1
|
Zhuang B. Construction of a General Platform for Capillary Electrophoresis. DEVELOPMENT OF A FULLY INTEGRATED “SAMPLE-IN-ANSWER-OUT” SYSTEM FOR AUTOMATIC GENETIC ANALYSIS 2018:31-61. [DOI: 10.1007/978-981-10-4753-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
2
|
Cao W, Bean B, Corey S, Coursey JS, Hasson KC, Inoue H, Isano T, Kanderian S, Lane B, Liang H, Murphy B, Owen G, Shinoda N, Zeng S, Knight IT. Automated Microfluidic Platform for Serial Polymerase Chain Reaction and High-Resolution Melting Analysis. ACTA ACUST UNITED AC 2016; 21:402-11. [DOI: 10.1177/2211068215579015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Indexed: 11/16/2022]
|
3
|
Skoblov AY, Vichuzhanin MV, Farzan VM, Veselova OA, Konovalova TA, Podkolzin AT, Shipulin GA, Zatsepin TS. Solid- and solution-phase synthesis and application of R6G dual-labeled oligonucleotide probes. Bioorg Med Chem 2015; 23:6749-56. [DOI: 10.1016/j.bmc.2015.08.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/17/2015] [Accepted: 08/28/2015] [Indexed: 12/25/2022]
|
4
|
Use of biomolecular scaffolds for assembling multistep light harvesting and energy transfer devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2014.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Leclair B, Scholl T. Application of automation and information systems to forensic genetic specimen processing. Expert Rev Mol Diagn 2014; 5:241-50. [PMID: 15833053 DOI: 10.1586/14737159.5.2.241] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During the last 10 years, the introduction of PCR-based DNA typing technologies in forensic applications has been highly successful. This technology has become pervasive throughout forensic laboratories and it continues to grow in prevalence. For many criminal cases, it provides the most probative evidence. Criminal genotype data banking and victim identification initiatives that follow mass-fatality incidents have benefited the most from the introduction of automation for sample processing and data analysis. Attributes of offender specimens including large numbers, high quality and identical collection and processing are ideal for the application of laboratory automation. The magnitude of kinship analysis required by mass-fatality incidents necessitates the application of computing solutions to automate the task. More recently, the development activities of many forensic laboratories are focused on leveraging experience from these two applications to casework sample processing. The trend toward increased prevalence of forensic genetic analysis will continue to drive additional innovations in high-throughput laboratory automation and information systems.
Collapse
Affiliation(s)
- Benoît Leclair
- Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT 84108, USA.
| | | |
Collapse
|
6
|
Handal MI, Ugaz VM. DNA mutation detection and analysis using miniaturized microfluidic systems. Expert Rev Mol Diagn 2014; 6:29-38. [PMID: 16359265 DOI: 10.1586/14737159.6.1.29] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Identification of genetic sequence variations occurring on a population-wide scale is key to unraveling the complex interactions that are the underlying cause of many medical disorders and diseases. A critical need exists, however, for advanced technology to enable DNA mutation analysis to be performed with significantly higher throughput and at significantly lower cost than is currently attainable. Microfluidic systems offer an attractive platform to address these needs by combining the ability to perform rapid analysis with a simplified device format that can be inexpensively mass-produced. This paper will review recent progress toward developing these next-generation systems and discuss challenges associated with adapting these technologies for routine laboratory use.
Collapse
Affiliation(s)
- Maria I Handal
- Texas A&M University, Department of Chemical Engineering, College Station, TX 77843-3122, USA
| | | |
Collapse
|
7
|
Karlinsey JM, Landers JP. AOTF-based multicolor fluorescence detection for short tandem repeat (STR) analysis in an electrophoretic microdevice. LAB ON A CHIP 2008; 8:1285-1291. [PMID: 18651070 DOI: 10.1039/b801759j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
An acousto-optic tunable filter (AOTF) has been used to perform multicolor fluorescence detection for four and five-color short tandem repeat (STR) analysis on glass microchips. Matrix files were initially generated by collecting and comparing the laser-induced fluorescence emission of the labels specific to a particular STR kit, and raw data was processed to remove spectral overlap. The AmpFlSTR kits used in this work include Profiler Plus and COfiler, which are four-color kits used in tandem to address the core STR loci, as well as the five-color Identifiler kit, which contains each of the loci. In contrast to previous reports on multicolor detection for STR analysis on microchips, this detection system is characterized by a single filter and detector, and reports the first five-color genotyping application on-chip. This capability matches the portability and reduced scale of the microchip with the state-of-the-art in multicolor STR analysis kits.
Collapse
Affiliation(s)
- James M Karlinsey
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
8
|
Liu P, Yeung SHI, Crenshaw KA, Crouse CA, Scherer JR, Mathies RA. Real-time forensic DNA analysis at a crime scene using a portable microchip analyzer. Forensic Sci Int Genet 2008; 2:301-9. [PMID: 19083840 DOI: 10.1016/j.fsigen.2008.03.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/10/2008] [Accepted: 03/31/2008] [Indexed: 11/19/2022]
Abstract
An integrated lab-on-a-chip system has been developed and successfully utilized for real-time forensic short tandem repeat (STR) analysis. The microdevice comprises a 160-nL polymerase chain reaction reactor with an on-chip heater and a temperature sensor for thermal cycling, microvalves for fluidic manipulation, a co-injector for sizing standard injection, and a 7-cm-long separation channel for capillary electrophoretic analysis. A 9-plex autosomal STR typing system consisting of amelogenin and eight combined DNA index system (CODIS) core STR loci has been constructed and optimized for this real-time human identification study. Reproducible STR profiles of control DNA samples are obtained in 2h and 30min with <or=0.8bp allele typing accuracy. The minimal amount of DNA required for a complete DNA profile is 100 copies. To critically evaluate the capabilities of our portable microsystem as well as its compatibility with crime scene investigation processes, real-time STR analyses were carried out at a mock crime scene prepared by the Palm Beach County Sheriff's Office (PBSO). Blood stain sample collection, DNA extraction, and STR analyses on the portable microsystem were conducted in the field, and a successful "mock" CODIS hit was generated on the suspect's sample within 6h. This demonstration of on-site STR analysis establishes the feasibility of real-time DNA typing to identify the contributor of probative biological evidence at a crime scene and for real-time human identification.
Collapse
Affiliation(s)
- Peng Liu
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
9
|
Wu D, Qin J, Lin B. Electrophoretic separations on microfluidic chips. J Chromatogr A 2008; 1184:542-59. [PMID: 18207148 PMCID: PMC7094303 DOI: 10.1016/j.chroma.2007.11.119] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/17/2007] [Accepted: 11/30/2007] [Indexed: 02/07/2023]
Abstract
This review presents a brief outline and novel developments of electrophoretic separation in microfluidic chips. Distinct characteristics of microchip electrophoresis (MCE) are discussed first, in which sample injection plug, joule heat, channel turn, surface adsorption and modification are introduced, and some successful strategies and recognized conclusions are also included. Important achievements of microfluidic electrophoresis separation in small molecules, DNA and protein are then summarized. This review is aimed at researchers, who are interested in MCE and want to adopt MCE as a functional unit in their integrated microsystems.
Collapse
Affiliation(s)
| | - Jianhua Qin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bingcheng Lin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
10
|
Horsman KM, Bienvenue JM, Blasier KR, Landers JP. Forensic DNA Analysis on Microfluidic Devices: A Review. J Forensic Sci 2007; 52:784-99. [PMID: 17553097 DOI: 10.1111/j.1556-4029.2007.00468.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The advent of microfluidic technology for genetic analysis has begun to impact forensic science. Recent advances in microfluidic separation of short-tandem-repeat (STR) fragments has provided unprecedented potential for improving speed and efficiency of DNA typing. In addition, the analytical processes associated with sample preparation--which include cell sorting, DNA extraction, DNA quantitation, and DNA amplification--can all be integrated with the STR separation in a seamless manner. The current state of these microfluidic methods as well as their advantages and potential shortcomings are detailed. Recent advances in microfluidic device technology, as they pertain to forensic DNA typing, are discussed with a focus on the forensic community.
Collapse
Affiliation(s)
- Katie M Horsman
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | |
Collapse
|
11
|
Liu P, Seo TS, Beyor N, Shin KJ, Scherer JR, Mathies RA. Integrated Portable Polymerase Chain Reaction-Capillary Electrophoresis Microsystem for Rapid Forensic Short Tandem Repeat Typing. Anal Chem 2007; 79:1881-9. [PMID: 17269794 DOI: 10.1021/ac061961k] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A portable forensic genetic analysis system consisting of a microfluidic device for amplification and separation of short tandem repeat (STR) fragments as well as an instrument for chip operation and four-color fluorescence detection has been developed. The microdevice performs polymerase chain reaction (PCR) in a 160-nL chamber and capillary electrophoresis (CE) in a 7-cm-long separation channel. The instrumental design integrates PCR thermal cycling, electrophoretic separation, pneumatic valve fluidic control, and four-color laser excited fluorescence detection. A quadruplex Y-chromosome STR typing system consisting of amelogenin and three Y STR loci (DYS390, DYS393, DYS439) was developed and used for validation studies. The multiplex amplification of these 4 loci with 35 PCR cycles followed by CE separation and 4-color fluorescence detection was completed in 1.5 h. All the amplicons can be detected with a limit of detection of 20 copies of male standard DNA in the reactor. Real-world forensic analyses of oral swab and human bone extracts from case evidence were also successfully performed. Mixture analysis demonstrated that a balanced profile can be obtained even at a male-to-female template ratio of 1:10. The successful development and operation of this portable PCR-CE system establishes the feasibility of rapid point-of-analysis DNA typing of forensic casework, of mass disaster samples or of individuals at a security checkpoint.
Collapse
Affiliation(s)
- Peng Liu
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, and Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
12
|
Yeung SHI, Greenspoon SA, McGuckian A, Crouse CA, Emrich CA, Ban J, Mathies RA. Rapid and High-Throughput Forensic Short Tandem Repeat Typing Using a 96-Lane Microfabricated Capillary Array Electrophoresis Microdevice*. J Forensic Sci 2006; 51:740-7. [PMID: 16882214 DOI: 10.1111/j.1556-4029.2006.00153.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 96-channel microfabricated capillary array electrophoresis (muCAE) device was evaluated for forensic short tandem repeat (STR) typing using PowerPlex 16 and AmpFlSTR Profiler Plus multiplex PCR systems. The high-throughput muCAE system produced high-speed <30-min parallel sample separations with single-base resolution. Forty-eight previously analyzed single-source samples were accurately typed, as confirmed on an ABI Prism 310 and/or the Hitachi FMBIO II. Minor alleles in 3:1 mixture samples containing female and male DNA were reliably typed as well. The instrument produced full profiles from sample DNA down to 0.17 ng, a threshold similar to that found for the ABI 310. Seventeen nonprobative samples from various evidentiary biological stains were also correctly typed. The successful application of the muCAE device to actual forensic STR typing samples is a significant step toward the development of a completely integrated STR analysis microdevice.
Collapse
Affiliation(s)
- Stephanie H I Yeung
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Dodge A, Turcatti G, Lawrence I, de Rooij NF, Verpoorte E. A microfluidic platform using molecular beacon-based temperature calibration for thermal dehybridization of surface-bound DNA. Anal Chem 2004; 76:1778-87. [PMID: 15018583 DOI: 10.1021/ac034377+] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work presents a simple microfluidic device with an integrated thin-film heater for studies of DNA hybridization kinetics and double-stranded DNA melting temperature measurements. The heating characteristics of the device were evaluated with a novel, noninvasive indirect technique using molecular beacons as temperature probes inside reaction chambers. This is the first microfluidic device in which thermal dehybridization of surface-bound oligonucleotides was performed for measurement of double-stranded DNA melting temperatures with +/- 1 degrees C precision. Surface modification and oligonucleotide immobilization were performed by continuously flowing reagents through the microchannels. The resulting reproducibility of oligonucleotide surface densities, at 9% RSD, was better than for the same modification chemistries on glass slides in unstirred reagent solutions (RSD=20%). Moreover, the surface density of immobilized DNA probe molecules could be varied controllably by changing the concentration of the reagent solution used for immobilization. Thus, excellent control of surface characteristics was made possible, something which is often difficult to achieve with larger devices. Solid-phase hybridization reactions, a fundamental aspect of microarray technologies often taking several hours in conventional systems, were reduced to minutes in this device. It was also possible to determine forward rate constants for hybridization, k. These varied from 820,000 to 72,000 M(-1) s(-1), decreasing as surface densities increased. Surface densities could therefore be optimized to obtain rapid hybridization using such an approach. Taken together, this combined microfluidic/small-volume heating approach represents a powerful tool for surface-based DNA analysis.
Collapse
Affiliation(s)
- Arash Dodge
- Sensors, Actuators and Microsystems Laboratory, Institute of Microtechnology, University of Neuchâtel, Rue Jaquet-Droz 1, CH-2007 Neuchâtel, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Qin J, Fung Y, Lin B. DNA diagnosis by capillary electrophoresis and microfabricated electrophoretic devices. Expert Rev Mol Diagn 2003; 3:387-94. [PMID: 12779012 DOI: 10.1586/14737159.3.3.387] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA diagnosis is experiencing an impressive progression towards the development of novel technology to identify various clinically relevant categories of genetic changes and to meet the exponential growth of genomics. The introduction of capillary electrophoresis has dramatically accelerated the completion of the first draft of the human DNA sequence in the Human Genome Project, and thus, has become the method of choice for analysis of various genetic variants. The recent development of microfabricated electrophoretic devices has led to the possibility of integrating multiple sample handling with the actual measurement steps required for automation of molecular diagnostics. This review highlights the most recent progress in capillary electrophoresis and electrophoretic microdevices for DNA-based diagnostics, including the important areas of genotyping for point mutation, single nucleotide polymorphisms, short tandem repeats and organism identification. The application of these techniques for infectious and genetic disease diagnosis, as well as forensic identification purpose, are covered. The promising development and the challenges for techinical problems are also discussed.
Collapse
Affiliation(s)
- Jianhua Qin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshang Road 457, 116023 Dalian, China
| | | | | |
Collapse
|
15
|
Petersen JR, Okorodudu AO, Mohammad A, Payne DA. Capillary electrophoresis and its application in the clinical laboratory. Clin Chim Acta 2003; 330:1-30. [PMID: 12636924 DOI: 10.1016/s0009-8981(03)00006-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over the past 10 years, capillary electrophoresis (CE) is an analytical tool that has shown great promise in replacing many conventional clinical laboratory methods, especially electrophoresis and high performance liquid chromatography (HPLC). The main attraction of CE was that it was fast, used small amounts of sample and reagents, and was extremely versatile, being able to separate large and small analytes, both neutral and charged. Because of this versatility, numerous methods for clinically relevant analytes have been developed. However, with the exception of the molecular diagnostic and forensic laboratories CE has not had a major impact. A possible reason is that CE is still perceived as requiring above-average technical expertise, precluding its use in a laboratory workforce that is less technically adept. With the introduction of multicapillary instruments that are more automated, less technique-dependent, in addition to the availability of commercial and cost effective test kit methods, CE may yet be accepted as a instrument routinely used in the clinical laboratories. Thus, this review will focus on the areas where CE shows the most potential to have the greatest impact on the clinical laboratory. These include analysis of proteins found in serum, urine, CSF and body fluids, immunosubstraction electrophoresis, hemoglobin variants, lipoproteins, carbohydrate-deficient transferrin (CDT), forensic and therapeutic drug screening, and molecular diagnostics.
Collapse
Affiliation(s)
- John R Petersen
- Department of Pathology, University of Texas Medical Branch, Galveston, USA.
| | | | | | | |
Collapse
|
16
|
Emrich CA, Tian H, Medintz IL, Mathies RA. Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. Anal Chem 2002; 74:5076-83. [PMID: 12380833 DOI: 10.1021/ac020236g] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A microfabricated 384-lane capillary array electrophoresis device is developed and utilized for massively parallel genetic analysis. The 384 capillary lanes, arrayed radially about the center of a 200-mm-diameter glass substrate sandwich, are constructed using scalable microfabrication techniques derived from the semiconductor industry. Samples are loaded into reservoirs on the perimeter of the wafer, separated on the 8-cm-long poly(dimethylacrylamide) gel-filled channels, and detected with a four-color rotary confocal fluorescence scanner. The performance and throughput of this bioanalyzer are demonstrated by simultaneous genotyping 384 individuals for the common hemochromatosis-linked H63D mutation in the human HFE gene in only 325 s. This lab-on-a-chip device thoroughly exploits the power of microfabrication to produce high-density capillary electrophoresis arrays and to use them for high-throughput bioanalysis.
Collapse
Affiliation(s)
- Charles A Emrich
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
17
|
Medintz IL, Paegel BM, Blazej RG, Emrich CA, Berti L, Scherer JR, Mathies RA. High-performance genetic analysis using microfabricated capillary array electrophoresis microplates. Electrophoresis 2001; 22:3845-56. [PMID: 11700713 DOI: 10.1002/1522-2683(200110)22:18<3845::aid-elps3845>3.0.co;2-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This review focuses on some recent advances in realizing microfabricated capillary array electrophoresis (microCAE). In particular, the development of a novel rotary scanning confocal fluorescence detector has facilitated the high-speed collection of sequencing and genotyping data from radially formatted microCAE devices. The concomitant development of a convenient energy-transfer cassette labeling chemistry allows sensitive multicolor labeling of any DNA genotyping or sequencing analyte. High-performance hereditary haemochromatosis and short tandem repeat genotyping assays are demonstrated on these devices along with rapid mitochondrial DNA sequence polymorphism analysis. Progress in supporting technology such as robotic fluid dispensing and batched data analysis is also presented. The ultimate goal is to develop a parallel analysis platform capable of integrated sample preparation and automated electrophoretic analysis with a throughput 10-100 times that of current technology.
Collapse
Affiliation(s)
- I L Medintz
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | |
Collapse
|