pairs of CRSE suggested the presence of clonal transmission. Global CRSE have significant geographical variations, which was associated with the clonal lineages and carbapenemase genes. Carbapenemase gene-carrying plasmids with a high degree of similarity have surfaced in various hosts and countries. The widespread of multiple-replicon plasmids that offer a great capacity to accommodate multiple antimicrobial resistance genes is continuously enhancing the potential risk of CRSE isolates to propagate globally. Both clonal spread of strains and horizontal transfer of carbapenemase gene-harboring plasmids contribute to the global dissemination of CRSE. Our findings on the worldwide spread and transmission dynamics of this emerging bacterium has increased the knowledge of its global epidemics. Continued epidemiological surveillance is necessary to prevent global outbreak of multidrug-resistant Salmonella infections.
Collapse
Affiliation(s)
- Yuye Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian Jiang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Clinical Laboratory, The Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, China
| | - Danni Bao
- Department of Clinical Laboratory, Sanmen People's Hospital, Taizhou, China
| | - Meina Yue
- Department of Clinical Laboratory, Hangzhou Children's Hospital, Hangzhou, China
| | - Huiqiong Jia
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Jianyong Wu
- Department of Clinical Laboratory, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Boueroy P, Wongsurawat T, Jenjaroenpun P, Chopjitt P, Hatrongjit R, Jittapalapong S, Kerdsin A. Plasmidome in mcr-1 harboring carbapenem-resistant enterobacterales isolates from human in Thailand. Sci Rep 2022; 12:19051. [PMID: 36351969 PMCID: PMC9646850 DOI: 10.1038/s41598-022-21836-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022] Open
Abstract
The emergence of the mobile colistin-resistance genes mcr-1 has attracted significant attention worldwide. This study aimed to investigate the genetic features of mcr-1-carrying plasmid among carbapenem-resistant Enterobacterales (CRE) isolates and the potential genetic basis governing transmission. Seventeen mcr-harboring isolates were analyzed based on whole genome sequencing using short-read and long-read platforms. All the mcr-1-carrying isolates could be conjugatively transferred into a recipient Escherichia coli UB1637. Among these 17 isolates, mcr-1 was located on diverse plasmid Inc types, consisting of IncX4 (11/17; 64.7%), IncI2 (4/17; 23.53%), and IncHI/IncN (2/17; 11.76%). Each of these exhibited remarkable similarity in the backbone set that is responsible for plasmid replication, maintenance, and transfer, with differences being in the upstream and downstream regions containing mcr-1. The IncHI/IncN type also carried other resistance genes (blaTEM-1B or blaTEM-135). The mcr-1-harboring IncX4 plasmids were carried in E. coli ST410 (7/11; 63.6%) and ST10 (1/11; 9.1%) and Klebsiella pneumoniae ST15 (1/11; 9.1%), ST336 (1/11; 9.1%), and ST340 (1/11; 9.1%). The IncI2-type plasmid was harbored in E. coli ST3052 (1/4; 25%) and ST1287 (1/4; 25%) and in K. pneumoniae ST336 (2/4; 50%), whereas IncHI/IncN were carried in E. coli ST6721 (1/2; 50%) and new ST (1/2; 50%). The diverse promiscuous plasmids may facilitate the spread of mcr-1 among commensal E. coli or K. pneumoniae strains in patients. These results can provide information for a surveillance system and infection control for dynamic tracing.
Collapse
Affiliation(s)
- Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand.
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Sathaporn Jittapalapong
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| |
Collapse
|
7
|
Zhang W, Lu X, Chen S, Liu Y, Peng D, Wang Z, Li R. Molecular epidemiology and population genomics of tet(X4), bla NDM or mcr-1 positive Escherichia coli from migratory birds in southeast coast of China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114032. [PMID: 36084501 DOI: 10.1016/j.ecoenv.2022.114032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The emergence of multidrug-resistant (MDR) bacteria harboring tet(X4), blaNDM or mcr-1 posed a serious threat to public health. Wild birds, especially migratory birds, were considered as one of important transmission vectors for antibiotic resistance genes (ARGs) globally, however, few studies were performed on the genomic epidemiology of critical resistance genes among them. Isolates harboring tet(X4), mcr-1 or blaNDM from migratory birds were identified and characterized by PCR, antimicrobial susceptibility testing, conjugation assays, whole genome sequencing and bioinformatics analysis. A total of 14 tet(X4)-bearing E. coli, 4 blaNDM-bearing E. coli and 23 mcr-1-bearing E. coli isolates were recovered from 1060 fecal samples of migratory birds. All isolates were MDR bacteria and most plasmids carrying tet(X4), blaNDM or mcr-1 were conjugative. We first identified an E. coli of migratory bird origin carrying blaNDM-4, which was located on a conjugative IncHI2 plasmid and embedded on a novel MDR region flanked by IS26 that could generate the circular intermediate. The emergency of E. coli isolates co-harboring mcr-1 and blaNDM-5 in migratory birds indicated the coexistence of ARGs in migratory birds was a novel threat. This study revealed the prevalence and molecular characteristics of three important ARGs in migratory birds, provided evidence that migratory birds were potential vectors of novel resistance genes and highlighted the monitoring of ARGs in migratory birds should be strengthened to prevent the spread of ARGs in a One Health strategy.
Collapse
Affiliation(s)
- Wenhui Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xiaoyu Lu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Sujuan Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, PR China
| | - Daxin Peng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, PR China.
| | - Ruichao Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
8
|
Chen Q, Zou Z, Cai C, Li H, Wang Y, Lei L, Shao B. Characterization of blaNDM-5-and blaCTX-M-199-Producing ST167 Escherichia coli Isolated from Shared Bikes. Antibiotics (Basel) 2022; 11:antibiotics11081030. [PMID: 36009901 PMCID: PMC9404906 DOI: 10.3390/antibiotics11081030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Shared bikes as a public transport provide convenience for short-distance travel. Whilst they also act as a potential vector for antimicrobial resistant (AR) bacteria and antimicrobial resistance genes (ARGs). However, the understanding of the whole genome sequence of AR strains and ARGs-carrying plasmids collected from shared bikes is still lacking. Here, we used the HiSeq platform to sequence and analyze 24 Escherichia coli isolated from shared bikes around Metro Stations in Beijing. The isolates from shared bikes showed 14 STs and various genotypes. Two blaNDM-5 and blaCTX-M-199-producing ST167 E. coli have 16 resistance genes, four plasmid types and show >95% of similarities in core genomes compared with the ST167 E. coli strains from different origins. The blaNDM-5- or blaCTX-M-199-carrying plasmids sequencing by Nanopore were compared to plasmids with blaNDM-5- or blaCTX-M-199 originated from humans and animals. These two ST167 E. coli show high similarities in core genomes and the plasmid profiles with strains from hospital inpatients and farm animals. Our study indicated that ST167 E. coli is retained in diverse environments and carried with various plasmids. The analysis of strains such as ST167 can provide useful information for preventing or controlling the spread of AR bacteria between animals, humans and environments.
Collapse
Affiliation(s)
- Qiyan Chen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Q.C.); (Z.Z.); (Y.W.)
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
| | - Zhiyu Zou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Q.C.); (Z.Z.); (Y.W.)
| | - Chang Cai
- College of Arts, Business, Law and Social Sciences, Murdoch University, Perth, WA 6150, Australia;
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Q.C.); (Z.Z.); (Y.W.)
| | - Lei Lei
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (L.L.); (B.S.)
| | - Bing Shao
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Q.C.); (Z.Z.); (Y.W.)
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
- Correspondence: (L.L.); (B.S.)
| |
Collapse
|
9
|
Vassallo A, Kett S, Purchase D, Marvasi M. The Bacterial Urban Resistome: Recent Advances. Antibiotics (Basel) 2022; 11:512. [PMID: 35453263 PMCID: PMC9030810 DOI: 10.3390/antibiotics11040512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cities that are densely populated are reservoirs of antibiotic resistant genes (ARGs). The overall presence of all resistance genes in a specific environment is defined as a resistome. Spatial proximity of surfaces and different hygienic conditions leads to the transfer of antibiotic resistant bacteria (ARB) within urban environments. Built environments, public transportation, green spaces, and citizens' behaviors all support persistence and transfer of antimicrobial resistances (AMR). Various unique aspects of urban settings that promote spread and resilience of ARGs/ARB are discussed: (i) the role of hospitals and recreational parks as reservoirs; (ii) private and public transportation as carriers of ARGs/ARB; (iii) the role of built environments as a hub for horizontal gene transfer even though they support lower microbial biodiversity than outdoor environments; (iv) the need to employ ecological and evolutionary concepts, such as modeling the fate of a specific ARG/ARB, to gain enhanced health risk assessments. Our understanding and our ability to control the rise of AMR in an urban setting is linked to our knowledge of the network connecting urban reservoirs and the environment.
Collapse
Affiliation(s)
- Alberto Vassallo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Steve Kett
- Department of Natural Sciences, Middlesex University London, London NW4 4BT, UK; (S.K.); (D.P.)
| | - Diane Purchase
- Department of Natural Sciences, Middlesex University London, London NW4 4BT, UK; (S.K.); (D.P.)
| | | |
Collapse
|
10
|
High Carriage of Extended-Spectrum, Beta Lactamase-Producing, and Colistin-Resistant Enterobacteriaceae in Tibetan Outpatients with Diarrhea. Antibiotics (Basel) 2022; 11:antibiotics11040508. [PMID: 35453259 PMCID: PMC9032258 DOI: 10.3390/antibiotics11040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022] Open
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) have been detected in human-impacted habitats, especially in densely populated cities. The Qinghai–Tibet Plateau is located far from the heavily populated regions of China, and Tibetan residents have distinct dietary habits and gut microbes. Antibiotic-resistance monitoring in the Tibetan population is rare. Here, we collected stool samples from Tibetan outpatients with diarrhea. From 59 samples, 48 antibiotic-resistant Enterobacteriaceae isolates were obtained, including 19 extended-spectrum beta lactamase (ESBL)-producing isolates from 16 patients and 29 polymyxin-resistant isolates from 22 patients. Either ESBL or mcr genes were found in 17 Escherichia coli isolates, approximately 58.8% of which were multidrug-resistant, and ten incompatible plasmid types were found. The gene blaCTX-M was a common genotype in the ESBL-producing E. coli isolates. Four E. coli isolates contained mcr-1. The same mcr-1-carrying plasmid was found in distinct E. coli isolates obtained from the same sample, thus confirming horizontal transmission of mcr-1 between bacteria. Genomic clustering of E. coli isolates obtained from Lhasa, with strains from other regions providing evidence of clone spreading. Our results reveal a strong presence of ARB and ARGs in Tibetan outpatients with diarrhea, implying that ARB and ARGs should be monitored in the Tibetan population.
Collapse
|
11
|
WHO Critical Priority Escherichia coli as One Health Challenge for a Post-Pandemic Scenario: Genomic Surveillance and Analysis of Current Trends in Brazil. Microbiol Spectr 2022; 10:e0125621. [PMID: 35234515 PMCID: PMC8941879 DOI: 10.1128/spectrum.01256-21] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dissemination of carbapenem-resistant and third generation cephalosporin-resistant pathogens is a critical issue that is no longer restricted to hospital settings. The rapid spread of critical priority pathogens in Brazil is notably worrying, considering its continental dimension, the diversity of international trade, livestock production, and human travel. We conducted a nationwide genomic investigation under a One Health perspective that included Escherichia coli strains isolated from humans and nonhuman sources, over 45 years (1974–2019). One hundred sixty-seven genomes were analyzed extracting clinically relevant information (i.e., resistome, virulome, mobilome, sequence types [STs], and phylogenomic). The endemic status of extended-spectrum β-lactamase (ESBL)-positive strains carrying a wide diversity of blaCTX-M variants, and the growing number of colistin-resistant isolates carrying mcr-type genes was associated with the successful expansion of international ST10, ST38, ST115, ST131, ST354, ST410, ST648, ST517, and ST711 clones; phylogenetically related and shared between human and nonhuman hosts, and polluted aquatic environments. Otherwise, carbapenem-resistant ST48, ST90, ST155, ST167, ST224, ST349, ST457, ST648, ST707, ST744, ST774, and ST2509 clones from human host harbored blaKPC-2 and blaNDM-1 genes. A broad resistome to other clinically relevant antibiotics, hazardous heavy metals, disinfectants, and pesticides was further predicted. Wide virulome associated with invasion/adherence, exotoxin and siderophore production was related to phylogroup B2. The convergence of wide resistome and virulome has contributed to the persistence and rapid spread of international high-risk clones of critical priority E. coli at the human-animal-environmental interface, which must be considered a One Health challenge for a post-pandemic scenario. IMPORTANCE A One Health approach for antimicrobial resistance must integrate whole-genome sequencing surveillance data of critical priority pathogens from human, animal and environmental sources to track hot spots and routes of transmission and developing effective prevention and control strategies. As part of the Grand Challenges Explorations: New Approaches to Characterize the Global Burden of Antimicrobial Resistance Program, we present genomic data of WHO critical priority carbapenemase-resistant, ESBL-producing, and/or colistin-resistant Escherichia coli strains isolated from humans and nonhuman sources in Brazil, a country with continental proportions and high levels of antimicrobial resistance. The present study provided evidence of epidemiological and clinical interest, highlighting that the convergence of wide virulome and resistome has contributed to the persistence and rapid spread of international high-risk clones of E. coli at the human-animal-environmental interface, which must be considered a One Health threat that requires coordinated actions to reduce its incidence in humans and nonhuman hosts.
Collapse
|
12
|
He Z, Yang Y, Li W, Ma X, Zhang C, Zhang J, Sun B, Ding T, Tian GB. Comparative genomic analyses of Polymyxin-resistant Enterobacteriaceae strains from China. BMC Genomics 2022; 23:88. [PMID: 35100991 PMCID: PMC8805313 DOI: 10.1186/s12864-022-08301-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mobile colistin resistance like gene (mcr-like gene) is a new type of polymyxin resistance gene that can be horizontally transferred in the Enterobacteriaceae. This has brought great challenges to the treatment of multidrug-resistant Escherichia coli and K. pneumoniae. RESULTS K. pneumoniae 16BU137 and E. coli 17MR471 were isolated from the bus and subway handrails in Guangzhou, China. K. pneumoniae 19PDR22 and KP20191015 were isolated from patients with urinary tract infection and severe pneumonia in Anhui, China. Sequence analysis indicated that the mcr-1.1 gene was present on the chromosome of E. coli 17MR471, and the gene was in the gene cassette containing pap2 and two copies of ISApl1.The mcr-1.1 was found in the putative IncX4 type plasmid p16BU137_mcr-1.1 of K. pneumoniae 16BU137, but ISApl1 was not found in its flanking sequence. Mcr-8 variants were found in the putative IncFIB/ IncFII plasmid pKP20191015_mcr-8 of K. pneumoniae KP20191015 and flanked by ISEcl1 and ISKpn26. CONCLUSION This study provides timely information on Enterobacteriaceae bacteria carrying mcr-like genes, and provides a reference for studying the spread of mcr-1 in China and globally.
Collapse
Affiliation(s)
- Zhien He
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Yongqiang Yang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510006, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Xiaoling Ma
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Changfeng Zhang
- Clinical Laboratory of the First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Jingxiang Zhang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China.
| | - Tao Ding
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
- Xizang Minzu University School of Medicine, Xianyang, China.
| |
Collapse
|
13
|
Majewski P, Gutowska A, Smith DGE, Hauschild T, Majewska P, Hryszko T, Gizycka D, Kedra B, Kochanowicz J, Glowiński J, Drewnowska J, Swiecicka I, Sacha PT, Wieczorek P, Iwaniuk D, Sulewska A, Charkiewicz R, Makarewicz K, Zebrowska A, Czaban S, Radziwon P, Niklinski J, Tryniszewska EA. Plasmid Mediated mcr-1.1 Colistin-Resistance in Clinical Extraintestinal Escherichia coli Strains Isolated in Poland. Front Microbiol 2021; 12:547020. [PMID: 34956105 PMCID: PMC8703133 DOI: 10.3389/fmicb.2021.547020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/02/2021] [Indexed: 01/27/2023] Open
Abstract
Objectives: The growing incidence of multidrug-resistant (MDR) bacteria is an inexorable and fatal challenge in modern medicine. Colistin is a cationic polypeptide considered a “last-resort” antimicrobial for treating infections caused by MDR Gram-negative bacterial pathogens. Plasmid-borne mcr colistin resistance emerged recently, and could potentially lead to essentially untreatable infections, particularly in hospital and veterinary (livestock farming) settings. In this study, we sought to establish the molecular basis of colistin-resistance in six extraintestinal Escherichia coli strains. Methods: Molecular investigation of colistin-resistance was performed in six extraintestinal E. coli strains isolated from patients hospitalized in Medical University Hospital, Bialystok, Poland. Complete structures of bacterial chromosomes and plasmids were recovered with use of both short- and long-read sequencing technologies and Unicycler hybrid assembly. Moreover, an electrotransformation assay was performed in order to confirm IncX4 plasmid influence on colistin-resistance phenotype in clinical E. coli strains. Results: Here we report on the emergence of six mcr-1.1-producing extraintestinal E. coli isolates with a number of virulence factors. Mobile pEtN transferase-encoding gene, mcr-1.1, has been proved to be encoded within a type IV secretion system (T4SS)-containing 33.3 kbp IncX4 plasmid pMUB-MCR, next to the PAP2-like membrane-associated lipid phosphatase gene. Conclusion: IncX4 mcr-containing plasmids are reported as increasingly disseminated among E. coli isolates, making it an “epidemic” plasmid, responsible for (i) dissemination of colistin-resistance determinants between different E. coli clones, and (ii) circulation between environmental, industrial, and clinical settings. Great effort needs to be taken to avoid further dissemination of plasmid-mediated colistin resistance among clinically relevant Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Piotr Majewski
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - Anna Gutowska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - David G E Smith
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Tomasz Hauschild
- Department of Microbiology, Institute of Biology, University of Białystok, Białystok, Poland
| | | | - Tomasz Hryszko
- Second Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Białystok, Białystok, Poland
| | - Dominika Gizycka
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - Boguslaw Kedra
- Second Department of General and Gastroenterological Surgery, Medical University of Białystok, Białystok, Poland
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Białystok, Białystok, Poland
| | - Jerzy Glowiński
- Department of Vascular Surgery and Transplantation, Medical University of Białystok, Białystok, Poland
| | - Justyna Drewnowska
- Department of Microbiology, Institute of Biology, University of Białystok, Białystok, Poland
| | - Izabela Swiecicka
- Department of Microbiology, Institute of Biology, University of Białystok, Białystok, Poland
| | - Pawel T Sacha
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - Piotr Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - Dominika Iwaniuk
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Białystok, Białystok, Poland
| | - Radoslaw Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Białystok, Białystok, Poland
| | | | | | - Slawomir Czaban
- Department of Anesthesiology and Intensive Care, Medical University of Białystok, Białystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Białystok, Poland.,Department of Hematology, Medical University of Białystok, Białystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Białystok, Białystok, Poland
| | - Elzbieta A Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
14
|
Zhang S, Abbas M, Rehman MU, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Gao Q, Tian B, Cheng A. Updates on the global dissemination of colistin-resistant Escherichia coli: An emerging threat to public health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149280. [PMID: 34364270 DOI: 10.1016/j.scitotenv.2021.149280] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Colistin drug resistance is an emerging public health threat worldwide. The adaptability, existence and spread of colistin drug resistance in multiple reservoirs and ecological environmental settings is significantly increasing the rate of occurrence of multidrug resistant (MDR) bacteria such as Escherichia coli (E. coli). Here, we summarized the reports regarding molecular and biological characterization of mobile colistin resistance gene (mcr)-positive E. coli (MCRPEC), originating from diverse reservoirs, including but not limited to humans, environment, waste water treatment plants, wild, pets, and food producing animals. The MCRPEC revealed the abundance of clinically important resistance genes, which are responsible for MDR profile. A number of plasmid replicon types such as IncI2, IncX4, IncP, IncX, and IncFII with a predominance of IncI2 were facilitating the spread of colistin resistance. This study concludes the distribution of multiple sequence types of E. coli carrying mcr gene variants, which are possible threat to "One Health" perspective. In addition, we have briefly explained the newly known mechanisms of colistin resistance i.e. plasmid-encoded resistance determinant as well as presented the chromosomally-encoded resistance mechanisms. The transposition of ISApl1 into the chromosome and existence of intact Tn6330 are important for transmission and stability for mcr gene. Further, genetic environment of co-localized mcr gene with carbapenem-resistance or extended-spectrum β-lactamases genes has also been elaborated, which is limiting human beings to choose last resort antibiotics. Finally, environmental health and safety control measures along with spread mechanisms of mcr genes are discussed to avoid further propagation and environmental hazards of colistin resistance.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Muhammad Abbas
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Livestock and Dairy Development Department Lahore, Punjab 54000, Pakistan
| | - Mujeeb Ur Rehman
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Disease Investigation Laboratory, Livestock & Dairy Development Department, Zhob 85200, Balochistan, Pakistan
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
15
|
Cave R, Cole J, Mkrtchyan HV. Surveillance and prevalence of antimicrobial resistant bacteria from public settings within urban built environments: Challenges and opportunities for hygiene and infection control. ENVIRONMENT INTERNATIONAL 2021; 157:106836. [PMID: 34479136 PMCID: PMC8443212 DOI: 10.1016/j.envint.2021.106836] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 05/09/2023]
Abstract
Antimicrobial resistant (AMR) bacteria present one of the biggest threats to public health; this must not be forgotten while global attention is focussed on the COVID-19 pandemic. Resistant bacteria have been demonstrated to be transmittable to humans in many different environments, including public settings in urban built environments where high-density human activity can be found, including public transport, sports arenas and schools. However, in comparison to healthcare settings and agriculture, there is very little surveillance of AMR in the built environment outside of healthcare settings and wastewater. In this review, we analyse the existing literature to aid our understanding of what surveillance has been conducted within different public settings and identify what this tells us about the prevalence of AMR. We highlight the challenges that have been reported; and make recommendations for future studies that will help to fill knowledge gaps present in the literature.
Collapse
Affiliation(s)
- Rory Cave
- School of Biomedical Sciences, University of West London, United Kingdom
| | - Jennifer Cole
- Royal Holloway University of London, Department of Health Studies, United Kingdom
| | | |
Collapse
|
16
|
Lin Y, Zhang Y, Liu S, Ye D, Chen L, Huang N, Zeng W, Liao W, Zhan Y, Zhou T, Cao J. Quercetin Rejuvenates Sensitization of Colistin-Resistant Escherichia coli and Klebsiella Pneumoniae Clinical Isolates to Colistin. Front Chem 2021; 9:795150. [PMID: 34900948 PMCID: PMC8656154 DOI: 10.3389/fchem.2021.795150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Colistin is being considered as "the last ditch" treatment in many infections caused by Gram-negative stains. However, colistin is becoming increasingly invalid in treating patients who are infected with colistin-resistant Escherichia coli (E. coli) and Klebsiella Pneumoniae (K. pneumoniae). To cope with the continuous emergence of colistin resistance, the development of new drugs and therapies is highly imminent. Herein, in this work, we surprisingly found that the combination of quercetin with colistin could efficiently and synergistically eradicate the colistin-resistant E. coli and K. pneumoniae, as confirmed by the synergy checkboard and time-kill assay. Mechanismly, the treatment of quercetin combined with colistin could significantly downregulate the expression of mcr-1 and mgrB that are responsible for colistin-resistance, synergistically enhancing the bacterial cell membrane damage efficacy of colistin. The colistin/quercetin combination was notably efficient in eradicating the colistin-resistant E. coli and K. pneumoniae both in vitro and in vivo. Therefore, our results may provide an efficient alternative pathway against colistin-resistant E. coli and K. pneumoniae infections.
Collapse
Affiliation(s)
- Yishuai Lin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Shixing Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dandan Ye
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liqiong Chen
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Na Huang
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiliang Zeng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Wenli Liao
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yizhou Zhan
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Huang S, Wang S, Li Y, Fang M, Kou Z, Chen B, Xu L, Bi Z, Xu H, Chi X, Bi Z. Prevalence and transmission of mobilized colistin resistance (mcr-1) gene positive Escherichia coli in healthy rural residents in Shandong province, China. Microbiol Res 2021; 253:126881. [PMID: 34592562 DOI: 10.1016/j.micres.2021.126881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/06/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022]
Abstract
This study was conducted to explore the prevalence and transmission of mcr-1 Escherichia coli among healthy rural residents in Shandong, China, and to provide theoretical basis for the prevention and control of spread and treatment of multi-drug resistant Escherichia coli. A total of 218 healthy residents from 3 villages in Guan County, Shandong Province, China were included in this study, and their fecal samples were collected. Colistin-resistant Escherichia coli were selected, and their drug sensitivity and plasmids' transferability were measured. After analysis, some conclusions can be drawn. The colistin-resistant Escherichia coli, most strains of which are MDROs, is common and highly transmissible in healthy residents in rural areas in China. Interventions should be implemented to prevent the spread of colistin-resistant Escherichia coli through health education and tighter regulation of antibiotics.
Collapse
Affiliation(s)
- Shumei Huang
- School of Public Health, Shandong University, Jinan, 250012, China
| | - Shuang Wang
- Bacterial Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Yan Li
- Bacterial Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Ming Fang
- Bacterial Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Zengqiang Kou
- Bacterial Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Baoli Chen
- Bacterial Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Liuchen Xu
- Bacterial Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Zhenwang Bi
- The Affiliated Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical School of Zhejiang University, Hang Zhou, 310003, China
| | - Xiaohui Chi
- Department of Public Health of Zhejiang University, Hang Zhou, 310058, China
| | - Zhenqiang Bi
- Bacterial Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, 250014, China.
| |
Collapse
|
18
|
Liu Z, Liu Y, Xi W, Liu S, Liu J, Mu H, Chen B, He H, Fan Y, Ma W, Zhang W, Fu M, Wang J, Song X. Genetic Features of Plasmid- and Chromosome-Mediated mcr-1 in Escherichia coli Isolates From Animal Organs With Lesions. Front Microbiol 2021; 12:707332. [PMID: 34456890 PMCID: PMC8386294 DOI: 10.3389/fmicb.2021.707332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022] Open
Abstract
The genomic context of the mcr-1 gene in Escherichia coli from animal feces has been widely reported. However, less is known about the mcr-1-carrying plasmid characteristics and other functional regions of Escherichia coli isolates from animal organs with lesions. The present study investigated the antimicrobial resistance, population structure, and genetic features of mcr-1-positive Escherichia coli strains isolated from animal organs with lesions. The antimicrobial susceptibility testing indicated that 24 mcr-1-positive Escherichia coli isolates were resistant to at least three or all antimicrobial categories. MLST analysis suggested that the dominant clone complexes (CC) were mainly CC156, CC448, and CC10. In addition, ST10596, a newly discovered sequence type in swine, failed to be classified. Meanwhile, the mcr-1 gene located on the different plasmids was successfully transferred to the recipients, and whole-genome sequencing indicated the mcr-1 gene was embedded in mcr-1-pap2 cassette but not flanked by ISApl1. The mcr-1 gene is located on the chromosome and embedded in Tn6330. Furthermore, NDM-5 was found on the IncX3-type plasmid of J-8. The virB6 and traI gene of type IV secretion system (T4SS) were truncated by IS2 and IS100 and located on the IncX4- and the IncHI2/HI2A/N-type plasmids, respectively. The multidrug-resistant (MDR) region of IncHI2/HI2A/N-type plasmids contained two class 1 integrons (In0, In640) and four composite transposons (Tn4352, Tn6010, cn_4692_IS26, cn_6354_IS26). Overall, 24 mcr-1-positive Escherichia coli isolates in our study showed MDR, or even extensively drug resistant (XDR), and exhibited population diversity. The T4SS gene truncation by the insertion sequence may affect the efficiency of plasmid conjugative transfer. Furthermore, the class 1 integrons and composite transposons in the MDR region of IncHI2/HI2A/n-type plasmid contributed to the multireplicon plasmid formation, the acquisition, and transfer of antimicrobial resistance genes (ARGs).
Collapse
Affiliation(s)
- Zengyuan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wei Xi
- Qingdao Adverse Drug Reaction Monitoring Center, China Qingdao Institute for Food and Drug Control, Qingdao, China
| | - Shuangshi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jia Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hailong Mu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Beibei Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hao He
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Mingzhe Fu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Huang C, Shi Q, Zhang S, Wu H, Xiao Y. Acquisition of the mcr-1 Gene Lowers the Target Mutation to Impede the Evolution of a High-Level Colistin-Resistant Mutant in Escherichia coli. Infect Drug Resist 2021; 14:3041-3051. [PMID: 34408448 PMCID: PMC8364431 DOI: 10.2147/idr.s324303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/03/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The spread of the plasmid-mediated colistin resistance gene mcr-1 poses a significant public health threat. Little information is available on the development of high-level colistin-resistant mutants (HLCRMs) in MCR-1-producing Escherichia coli (MCRPEC). The present study was designed to evaluate the impact of chromosomal modifications in pmrAB, phoPQ, and mgrB combined with mcr-1 on colistin resistance in E. coli. Methods Five MCRPEC and three non-MCRPEC (E. coli ATCC25922 and two plasmid-curing) strains were used. The HLCRMs were selected through multi-stepwise colistin exposure. Moreover, two E. coli C600-pMCRs were constructed and used for selection of HLCRMs. Further analysis included mutation rates and DNA sequencing. Transcripts of pmrABC, phoP, mgrB, and mcr-1 were quantified by real-time quantitative PCR. Results All tested HLCRMs were successfully isolated from their parental strains. Non-MCRPEC strains had higher minimum inhibitory concentrations (MICs) and mutation rates than MCRPEC strains. Nineteen amino acid substitutions were identified: seven in PmrA, six in PmrB, one in PhoP, three in PhoQ, and two in MgrB. Most were detected in non-MCRPEC strains. Sorting Intolerant From Tolerant predicted that four substitutions, PmrA Gly15Arg, Gly53Arg, PmrB Pro94Gln, and PhoP Asp86Gly, affected protein function. Two HLCRM isolates did not show amino acid substitutions in contrast to their parental MCRPEC isolates. No further mutations were detected in the second- and third-step mutants. Further transcriptional analysis showed that the up-regulation of pmrCAB expression was greater in the mutant of E. coli C600 than in E. coli C600-pMCR. Conclusion Acquisition of the mcr-1 gene had a negative impact on the development of HLCRMs in E. coli, but was associated with low-level colistin resistance. Thus, colistin-based combination regimens may be effective against infections with MCR-1-producing isolates.
Collapse
Affiliation(s)
- Chen Huang
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, People's Republic of China.,State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qingyi Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Shuntian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hongcheng Wu
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, People's Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
20
|
Liu X, Chan EWC, Chen S. Transmission and stable inheritance of carbapenemase gene (bla KPC-2 or bla NDM-1)-encoding and mcr-1-encoding plasmids in clinical Enterobacteriaceae strains. J Glob Antimicrob Resist 2021; 26:255-261. [PMID: 34245900 DOI: 10.1016/j.jgar.2021.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 03/28/2021] [Accepted: 05/30/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the potential for transmission and heritability of carbapenemase gene (blaKPC-2 or blaNDM-1)-encoding or mcr-1-encoding plasmids in clinical Enterobacteriaceae strains. METHODS Potential for transmission of carbapenemase gene (blaKPC-2 or blaNDM-1)-encoding or mcr-1-encoding plasmids in clinical Enterobacteriaceae strains was tested in three conjugation models, namely filter-mating conjugation in laboratory conditions, a meat product model and the gastrointestinal (GI) tract of rats. Plasmid stability in Enterobacteriaceae strains was also determined. RESULTS We demonstrated that plasmids carrying a carbapenemase gene (blaKPC-2 or blaNDM-1) could be efficiently conjugated to strains carrying the mcr-1 gene and vice versa, and that these plasmids could stably co-exist in clinical Enterobacteriaceae strains. These findings suggest that Enterobacteriaceae can readily acquire phenotypic resistance to both carbapenems and colistin in natural environments such as food products and the GI tract of human and animals. CONCLUSION Gene transfer events are common among members of the Enterobacteriaceae and serve as a key mechanism facilitating adaptation to new environments. Development of innovative strategies and surveillance measures to curtail the dissemination of multidrug resistance plasmids is necessary. Transmission and stable inheritance of these two types of plasmids would lead to the emergence of multidrug-resistant pathogens that are resistant to all currently available last-line antibiotics for Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Xiaobo Liu
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shen Zhen Research Institute, Shenzhen, P.R. China
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Sheng Chen
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shen Zhen Research Institute, Shenzhen, P.R. China; State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR.
| |
Collapse
|
21
|
Shen C, Ma F, Deng S, Zhong LL, El-Sayed Ahmed MAEG, Zhang G, Yan B, Dai M, Yang F, Xia Y, Tian GB. Prevalence, genomic characteristics, and transmission dynamics of mcr-1-positive Salmonella enterica Typhimurium from patients with infectious diarrhea. Int J Med Microbiol 2021; 311:151501. [PMID: 33866091 DOI: 10.1016/j.ijmm.2021.151501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Previous studies reported the prevalence of mcr-1 among clinical infected Salmonella isolates in China. However, the transmission dynamics of mcr-1 in different ecological niches were not well investigated. Our objective is to exhibit the transmission dynamics of mcr-1 in Salmonella. METHODS 598 Salmonella isolates were recovered from ten hospitals; besides 936 pig faces and 167 pork samples were collected from January 2015 to December 2017 in Guangzhou, China. PCR and sequencing were used to identify mcr-1-positive Salmonella. Antimicrobial susceptibility testing was performed with 16 antimicrobials. Conjugation, S1-PFGE, and Southern blot were used to determine the transferability and location of mcr-1. Whole-genome sequencing was used to investigate pangenome, phylogeny, plasmid, and transposon. RESULTS Eleven mcr-1-positive Salmonella isolates were identified from patients with infectious diarrhea. Five pig fecal samples and three pork samples contained mcr-1-positive Salmonella isolates. All isolates were multi-drug resistant. The mcr-1 genes were located on ∼210-250 kb IncHI2-pST3 plasmids, and 12 mcr-1 genes were transferable. All isolates were assigned to ST34 or its genetically closed STs. The distribution of the core-genome network was significantly correlated with source distributions. The accessory genes-based network demonstrated that the diverse clonal complexes could share highly similar accessory genomes. CONCLUSIONS The prevalence of mcr-1-positive Salmonella among different sources was low. Clonal transmission could not be the main reason for the expansion of mcr-1-positive Salmonella, but be attributed to the horizontal transfer of IncHI2-pST3 plasmid. Continuous surveillance on Salmonella should be performed to investigate the response of colistin banning in food-producing animals by mcr-1-positive Salmonella populations.
Collapse
Affiliation(s)
- Cong Shen
- Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Furong Ma
- Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Suiyan Deng
- Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lan-Lan Zhong
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Mohamed Abd El-Gawad El-Sayed Ahmed
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Cairo, 6th of October City, Egypt
| | - Guili Zhang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Bin Yan
- Department of Neonatal Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Fan Yang
- Basic Medical College, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yong Xia
- Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.
| |
Collapse
|
22
|
Liao W, Lin J, Jia H, Zhou C, Zhang Y, Lin Y, Ye J, Cao J, Zhou T. Resistance and Heteroresistance to Colistin in Escherichia coli Isolates from Wenzhou, China. Infect Drug Resist 2020; 13:3551-3561. [PMID: 33116674 PMCID: PMC7553605 DOI: 10.2147/idr.s273784] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
Background Colistin is being administered as last-line therapy for patients that have failed to respond to other available antibiotics that are active against Escherichia coli. The underlying mechanisms of colistin resistance and heteroresistance remain largely uncharacterized. The present study investigated the mechanisms of resistance and heteroresistance to colistin in Escherichia coli isolates from Wenzhou, China. Materials and Methods Colistin resistance was detected by the broth microdilution method (BMD). Colistin heteroresistance was determined by population analysis profiles (PAPs). The polymerase chain reaction (PCR) was conducted to detect mcr-1, mcr-2, mcr-3, pmrA, pmrB, phoP, phoQ and mgrB, and quantitative real-time PCR (qRT-PCR) was used to determine the expression levels of mcr-1, pmrC, pmrA and pmrB. Lipid A characterization was conducted by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Results 0.69% (2/291) of Escherichia coli strains were resistant to colistin, whereas the heteroresistance rate reached 1.37% (4/291). mcr-1, the mobile colistin-resistance gene, was present in the two resistant isolates. The substitutions in PmrB were detected in the two heteroresistant isolates. The transcripts levels of the pmrCAB operon were upregulated in two of the heteroresistant isolates. carbonylcyanide m-chlorophenylhydrazone (CCCP) was able to reverse colistin resistance of all isolates tested and exhibited a significantly higher effect on colistin-heteroresistant isolates. MALDI-TOF MS indicated that the additional phosphoethanolamine (PEtn) moieties in lipid A profiles were present both in colistin-resistant and heteroresistant isolates. Conclusion The present study was the first to investigate the differential mechanisms between colistin resistance and heteroresistance. The development of colistin heteroresistance should be addressed in future clinical surveillance.
Collapse
Affiliation(s)
- Wenli Liao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jie Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Huaiyu Jia
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Ying Zhang
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Yishuai Lin
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jianming Cao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
23
|
Ayoub Moubareck C. Polymyxins and Bacterial Membranes: A Review of Antibacterial Activity and Mechanisms of Resistance. MEMBRANES 2020; 10:membranes10080181. [PMID: 32784516 PMCID: PMC7463838 DOI: 10.3390/membranes10080181] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022]
Abstract
Following their initial discovery in the 1940s, polymyxin antibiotics fell into disfavor due to their potential clinical toxicity, especially nephrotoxicity. However, the dry antibiotic development pipeline, together with the rising global prevalence of infections caused by multidrug-resistant (MDR) Gram-negative bacteria have both rejuvenated clinical interest in these polypeptide antibiotics. Parallel to the revival of their use, investigations into the mechanisms of action and resistance to polymyxins have intensified. With an initial known effect on biological membranes, research has uncovered the detailed molecular and chemical interactions that polymyxins have with Gram-negative outer membranes and lipopolysaccharide structure. In addition, genetic and epidemiological studies have revealed the basis of resistance to these agents. Nowadays, resistance to polymyxins in MDR Gram-negative pathogens is well elucidated, with chromosomal as well as plasmid-encoded, transferrable pathways. The aims of the current review are to highlight the important chemical, microbiological, and pharmacological properties of polymyxins, to discuss their mechanistic effects on bacterial membranes, and to revise the current knowledge about Gram-negative acquired resistance to these agents. Finally, recent research, directed towards new perspectives for improving these old agents utilized in the 21st century, to combat drug-resistant pathogens, is summarized.
Collapse
|
24
|
Shen C, Zhong LL, Yang Y, Doi Y, Paterson DL, Stoesser N, Ma F, El-Sayed Ahmed MAEG, Feng S, Huang S, Li HY, Huang X, Wen X, Zhao Z, Lin M, Chen G, Liang W, Liang Y, Xia Y, Dai M, Chen DQ, Zhang L, Liao K, Tian GB. Dynamics of mcr-1 prevalence and mcr-1-positive Escherichia coli after the cessation of colistin use as a feed additive for animals in China: a prospective cross-sectional and whole genome sequencing-based molecular epidemiological study. LANCET MICROBE 2020; 1:e34-e43. [DOI: 10.1016/s2666-5247(20)30005-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/10/2020] [Accepted: 03/27/2020] [Indexed: 11/29/2022]
|
25
|
Affiliation(s)
- Narayan Paudyal
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Animal Health Research Division, Nepal Agricultural Research Council, Kathmandu
| | - Min Yue
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
26
|
Occurrence and Characteristics of Mobile Colistin Resistance ( mcr) Gene-Containing Isolates from the Environment: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031028. [PMID: 32041167 PMCID: PMC7036836 DOI: 10.3390/ijerph17031028] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 01/04/2023]
Abstract
The emergence and spread of mobile colistin (COL) resistance (mcr) genes jeopardize the efficacy of COL, a last resort antibiotic for treating deadly infections. COL has been used in livestock for decades globally. Bacteria have mobilized mcr genes (mcr-1 to mcr-9). Mcr-gene-containing bacteria (MGCB) have disseminated by horizontal/lateral transfer into diverse ecosystems, including aquatic, soil, botanical, wildlife, animal environment, and public places. The mcr-1, mcr-2, mcr-3, mcr-5, mcr-7, and mcr-8 have been detected in isolates from and/or directly in environmental samples. These genes are harboured by Escherichia coli, Enterobacter, Klebsiella, Proteus, Salmonella, Citrobacter, Pseudomonas, Acinetobacter, Kluyvera, Aeromonas, Providencia, and Raulotella isolates. Different conjugative and non-conjugative plasmids form the backbones for mcr in these isolates, but mcr have also been integrated into the chromosome of some strains. Insertion sequences (IS) (especially ISApl1) located upstream or downstream of mcr, class 1–3 integrons, and transposons are other drivers of mcr in the environment. Genes encoding multi-/extensive-drug resistance and virulence are often co-located with mcr on plasmids in environmental isolates. Transmission of mcr to/among environmental strains is clonally unrestricted. Contact with the mcr-containing reservoirs, consumption of contaminated animal-/plant-based foods or water, international animal-/plant-based food trades and travel, are routes for transmission of MGCB.
Collapse
|
27
|
Occurrence and Genomic Characterization of Two MCR-1-Producing Escherichia coli Isolates from the Same Mink Farmer. mSphere 2019; 4:4/6/e00602-19. [PMID: 31694897 PMCID: PMC6835210 DOI: 10.1128/msphere.00602-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spread of colistin resistance gene mcr-1 at the animal-human interface remains largely unknown. This work aimed to investigate the molecular characteristics of two extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli strains with mcr-1, i.e., strains H8 and H9, isolated from the same mink farmer. In this study, five mcr-positive E. coli strains were isolated from the mink farm. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) identified two genetically unrelated MCR-1 producers (H8 and H9) from the same farmer and two clonally related MCR-1-positive isolates (M5 and M6) from two different mink samples. Additionally, a mcr-1 variant, designated mcr-1.12, was identified in isolate M4. MIC determination revealed that all of the MCR-producing strains exhibited multiresistant phenotypes but showed susceptibility to imipenem, meropenem, amikacin, and tigecycline. Replicon typing showed that mcr-1 was associated with IncHI2 plasmids in 4 cases, while the gene was located on an IncI2 plasmid in 1 case. PacBio sequencing and plasmid analysis confirmed that the mcr-1 gene was located on an ∼204-kb IncHI2 plasmid in H8 and was carried by an ∼61-kb IncI2 plasmid in H9. To our knowledge, this work represents the first report of the occurrence of MCR-producing isolates from mink. Moreover, our report also describes the coexistence of two different MCR-1 producers in the same farmer. It highlights that fur farms can be reservoirs of mcr-1 genes. The identification of mcr-carrying plasmids on a fur farm is of potential public health importance, as it suggests that mcr is widespread in the animal husbandry industry.IMPORTANCE Colistin resistance is a real threat for both human and animal health. The mobile colistin resistance gene mcr has contributed to the persistence and transmission of colistin resistance at the interfaces of animals, humans, and ecosystems. Although mcr genes have usually been recovered from food animals, patients, and healthy humans, transmission of mcr genes at the animal-human interface remains largely unknown. This was the first study to isolate and characterize MCR-producing isolates from mink, as well as to report the coexistence of two different MCR-1 producers in the same farmer. The characterization and analysis of two MCR-1-producing E. coli isolates may have important implications for comprehension of the transmission dynamics of these bacteria. We emphasize the importance of improved multisectorial surveillance of colistin-resistant E. coli in this region.
Collapse
|
28
|
Zou ZY, Lei L, Chen QY, Wang YQ, Cai C, Li WQ, Zhang Z, Shao B, Wang Y. Prevalence and dissemination risk of antimicrobial-resistant Enterobacteriaceae from shared bikes in Beijing, China. ENVIRONMENT INTERNATIONAL 2019; 132:105119. [PMID: 31491607 DOI: 10.1016/j.envint.2019.105119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/17/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Bike-sharing as a common public transportation has been booming in China in recent years. Previous studies showed that the surfaces of public transport can act as reservoirs of antimicrobial-resistant (AR) bacteria, but AR bacterial contamination of shared bikes has not been investigated. Otherwise, the AR-Enterobacteriaceae is considered as a global health threat for humans. Herein, we aimed to investigate the prevalence of AR Enterobacteriaceae on shared bikes and examine correlations between AR Enterobacteriaceae from shared bikes and public buildings around Metro stations in Beijing. We collected 2117 samples from shared bikes at 240 Metro stations in Beijing. A total of 444 non-duplicate Enterobacteriaceae were isolated from 418 samples at 166 stations. The isolates exhibited low rates of resistance (0.5%-6.3%) to all antimicrobial agents except sulfamethoxazole-trimethoprim (31.5%). Three ceftazidime-resistant E. coli isolates were positive for blaCTX-M-199 and two of them were positive for carbapenemase-producing gene blaNDM-5. Multivariable logistic regression model revealed that variable "secondary/tertiary non-profit hospital nearby" was significantly (p < 0.05) associated with isolation of AR Enterobacteriaceae from the shared bikes around the Metro stations. Low AR rates of Enterobacteriaceae observed in this study suggested the risk of dissemination of AR-Enterobacteriaceae via shared bikes is limited. However, we identified hospitals as a risk factor for the dissemination of AR Enterobacteriaceae among shared bike users. More attention should be paid to both comprehensive hygiene managements in the surrounding environment of hospitals and the increasing of public awareness on the personal hygienic habits.
Collapse
Affiliation(s)
- Zhi-Yu Zou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lei Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi-Yan Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yong-Qiang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Microbiology and Immunology Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chang Cai
- Research and Innovation Office, Murdoch University, Murdoch, Western Australia 6150, Australia; China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Wan-Qi Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bing Shao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China.
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
29
|
Acquired Resistance to Colistin via Chromosomal And Plasmid-Mediated Mechanisms in Klebsiella pneumoniae. ACTA ACUST UNITED AC 2019. [DOI: 10.1097/im9.0000000000000002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Zhong YM, Liu WE, Zheng ZF. Epidemiology and molecular characterization of mcr-1 in Escherichia coli recovered from patients with bloodstream infections in Changsha, central China. Infect Drug Resist 2019; 12:2069-2076. [PMID: 31372014 PMCID: PMC6634265 DOI: 10.2147/idr.s209877] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022] Open
Abstract
Objectives The main aim of this study was to investigate the prevalence and molecular characteristics of the mcr-1 gene in Escherichia coli isolates obtained from all patients with bloodstream infections over a year in a Chinese teaching hospital. We also assessed the susceptibility profiles of the mcr-1-positive strains and prognostic impact of this gene on the patients. Methods A total of 144 consecutive, non-repetitive E. coli isolates causing bloodstream infections were collected at a teaching hospital in Changsha, China from January to December 2016. The presence of the mcr-1 gene was assessed by PCR. All mcr-1-positive E coli isolates were characterized by antimicrobial susceptibility testing, multilocus sequence typing (MLST), a conjugation experiment, and plasmid replicon typing. Clinical data were obtained from medical records. Results The mcr-1 gene was detected in three (2.1%) of the 144 E. coli isolates. The three mcr-1-positive E. coli isolates were resistant to colistin. All three isolates showed a lower resistance to other classes of antibacterials, with all three being susceptible to carbapenems. The MLST results indicated that the three E. coli isolates were assigned to three different sequence types: ST457, ST101, and ST1413, respectively. The conjugation experiment showed that the mcr-1 gene was successfully transferred to the recipient (E. coli EC600) from two isolates, one of which possessed IncI1 replicons and the other of which carried IncHI2 and IncN replicons. The patients with bloodstream infections caused by mcr-1-positive isolates had severe underlying diseases and were cured after antibacterial treatment. Conclusion The prevalence of the mcr-1 gene in patients with E. coli bloodstream infection was 2.1% in Changsha, China. The mcr-1-positive E. coli isolates had varied susceptibility profiles, although all three were susceptible to carbapenems. This therapeutic window is crucial given the risk of rapid deterioration in high-incidence areas worldwide.
Collapse
Affiliation(s)
- Yi-Ming Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wen-En Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhao-Feng Zheng
- Faculty of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| |
Collapse
|