1
|
Han Z, Wang L, Wang H, He H, Song Y, Wang M, Zhao N, Chen Z, Sun Z, Zhang S. Evaluation of the effect of kidney transplantation on left ventricular myocardial work by noninvasive pressure-strain loops. Front Cardiovasc Med 2024; 11:1370307. [PMID: 39119188 PMCID: PMC11306143 DOI: 10.3389/fcvm.2024.1370307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Purpose Kidney transplantation (KT) has the potential to reverse the cardiac changes caused by end-stage renal disease, and it may be inaccurate to analysis the left ventricular function by conventional echocardiography due to afterload. This study aimed to investigate the utility of pressure strain loops (PSLs) in evaluating left ventricular performance in patients underwent KT. Methods We enrolled 60 patients with end-stage renal disease who underwent KT between January 2022 and July 2023, and 60 healthy controls with a similar distribution of gender and age to the patients. All participants underwent conventional echocardiography and three-dimensional speckle tracking echocardiography (3D-STE). Long axis, short axis, and four cavity images were collected and cardiac parameters were measured. The echocardiographic changes of cardiac structure and function of all patients before KT and about 12 months after KT were recorded. Left ventricular myocardial work parameters were acquired by PSLs, including the global work index (GWI), global constructive work (GCW), global wasted work (GWW), global work efficiency (GWE) and global longitudinal strain (GLS). In addition, the correlation between PSLs and clinical data were explored. Results Compared with controls, the conventional echocardiographic parameters, myocardial function indicators GWI and GCW appeared no difference in post-KT group, while the GWE and GLS decreased (p < 0.05), and the GWW increased (p < 0.05). Compared with pre-KT, the GLS, GWI, GCW and GWE increased in post-KT group, while the GWW decreased (all p < 0.05). The above indicators were correlated with left ventricular GLS and left ventricular ejection fraction. Conclusion PSLs were more sensitive than traditional echocardiographic indicators in detecting changes in myocardial work and predicting left ventricular myocardial damage. This indicator could quantitatively evaluate myocardial work and provide a new and reliable non-invasive reference for clinical diagnosis and treatment of patients underwent KT.
Collapse
Affiliation(s)
- Zhengyang Han
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Lingyun Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Honghu Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongying He
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Song
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Menghe Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Na Zhao
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengguang Chen
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenxing Sun
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Zhang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Dörr K, Kammerlander A, Lauriero F, Lorenz M, Marculescu R, Beitzke D. Effect of etelcalcetide versus alfacalcidol on left ventricular function and feature-tracking cardiac magnetic resonance imaging in hemodialysis-a post-hoc analysis of a randomized, controlled trial. J Cardiovasc Magn Reson 2023; 25:62. [PMID: 37932788 PMCID: PMC10626812 DOI: 10.1186/s12968-023-00975-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Calcimimetic therapy with etelcalcetide (ETEL) has been shown to attenuate the advancement of left ventricular (LV) hypertrophy in hemodialysis patients measured by cardiac magnetic resonance (CMR). The aim of the study was to evaluate whether this effect is accompanied by alterations in LV function and myocardial composition. METHODS This was a post-hoc analysis of a randomized-controlled trial of ETEL versus Alfacalcidol (ALFA) in 62 hemodialysis patients. LV function was assessed using LV ejection fraction (LVEF) and LV global longitudinal strain (GLS) on feature-tracking (FT) CMR. Myocardial tissue characteristics were analyzed using parametric T1 and T2 mapping. RESULTS Of the total study cohort (n = 62), 48 subjects completed both CMR scans with sufficient quality for FT analysis. In the one-year follow-up, LV GLS deteriorated in the ALFA group, whereas the ETEL group remained stable (LV GLS change: + 2.6 ± 4.6 versus + 0.3 ± 3.8; p = 0.045 when adjusting for randomization factors and baseline LV GLS). We did not observe a difference in the change of LVEF between the two groups (p = 0.513). The impact of ETEL treatment on LV GLS over time remained significant after additional adjustment for the change in LV mass during the study period. ETEL treatment did not significantly affect other CMR parameters. There were no changes in myocardial composition between treatment groups (T1 time change: + 15 ± 42 versus + 10 ± 50; p = 0.411; T2 time change: - 0.13 ± 2.45 versus - 0.70 ± 2.43; p = 0.652). CONCLUSIONS In patients undergoing hemodialysis, treatment with ETEL was protective against deterioration of LV longitudinal function, as evaluated through FT CMR, when compared to the control therapy of ALFA. This effect was not mediated by the change in LV mass. Trial registration URL: https://clinicaltrials.gov/ct2/show/NCT03182699 . Unique identifier: NCT03182699.
Collapse
Affiliation(s)
- Katharina Dörr
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Andreas Kammerlander
- Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Francesco Lauriero
- Department of Radiological and Hematological Science, Section of Radiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Rodrig Marculescu
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Cardiovascular and Interventional Radiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Zoccali C, Mark PB, Sarafidis P, Agarwal R, Adamczak M, Bueno de Oliveira R, Massy ZA, Kotanko P, Ferro CJ, Wanner C, Burnier M, Vanholder R, Mallamaci F, Wiecek A. Diagnosis of cardiovascular disease in patients with chronic kidney disease. Nat Rev Nephrol 2023; 19:733-746. [PMID: 37612381 DOI: 10.1038/s41581-023-00747-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
Patients with chronic kidney disease (CKD) are at high risk of cardiovascular disease (CVD) and cardiovascular death. Identifying and monitoring cardiovascular complications and hypertension is important for managing patients with CKD or kidney failure and transplant recipients. Biomarkers of myocardial ischaemia, such as troponins and electrocardiography (ECG), have limited utility for diagnosing cardiac ischaemia in patients with advanced CKD. Dobutamine stress echocardiography, myocardial perfusion scintigraphy and dipyridamole stress testing can be used to detect coronary disease in these patients. Left ventricular hypertrophy and left ventricular dysfunction can be detected and monitored using various techniques with differing complexity and cost, including ECG, echocardiography, nuclear magnetic resonance, CT and myocardial scintigraphy. Atrial fibrillation and other major arrhythmias are common in all stages of CKD, and ambulatory heart rhythm monitoring enables precise time profiling of these disorders. Screening for cerebrovascular disease is only indicated in asymptomatic patients with autosomal dominant polycystic kidney disease. Standardized blood pressure is recommended for hypertension diagnosis and treatment monitoring and can be complemented by ambulatory blood pressure monitoring. Judicious use of these diagnostic techniques may assist clinicians in detecting the whole range of cardiovascular alterations in patients with CKD and enable timely treatment of CVD in this high-risk population.
Collapse
Affiliation(s)
- Carmine Zoccali
- Renal Research Institute, New York, NY, USA.
- Institute of Biology and Molecular Genetics (BIOGEM), Ariano Irpino, Italy.
- Associazione Ipertensione Nefrologia e Trapianto Renale (IPNET) c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy.
| | - Patrick B Mark
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Rajiv Agarwal
- Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Marcin Adamczak
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, Katowice, Poland
| | - Rodrigo Bueno de Oliveira
- Department of Internal Medicine (Nephrology), School of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Ziad A Massy
- Ambroise Paré University Hospital, APHP, Boulogne Billancourt/Paris, Billancourt, France
- INSERM U-1018, Centre de recherche en épidémiologie et santé des populations (CESP), Equipe 5, Paris-Saclay University (PSU), Paris, France
- University of Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ), FCRIN INI-CRCT, Villejuif, France
| | - Peter Kotanko
- Renal Research Institute, LLC Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles J Ferro
- Department of Renal Medicine, University Hospitals Birmingham, Birmingham, UK
| | - Christoph Wanner
- Division of Nephrology, University Hospital of Würzburg, Würzburg, Germany
| | - Michel Burnier
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Paediatrics, University Hospital, Ghent, Belgium
| | - Francesca Mallamaci
- Nephrology and Transplantation Unit, Grande Ospedale Metropolitano Reggio Cal and CNR-IFC, Reggio Calabria, Italy
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
4
|
Mark PB, Mangion K, Rankin AJ, Rutherford E, Lang NN, Petrie MC, Stoumpos S, Patel RK. Left ventricular dysfunction with preserved ejection fraction: the most common left ventricular disorder in chronic kidney disease patients. Clin Kidney J 2022; 15:2186-2199. [PMID: 36381379 PMCID: PMC9664574 DOI: 10.1093/ckj/sfac146] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 08/25/2023] Open
Abstract
Chronic kidney disease (CKD) is a risk factor for premature cardiovascular disease. As kidney function declines, the presence of left ventricular abnormalities increases such that by the time kidney replacement therapy is required with dialysis or kidney transplantation, more than two-thirds of patients have left ventricular hypertrophy. Historically, much research in nephrology has focussed on the structural and functional aspects of cardiac disease in CKD, particularly using echocardiography to describe these abnormalities. There is a need to translate knowledge around these imaging findings to clinical outcomes such as unplanned hospital admission with heart failure and premature cardiovascular death. Left ventricular hypertrophy and cardiac fibrosis, which are common in CKD, predispose to the clinical syndrome of heart failure with preserved left ventricular ejection fraction (HFpEF). There is a bidirectional relationship between CKD and HFpEF, whereby CKD is a risk factor for HFpEF and CKD impacts outcomes for patients with HFpEF. There have been major improvements in outcomes for patients with heart failure and reduced left ventricular ejection fraction as a result of several large randomized controlled trials. Finding therapy for HFpEF has been more elusive, although recent data suggest that sodium-glucose cotransporter 2 inhibition offers a novel evidence-based class of therapy that improves outcomes in HFpEF. These observations have emerged as this class of drugs has also become the standard of care for many patients with proteinuric CKD, suggesting that there is now hope for addressing the combination of HFpEF and CKD in parallel. In this review we summarize the epidemiology, pathophysiology, diagnostic strategies and treatment of HFpEF with a focus on patients with CKD.
Collapse
Affiliation(s)
- Patrick B Mark
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Glasgow Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Kenneth Mangion
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Alastair J Rankin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Elaine Rutherford
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Department of Nephrology, NHS Dumfries and Galloway, Dumfries, UK
| | - Ninian N Lang
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Mark C Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sokratis Stoumpos
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Glasgow Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Rajan K Patel
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Glasgow Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|