1
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
2
|
Seixas S, Marques PI. Known Mutations at the Cause of Alpha-1 Antitrypsin Deficiency an Updated Overview of SERPINA1 Variation Spectrum. APPLICATION OF CLINICAL GENETICS 2021; 14:173-194. [PMID: 33790624 PMCID: PMC7997584 DOI: 10.2147/tacg.s257511] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Alpha-1-Antitrypsin deficiency (AATD), caused by SERPINA1 mutations, is one of the most prevalent Mendelian disorders among individuals of European descend. However, this condition, which is characterized by reduced serum levels of alpha-1-antitrypsin (AAT) and associated with increased risks of pulmonary emphysema and liver disease in both children and adults, remains frequently underdiagnosed. AATD clinical manifestations are often correlated with two pathogenic variants, the Z allele (p.Glu342Lys) and the S allele (p.Glu264Val), which can be combined in severe ZZ or moderate SZ risk genotypes. Yet, screenings of AATD cases and large sequencing efforts carried out in both control and disease populations are disclosing outstanding numbers of rare SERPINA1 variants (>500), including many pathogenic and other likely deleterious mutations. Generally speaking, pathogenic variants can be subdivided into either loss- or gain-of-function according to their pathophysiological effects. In AATD, the loss-of-function is correlated with an uncontrolled activity of elastase by its natural inhibitor, the AAT. This phenomenon can result from the absence of circulating AAT (null alleles), poor AAT secretion from hepatocytes (deficiency alleles) or even from a modified inhibitory activity (dysfunctional alleles). On the other hand, the gain-of-function is connected with the formation of AAT polymers and their switching on of cellular stress and inflammatory responses (deficiency alleles). Less frequently, the gain-of-function is related to a modified protease affinity (dysfunctional alleles). Here, we revisit SERPINA1 mutation spectrum, its origins and population history with a greater emphasis on variants fitting the aforementioned processes of AATD pathogenesis. Those were selected based on their clinical significance and wider geographic distribution. Moreover, we also provide some directions for future studies of AATD clinically heterogeneity and comprehensive diagnosis.
Collapse
Affiliation(s)
- Susana Seixas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Patricia Isabel Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| |
Collapse
|
3
|
[Screening for alpha1-antitrypsin deficiency using dried blood spot: Assessment of the first 20 months]. Rev Mal Respir 2020; 37:633-643. [PMID: 32859429 DOI: 10.1016/j.rmr.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/17/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Alpha1-antitrypsin deficiency is a predisposing factor for pulmonary disease and under-diagnosis is a significant problem. The results of a targeted screening in patients with respiratory symptoms possibly indicative of severe deficiency are reported here. METHODS Data were collected from March 2016 to October 2017 on patients who had a capillary blood sample collected during a consultation with a pulmonologist and sent to the laboratory for processing to determine alpha1-antitrypsin concentration, phenotype and possibly genotype. RESULTS In 20 months, 3728 test kits were requested by 566 pulmonologists and 718 (19 %) specimens sent: among these, 708 were analyzable and 613 were accompanied by clinical information. Of the 708 samples, 70 % had no phenotype associated with quantitative alpha1- antitrypsin deficiency, 7 % had a phenotype associated with a severe deficiency and 23 % had a phenotype associated with an intermediate deficiency. One hundred and eight patients carried at least one PI*Z allele which is considered to be a risk factor for liver disease. CONCLUSIONS The results of this targeted screening program for alpha1- antitrypsin deficiency using a dried capillary blood sample reflect improvement in early diagnosis of this deficiency in lung disease with good adherence of the pulmonologists to this awareness campaign.
Collapse
|
4
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Motawi T, Shaker OG, Hussein RM, Houssen M. Polymorphisms of α1-antitrypsin and Interleukin-6 genes and the progression of hepatic cirrhosis in patients with a hepatitis C virus infection. Balkan J Med Genet 2017; 19:35-44. [PMID: 28289587 PMCID: PMC5343329 DOI: 10.1515/bjmg-2016-0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hepatitis C virus (HCV) infection represents a serious health problem. The –174 G/C mutation in the pro inflammatory cytokine interleukin-6 (IL-6) is associated with developing liver diseases. Likewise, the S and Z mutations in the serine protease inhibitor α1-antitrypsin (A1AT) are associated with pulmonary emphysema and/or liver cirrhosis. We explored the distribution of the single nucleotide polymorphisms (SNPs) of IL-6 and A1AT genes in chronic HCV-infected patients and evaluated their impact on the progression of liver cirrhosis. One hundred and fifty Egyptian HCV-infected patients together with 100 healthy controls were enrolled in this study. The patient groups were subdivided into chronic hepatitis patients (n = 85) and cirrhotic patients (n = 65). The SNP of IL-6 (–174 G/C, rs1800795), A1AT Z mutation (342 Glu/Lys, rs28929474) and A1AT S mutation (264 Glu/Val, rs17580) were determined using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Cirrhotic patients exhibited significantly increased frequency of the A1AT S allele compared with the controls (34.6 vs. 5.0%), while the chronic hepatitis patients showed a higher frequency of the A1AT Z allele compared with the controls (14.7 vs. 2.5%). Remarkably, IL-6 (CC genotype) was detected only in the chronic hepatitis patients. Multivariate regression analysis showed that aspartate transaminase (AST) and the S alleles of A1AT, represented as SS+MS genotypes, were significantly independent predictors for development of liver cirrhosis. We concluded that inheritance of deficient S and Z alleles of the A1AT gene but not IL-6 (–174 G/C), were associated with progressive liver diseases.
Collapse
Affiliation(s)
- T Motawi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - O G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - R M Hussein
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - M Houssen
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
6
|
Figueira Gonçalves JM, Martínez Bugallo F, Díaz Pérez D, Martín Martínez MD, García-Talavera I. Alpha-1 Antitrypsin Deficiency Associated With the Mmalton Variant. Description of a Family. ACTA ACUST UNITED AC 2016. [PMID: 27320404 DOI: 10.1016/j.arbr.2016.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Figueira Gonçalves JM, Martínez Bugallo F, Díaz Pérez D, Martín Martínez MD, García-Talavera I. Déficit de alfa-1-antitripsina asociado a la variante Mmalton. Descripción de una familia. Arch Bronconeumol 2016; 52:617-618. [DOI: 10.1016/j.arbres.2016.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 11/28/2022]
|
8
|
Alpha-1-antitrypsin (SERPINA1) mutation spectrum: Three novel variants and haplotype characterization of rare deficiency alleles identified in Portugal. Respir Med 2016; 116:8-18. [PMID: 27296815 DOI: 10.1016/j.rmed.2016.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/21/2016] [Accepted: 05/02/2016] [Indexed: 01/24/2023]
|
9
|
Denden S, Bouden B, Boudawara Keskes N, Knani J, Hassine M, Lefranc G, Ben Chibani J, Haj Khelil A. Aspects de la BPCO chez les porteurs de la mutation déficitaire rare de l’alpha-1 antitrypsine PIMMmalton. Rev Mal Respir 2016; 33:32-40. [PMID: 26071129 DOI: 10.1016/j.rmr.2015.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/27/2015] [Indexed: 11/25/2022]
|
10
|
Joly P, Guillaud O, Hervieu V, Francina A, Mornex JF, Chapuis-Cellier C. Clinical heterogeneity and potential high pathogenicity of the Mmalton Alpha 1 antitrypsin allele at the homozygous, compound heterozygous and heterozygous states. Orphanet J Rare Dis 2015; 10:130. [PMID: 26446624 PMCID: PMC4596512 DOI: 10.1186/s13023-015-0350-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/01/2015] [Indexed: 11/20/2022] Open
Abstract
Background Alpha 1 antitrypsin (A1AT) deficiency (A1ATD) is potentially associated with a high degree of liver and/or lung disease. Apart from the most frequent deficiency alleles, Pi S and Pi Z, some A1AT alleles of clinical significance may be easily misdiagnosed. This is typically the case of the Pi Mmalton variant which shares the same ‘gain-of-function’ liver toxicity than Pi Z and the same ‘loss of function’ lung disease as well. Methods The biological diagnosis of A1ATD typically relies on a low serum concentration associated with an abnormal isoelectric focusing (IEF) pattern of migration. However, Sanger direct DNA sequencing may be required for deficiency alleles without biochemical expression (Null alleles) or for A1AT variants whose IEF profiles resemble the wild-type and sub-types M allele but with a low concentration. Results We report four cases of A1ATD involving the deficient Pi Mmalton allele with very different clinical expressions: (i) one Mmalton/Mmalton with liver fibrosis and cirrhosis, (ii) two Mmalton/Z with chronic pulmonary obstructive disease in one case and (iii) one M/Mmalton without liver or lung disease. In both cases, the correct diagnosis has necessitated a genetic analysis. Conclusions Our study provides another example of Pi Mmalton homozygosity associated with a severe liver disease that emphasizes the necessity of a not delayed diagnosis. The great clinical heterogeneity of the other genotypes (which is in agreement with the literature data) questions about the role of environmental and other modifier genes in the pathogenicity of A1ATD.
Collapse
Affiliation(s)
- Philippe Joly
- Unité de Pathologie Moléculaire du Globule Rouge, Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France. .,Centre de Recherche et d'Innovation sur le Sport (CRIS)-EA 647, Université Claude-Bernard Lyon 1, Villeurbanne, France. .,Labex GR-Ex, Institut Universitaire de France, Paris, France.
| | - Olivier Guillaud
- Service d'hépato-gastroentérologie, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.
| | - Valérie Hervieu
- Service d'anatomie pathologique, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.
| | - Alain Francina
- Unité de Pathologie Moléculaire du Globule Rouge, Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.
| | - Jean-François Mornex
- Service de pneumologie, Groupement Hospitalier Est, Hospices Civils & Université Claude Bernard-Lyon 1, Bron, France.
| | - Colette Chapuis-Cellier
- Laboratoire d'Immunologie, Centre de Biologie Sud, Centre hospitalier Lyon-Sud, Hospices Civils & Université Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
11
|
Balduyck M, Odou MF, Zerimech F, Porchet N, Lafitte JJ, Maitre B. Diagnosis of alpha-1 antitrypsin deficiency: modalities, indications and diagnosis strategy. Rev Mal Respir 2014; 31:729-45. [PMID: 25391508 DOI: 10.1016/j.rmr.2014.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/25/2013] [Indexed: 12/27/2022]
Abstract
Alpha-1 antitrypsin (α1-AT) deficiency is an autosomal recessive genetic disorder, which predisposes affected patients to development of pulmonary emphysema or liver cirrhosis. Despite the guidelines from the American Thoracic Society and the European Respiratory Society about α1-AT deficiency screening, it remains significantly under recognized. So, it seems necessary to propose an efficient and suitable biological approach to improve diagnosis and management of α1-AT deficiency. α1-AT is a 52 kDa glycoprotein predominantly produced in the liver and its physiological serum concentration for adults ranges from 0.9 to 2.0g/L (17-39 μmol/L). It is encoded by the SERPINA1 gene, which is highly pleomorphic, and to date, more than 100 alleles have been identified. α1-AT testing would initially involve quantification of serum α1-AT concentration with possible complementary measurement of the elastase inhibitory capacity of serum. If the serum α1-AT concentration is reduced below the reference value, two strategies for laboratory testing can be used: (i) serum α1-AT phenotyping by isoelectric focusing which allows identification of the most common variant designated as the PI M variant but also of various deficient variants besides the predominant PI S and PI Z ones; (ii) genotyping by allele-specific PCR methods which allows only identification of the deficient PI S and PI Z alleles. Identification of the null alleles or of other rare deficient alleles can be performed by direct sequencing of the whole SERPINA1 gene as a reflex test.
Collapse
Affiliation(s)
- M Balduyck
- Laboratoire de biochimie et biologie moléculaire (HMNO), centre de biologie pathologie, CHRU de Lille, boulevard du Pr.-J.-Leclercq, 59037 Lille cedex, France; Laboratoire de biochimie et biologie moléculaire, faculté de pharmacie, université de Lille 2, 59006 Lille, France.
| | - M-F Odou
- Laboratoire de biochimie et biologie moléculaire (HMNO), centre de biologie pathologie, CHRU de Lille, boulevard du Pr.-J.-Leclercq, 59037 Lille cedex, France; Laboratoire de bactériologie virologie, faculté de pharmacie, université de Lille 2, 59006 Lille, France
| | - F Zerimech
- Laboratoire de biochimie et biologie moléculaire (HMNO), centre de biologie pathologie, CHRU de Lille, boulevard du Pr.-J.-Leclercq, 59037 Lille cedex, France
| | - N Porchet
- Laboratoire de biochimie et biologie moléculaire (HMNO), centre de biologie pathologie, CHRU de Lille, boulevard du Pr.-J.-Leclercq, 59037 Lille cedex, France; Inserm, U837, centre de recherche Jean-Pierre-Aubert, 59045 Lille, France
| | - J-J Lafitte
- Service de pneumologie et oncologie thoracique, hôpital A.-Calmette, CHRU de Lille, 59037 Lille, France
| | - B Maitre
- Unité de pneumologie, réanimation médicale, groupe hospitalier Mondor, IMRB U955, équipe 8, université Paris Est, 94010 Créteil, France
| |
Collapse
|
12
|
WITHDRAWN: Diagnostic du déficit en alpha-1-antitrypsine : les moyens, les indications et la stratégie diagnostique. Rev Mal Respir 2014. [DOI: 10.1016/j.rmr.2014.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Denden S, Lakhdar R, Keskes NB, Hamdaoui MH, Chibani JB, Khelil AH. PCR-based screening for the most prevalent alpha 1 antitrypsin deficiency mutations (PI S, Z, and Mmalton) in COPD patients from Eastern Tunisia. Biochem Genet 2013; 51:677-85. [PMID: 23666394 DOI: 10.1007/s10528-013-9597-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/21/2012] [Indexed: 10/26/2022]
Abstract
It is generally agreed that the protease inhibitor (PI) alleles PI*S (Val264Glu) and PI*Z (Lys342Glu) are the most common alpha 1 antitrypsin deficiency variants worldwide, but the PI*Mmalton allele (ΔPhe52) prevails over these variants in some Mediterranean regions. In eastern Tunisia (Mahdia), we screened 100 subjects with chronic obstructive pulmonary disease for these variants. The PI*S and PI*Z alleles were genotyped by the previously described SexAI/Hpγ99I RFLP-PCR. We provide here a new method for PI*Mmalton genotyping using mismatched RFLP-PCR. These methods are suitable for routine clinical application and can easily be reproduced by several laboratories, since they do not require extensive optimization, unlike the previously described bidirectional allele-specific amplification PCR for PI*Mmalton genotyping. Our results were in agreement with previous reports from central Tunisia (Kairouan), suggesting that the PI*Mmalton mutation is the most frequent alpha 1 antitrypsin deficiency-related mutation in Tunisia.
Collapse
Affiliation(s)
- Sabri Denden
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, Monastir, Tunisia,
| | | | | | | | | | | |
Collapse
|
14
|
Topic A, Ljujic M, Radojkovic D. Alpha-1-antitrypsin in pathogenesis of hepatocellular carcinoma. HEPATITIS MONTHLY 2012; 12:e7042. [PMID: 23162602 PMCID: PMC3496874 DOI: 10.5812/hepatmon.7042] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/29/2012] [Accepted: 06/30/2012] [Indexed: 12/11/2022]
Abstract
CONTEXT Alpha-1-antitrypsin (A1AT) is the most abundant liver-derived, highly polymorphic, glycoprotein in plasma. Hereditary deficiency of alpha-1-antitrypsin in plasma (A1ATD) is a consequence of accumulation of polymers of A1AT mutants in endoplasmic reticulum of hepatocytes and other A1AT-producing cells. One of the clinical manifestations of A1ATD is liver disease in childhood and cirrhosis and/or hepatocellular carcinoma (HCC) in adulthood. Epidemiology and pathophysiology of liver failure in early childhood caused by A1ATD are well known, but the association with hepatocellular carcinoma is not clarified. The aim of this article is to review different aspects of association between A1AT variants and hepatocellular carcinoma, with emphasis on the epidemiology and molecular pathogenesis. The significance of A1AT as a biomarker in the diagnosis of HCC is also discussed. EVIDENCE ACQUISITIONS Search for relevant articles were performed through Pub Med, HighWire, and Science Direct using the keywords "alpha-1-antitrypsin", "liver diseases", "hepatocellular carcinoma", "SERPINA1". Articles published until 2011 were reviewed. RESULTS Epidemiology studies revealed that severe A1ATD is a significant risk factor for cirrhosis and HCC unrelated to the presence of HBV or HCV infections. However, predisposition to HCC in moderate A1ATD is rare, and probably happens in combination with HBV and/or HCV infections or other unknown risk factors. It is assumed that accumulation of polymers of A1ATD variants in endoplasmic reticulum of hepatocytes leads to damage of hepatocytes by gain-of-function mechanism. Also, increased level of A1AT was recognized as diagnostic and prognostic marker of HCC. CONCLUSIONS Clarification of a carcinogenic role for A1ATD and identification of proinflammatory or some still unknown factors that lead to increased susceptibility to HCC associated with A1ATD may contribute to a better understanding of hepatic carcinogenesis and to the development of new drugs.
Collapse
Affiliation(s)
- Aleksandra Topic
- University of Belgrade, Faculty of Pharmacy, Department of Medical Biochemistry, Belgrade, Serbia
- Corresponding author: Aleksandra Topic, University of Belgrade, Faculty of Pharmacy, Department of Medical Biochemistry, Vojvode Stepe, 45011221, Belgrade, Serbia. Tel.: +38-1113951283, Fax: +38-1113972840, E-mail:
| | - Mila Ljujic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Dragica Radojkovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| |
Collapse
|
15
|
Abstract
Formed in response to a World Health Organization recommendation, the Alpha One International Registry (AIR) is a multinational research program focused on alphal-antitrypsin (AAT) deficiency. Each of the nearly 20 participating countries maintains a National Registry of patients with AAT deficiency and contributes to an international database in Malmö, Sweden, that is designed to increase understanding of AAT deficiency as well as safeguard patient confidentiality. AIR members are engaged in active and wide-ranging investigations to improve the diagnosis, monitoring and therapy of the disease. The AIR membership meets biennially to exchange views and research findings. The third biennial meeting was held in Barcelona, Spain, June 11 -13, 2003. A wide range of AAT deficiency-related topics were addressed, encompassing molecular and cellular pathophysiologic mechanisms, clinical epidemiology, diagnostic advances, current and investigational therapeutic approaches, and progress in registry development. Valuable cross-fertilization of concepts and scientific observations was apparent between AAT deficiency research and other fields of biomedicine. The proceedings of the meeting are summarized in this report.
Collapse
|
16
|
Schilsky ML. Inherited metabolic disease. Curr Opin Gastroenterol 2002; 18:299-306. [PMID: 17033300 DOI: 10.1097/00001574-200205000-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The elucidation of metabolic pathways and the genetic basis for diseases of the liver continues to increase our understanding of disease pathogenesis and advance treatment options. This selective review covers a wide range of subjects, from the identification of novel proteins and the importance of specific transport pathways to phenotypic expression of disease and management of acute liver failure. Three selected disorders--Wilson disease, genetic hemochromatosis and other hereditary iron overload disorders, and alpha(1)-antitrypsin disease--are the focus of this review.
Collapse
Affiliation(s)
- Michael L Schilsky
- Department of Medicine, Division of Liver Diseases, and Recanati/Miller Transplantation Institute, Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|