1
|
Park HE, Han D, Lee JS, Nikas IP, Kim H, Yang S, Lee H, Ryu HS. Comparison of Breast Fine-Needle Aspiration Cytology and Tissue Sampling for High-Throughput Proteomic Analysis and Cancer Biomarker Detection. Pathobiology 2024; 91:359-369. [PMID: 38815563 DOI: 10.1159/000539478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 04/15/2024] [Indexed: 06/01/2024] Open
Abstract
INTRODUCTION Fine-needle aspiration cytology (FNAC) specimens are widely utilized for the diagnosis and molecular testing of various cancers. We performed a comparative proteomic analysis of three different sample types, including breast FNAC, core needle biopsy (CNB), and surgical resection tissues. Our goal was to evaluate the suitability of FNAC for in-depth proteomic analysis and for identifying potential therapeutic biomarkers in breast cancer. METHODS High-throughput proteomic analysis was conducted on matched FNAC, CNB, and surgical resection tissue samples obtained from breast cancer patients. The protein identification, including currently established or promising therapeutic targets, was compared among the three different sample types. Gene Ontology (GO) enrichment analysis was also performed on all matched samples. RESULTS Compared to tissue samples, FNAC testing revealed a comparable number of proteins (7,179 in FNAC; 7,196 in CNB; and 7,190 in resection samples). Around 85% of proteins were mutually identified in all sample types. FNAC, along with CNB, showed a positive correlation between the number of enrolled tumor cells and identified proteins. In the GO analysis, the FNAC samples demonstrated a higher number of genes for each pathway and GO terms than tissue samples. CCND1, CDK6, HER2, and IGF1R were found in higher quantities in the FNAC compared to tissue samples, while TUBB2A was only detected in the former. CONCLUSION FNAC is suitable for high-throughput proteomic analysis, in addition to an emerging source that could be used to identify and quantify novel cancer biomarkers.
Collapse
Affiliation(s)
- Hye Eun Park
- Department of Pathology, Seoul National University Boramae Hospital, Seoul, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dohyun Han
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jae Seok Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Ilias P Nikas
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Hyeyoon Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sohyeon Yang
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyebin Lee
- Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Martín-García D, García-Aranda M, Redondo M. Biomarker Identification through Proteomics in Colorectal Cancer. Int J Mol Sci 2024; 25:2283. [PMID: 38396959 PMCID: PMC10888664 DOI: 10.3390/ijms25042283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Colorectal cancer (CRC) is a devastating disease that ranks third in diagnosis and as the second leading cause of cancer-related deaths. The early detection of CRC has been shown to be the most effective strategy to improve treatment outcomes and patient survival. Therefore, current lines of research focus on the development of reliable diagnostic tools. Targeted therapies, in combination with standard chemotherapy and immune checkpoint inhibitors, have emerged as promising treatment protocols in CRC. However, their effectiveness is linked to the molecular characteristics of each patient. The importance of discovering biomarkers that help predict response to therapies and assess prognosis is evident as they allow for a fundamental step towards personalized care and successful treatments. Among the ongoing efforts to identify them, mass spectrometry-based translational proteomics presents itself as a unique opportunity as it enables the discovery and application of protein biomarkers that may revolutionize the early detection and treatment of CRC. Our objective is to show the most recent studies focused on the identification of CRC-related protein markers, as well as to provide an updated view of advances in the field of proteomics and cancer.
Collapse
Affiliation(s)
- Desirée Martín-García
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Universitario Costa del Sol, 29602 Marbella, Spain
| | - Marilina García-Aranda
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Universitario Costa del Sol, 29602 Marbella, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Universitario Costa del Sol, 29602 Marbella, Spain
| |
Collapse
|
3
|
G Jagadeeshaprasad M, Zeng J, Zheng N. LC-MS bioanalysis of protein biomarkers and protein therapeutics in formalin-fixed paraffin-embedded tissue specimens. Bioanalysis 2024; 16:245-258. [PMID: 38226835 DOI: 10.4155/bio-2023-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) is a form of preservation and preparation for biopsy specimens. FFPE tissue specimens are readily available as part of oncology studies because they are often collected for disease diagnosis or confirmation. FFPE tissue specimens could be extremely useful for retrospective studies on protein biomarkers because the samples preserved in FFPE blocks could be stable for decades. However, LC-MS bioanalysis of FFPE tissues poses significant challenges. In this Perspective, we review the benefits and recent developments in LC-MS approach for targeted protein biomarker and protein therapeutic analysis using FFPE tissues and their clinical and translational applications. We believe that LC-MS bioanalysis of protein biomarkers in FFPE tissue specimens represents a great potential for its clinical applications.
Collapse
Affiliation(s)
| | - Jianing Zeng
- Department of Protein Sciences & Mass Spectrometry, Translational Medicine, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Naiyu Zheng
- Department of Protein Sciences & Mass Spectrometry, Translational Medicine, Bristol Myers Squibb, Princeton, NJ 08543, USA
| |
Collapse
|
4
|
Michaud SA, Pětrošová H, Sinclair NJ, Kinnear AL, Jackson AM, McGuire JC, Hardie DB, Bhowmick P, Ganguly M, Flenniken AM, Nutter LMJ, McKerlie C, Smith D, Mohammed Y, Schibli D, Sickmann A, Borchers CH. Multiple reaction monitoring assays for large-scale quantitation of proteins from 20 mouse organs and tissues. Commun Biol 2024; 7:6. [PMID: 38168632 PMCID: PMC10762018 DOI: 10.1038/s42003-023-05687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Mouse is the mammalian model of choice to study human health and disease due to its size, ease of breeding and the natural occurrence of conditions mimicking human pathology. Here we design and validate multiple reaction monitoring mass spectrometry (MRM-MS) assays for quantitation of 2118 unique proteins in 20 murine tissues and organs. We provide open access to technical aspects of these assays to enable their implementation in other laboratories, and demonstrate their suitability for proteomic profiling in mice by measuring normal protein abundances in tissues from three mouse strains: C57BL/6NCrl, NOD/SCID, and BALB/cAnNCrl. Sex- and strain-specific differences in protein abundances are identified and described, and the measured values are freely accessible via our MouseQuaPro database: http://mousequapro.proteincentre.com . Together, this large library of quantitative MRM-MS assays established in mice and the measured baseline protein abundances represent an important resource for research involving mouse models.
Collapse
Affiliation(s)
- Sarah A Michaud
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada.
| | - Helena Pětrošová
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Nicholas J Sinclair
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Andrea L Kinnear
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Angela M Jackson
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Jamie C McGuire
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Darryl B Hardie
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Pallab Bhowmick
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Milan Ganguly
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Ann M Flenniken
- The Center for Phenogenomics, Toronto, ON, Canada
- Sinai Health Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Lauryl M J Nutter
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Derek Smith
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Yassene Mohammed
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, 44139, Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - David Schibli
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, 44139, Germany
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, QC, Canada.
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Phipps WS, Kilgore MR, Kennedy JJ, Whiteaker JR, Hoofnagle AN, Paulovich AG. Clinical Proteomics for Solid Organ Tissues. Mol Cell Proteomics 2023; 22:100648. [PMID: 37730181 PMCID: PMC10692389 DOI: 10.1016/j.mcpro.2023.100648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
The evaluation of biopsied solid organ tissue has long relied on visual examination using a microscope. Immunohistochemistry is critical in this process, labeling and detecting cell lineage markers and therapeutic targets. However, while the practice of immunohistochemistry has reshaped diagnostic pathology and facilitated improvements in cancer treatment, it has also been subject to pervasive challenges with respect to standardization and reproducibility. Efforts are ongoing to improve immunohistochemistry, but for some applications, the benefit of such initiatives could be impeded by its reliance on monospecific antibody-protein reagents and limited multiplexing capacity. This perspective surveys the relevant challenges facing traditional immunohistochemistry and describes how mass spectrometry, particularly liquid chromatography-tandem mass spectrometry, could help alleviate problems. In particular, targeted mass spectrometry assays could facilitate measurements of individual proteins or analyte panels, using internal standards for more robust quantification and improved interlaboratory reproducibility. Meanwhile, untargeted mass spectrometry, showcased to date clinically in the form of amyloid typing, is inherently multiplexed, facilitating the detection and crude quantification of 100s to 1000s of proteins in a single analysis. Further, data-independent acquisition has yet to be applied in clinical practice, but offers particular strengths that could appeal to clinical users. Finally, we discuss the guidance that is needed to facilitate broader utilization in clinical environments and achieve standardization.
Collapse
Affiliation(s)
- William S Phipps
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mark R Kilgore
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
6
|
Zhang Y, Li N, Xu Y, Liu X, Ma Y, Huang Z, Luo H, Hou C, Huo D. A novel electrochemical biosensor based on AMNFs@ZIF-67 nano composite material for ultrasensitive detection of HER2. Bioelectrochemistry 2023; 150:108362. [PMID: 36608370 DOI: 10.1016/j.bioelechem.2022.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Antimonene (AMNFs) is a new kind of sp2-bonded honeycomb lattice two-dimensional material with strong rod-rail coupling, stability and hydrophilicity. Compared with graphene, antimonene has better sensitivity in DNA molecular sensing. We developed a suitable biosensor-Cd2+-aptamer@AMNFs@ZIF-67 nanocomposite for HER2 biomarker detection. Two-dimensional antimonene can be grown on the surface of ZIF-67 to enhance stability and biocompatibility. The aptamer chain can also be adsorbed on the surface of antimonene, and the complexes of the aptamer and the marker can be detached analytically after targeting the biomarker. The detection limit (LOD) was 4.853 fg/mL within 60 min, the detection range was 0-1000 pg/mL, and the LOD was lower than the existing HER2 aptamer biosensors. The results show that the biosensor has certain applicability and potential, and is expected to be a powerful tool for breast cancer diagnosis in the future.
Collapse
Affiliation(s)
- Ya Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Ning Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Ying Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Xiaofang Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu, 610000, PR China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China
| | - Changjun Hou
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
7
|
Li C, Xiao J, Wu S, Liu L, Zeng X, Zhao Q, Zhang Z. Clinical application of serum-based proteomics technology in human tumor research. Anal Biochem 2023; 663:115031. [PMID: 36580994 DOI: 10.1016/j.ab.2022.115031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
The rapid development of proteomics technology in the past decades has led to further human understanding of tumor research, and in some ways, the technology plays a very important supporting role in the early detection of tumors. Human serum has been shown to contain a variety of proteins closely related to life activities, and the dynamic change in proteins can often reflect the physiological and pathological conditions of the body. Serum has the advantage of easy extraction, so the application of proteomics technology in serum has become a hot spot and frontier area for the study of malignant tumors. However, there are still many difficulties in the standardized use of proteomic technologies, which inevitably limit the clinical application of proteomic technologies due to the heterogeneity of human proteins leading to incomplete whole proteome populations, in addition to most serum protein markers being now not highly specific in aiding the early detection of tumors. Nevertheless, further development of proteomics technologies will greatly increase our understanding of tumor biology and help discover more new tumor biomarkers with specificity that will enable medical technology.
Collapse
Affiliation(s)
- Chen Li
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Juan Xiao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Shihua Wu
- Department of Pathology, The Second Hospital of Shaoyang College, Hunan, Shaoyang, 422000, Hunan Province, China
| | - Lu Liu
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Xuemei Zeng
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang, 421001, China
| | - Qiang Zhao
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China.
| | - Zhiwei Zhang
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China; Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang, 421001, China.
| |
Collapse
|
8
|
Thorsen ASF, Riber LPS, Rasmussen LM, Overgaard M. A targeted multiplex mass spectrometry method for quantitation of abundant matrix and cellular proteins in formalin-fixed paraffin embedded arterial tissue. J Proteomics 2023; 272:104775. [PMID: 36414230 DOI: 10.1016/j.jprot.2022.104775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/30/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2022]
Abstract
Assessment of proteins in formalin-fixed paraffin-embedded (FFPE) tissue traditionally hinges on immunohistochemistry and immunoblotting. These methods are far from optimal for quantitative studies and not suitable for large-scale testing of multiple protein panels. In this study, we developed and optimised a novel targeted isotope dilution mass spectrometry (MS)-based method for FFPE samples, designed to quantitate 17 matrix and cytosolic proteins abundantly present in arterial tissue. Our new method was developed on FFPE human tissue samples of the internal thoracic artery obtained from coronary artery bypass graft (CABG) operations. The workflow has a limit of 60 samples per day. Assay precision improved by normalisation to both beta-actin and smooth muscle actin with inter-assay coefficients of variation (CV) ranging from 5.3% to 31.9%. To demonstrate clinical utility of the assay we analysed 40 FFPE artery specimens from two groups of patients with or without type 2 diabetes. We observed increased levels of collagen type IV α1 and α2 in patients with diabetes. The assay is scalable for larger cohorts and advantageous for pathophysiological studies in diabetes and the method is easily convertible to analysis of other proteins in FFPE artery samples. SIGNIFICANCE: This article presents a novel robust and precise targeted mass spectrometry assay for relative quantitation of a panel of abundant matrix and cellular arterial proteins in archived formalin-fixed paraffin-embedded arterial samples. We demonstrate its utility in pathophysiological studies of cardiovascular disease in diabetes.
Collapse
Affiliation(s)
- Anne-Sofie Faarvang Thorsen
- Department of Clinical Biochemistry and Center for Individualised Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Steno Diabetes Center Odense (SDCO), Odense, Denmark
| | - Lars Peter Schødt Riber
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry and Center for Individualised Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Martin Overgaard
- Department of Clinical Biochemistry and Center for Individualised Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
9
|
Punetha A, Kotiya D. Advancements in Oncoproteomics Technologies: Treading toward Translation into Clinical Practice. Proteomes 2023; 11:2. [PMID: 36648960 PMCID: PMC9844371 DOI: 10.3390/proteomes11010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Proteomics continues to forge significant strides in the discovery of essential biological processes, uncovering valuable information on the identity, global protein abundance, protein modifications, proteoform levels, and signal transduction pathways. Cancer is a complicated and heterogeneous disease, and the onset and progression involve multiple dysregulated proteoforms and their downstream signaling pathways. These are modulated by various factors such as molecular, genetic, tissue, cellular, ethnic/racial, socioeconomic status, environmental, and demographic differences that vary with time. The knowledge of cancer has improved the treatment and clinical management; however, the survival rates have not increased significantly, and cancer remains a major cause of mortality. Oncoproteomics studies help to develop and validate proteomics technologies for routine application in clinical laboratories for (1) diagnostic and prognostic categorization of cancer, (2) real-time monitoring of treatment, (3) assessing drug efficacy and toxicity, (4) therapeutic modulations based on the changes with prognosis and drug resistance, and (5) personalized medication. Investigation of tumor-specific proteomic profiles in conjunction with healthy controls provides crucial information in mechanistic studies on tumorigenesis, metastasis, and drug resistance. This review provides an overview of proteomics technologies that assist the discovery of novel drug targets, biomarkers for early detection, surveillance, prognosis, drug monitoring, and tailoring therapy to the cancer patient. The information gained from such technologies has drastically improved cancer research. We further provide exemplars from recent oncoproteomics applications in the discovery of biomarkers in various cancers, drug discovery, and clinical treatment. Overall, the future of oncoproteomics holds enormous potential for translating technologies from the bench to the bedside.
Collapse
Affiliation(s)
- Ankita Punetha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers University, 225 Warren St., Newark, NJ 07103, USA
| | - Deepak Kotiya
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 900 South Limestone St., Lexington, KY 40536, USA
| |
Collapse
|
10
|
Ackermann BL, Morrison RD, Hill S, Westfall MD, Butts BD, Soper MD, Fill JA, Schade AE, Liebler DC, Gruver AM. Targeted Quantitative Mass Spectrometry Analysis of Protein Biomarkers From Previously Stained Single Formalin-Fixed Paraffin-Embedded Tissue Sections. J Transl Med 2023; 103:100052. [PMID: 36870295 DOI: 10.1016/j.labinv.2022.100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Formalin-fixed, paraffin-embedded tissues represent a majority of all biopsy specimens commonly analyzed by histologic or immunohistochemical staining with adhesive coverslips attached. Mass spectrometry (MS) has recently been used to precisely quantify proteins in samples consisting of multiple unstained formalin-fixed, paraffin-embedded sections. Here, we report an MS method to analyze proteins from a single coverslipped 4-μm section previously stained with hematoxylin and eosin, Masson trichrome, or 3,3'-diaminobenzidine-based immunohistochemical staining. We analyzed serial unstained and stained sections from non-small cell lung cancer specimens for proteins of varying abundance (PD-L1, RB1, CD73, and HLA-DRA). Coverslips were removed by soaking in xylene, and after tryptic digestion, peptides were analyzed by targeted high-resolution liquid chromatography with tandem MS with stable isotope-labeled peptide standards. The low-abundance proteins RB1 and PD-L1 were quantified in 31 and 35 of 50 total sections analyzed, respectively, whereas higher abundance CD73 and HLA-DRA were quantified in 49 and 50 sections, respectively. The inclusion of targeted β-actin measurement enabled normalization in samples where residual stain interfered with bulk protein quantitation by colorimetric assay. Measurement coefficient of variations for 5 replicate slides (hematoxylin and eosin stained vs unstained) from each block ranged from 3% to 18% for PD-L1, from 1% to 36% for RB1, 3% to 21% for CD73, and 4% to 29% for HLA-DRA. Collectively, these results demonstrate that targeted MS protein quantification can add a valuable data layer to clinical tissue specimens after assessment for standard pathology end points.
Collapse
Affiliation(s)
| | | | | | | | - Brent D Butts
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Michael D Soper
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Jeff A Fill
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Andrew E Schade
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | | | - Aaron M Gruver
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana.
| |
Collapse
|
11
|
Vitanza NA, Wilson AL, Huang W, Seidel K, Brown C, Gustafson JA, Yokoyama JK, Johnson AJ, Baxter BA, Koning RW, Reid AN, Meechan M, Biery MC, Myers C, Rawlings-Rhea SD, Albert CM, Browd SR, Hauptman JS, Lee A, Ojemann JG, Berens ME, Dun MD, Foster JB, Crotty EE, Leary SE, Cole BL, Perez FA, Wright JN, Orentas RJ, Chour T, Newell EW, Whiteaker JR, Zhao L, Paulovich AG, Pinto N, Gust J, Gardner RA, Jensen MC, Park JR. Intraventricular B7-H3 CAR T Cells for Diffuse Intrinsic Pontine Glioma: Preliminary First-in-Human Bioactivity and Safety. Cancer Discov 2023; 13:114-131. [PMID: 36259971 PMCID: PMC9827115 DOI: 10.1158/2159-8290.cd-22-0750] [Citation(s) in RCA: 104] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/13/2022] [Accepted: 10/13/2022] [Indexed: 01/16/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) remains a fatal brainstem tumor demanding innovative therapies. As B7-H3 (CD276) is expressed on central nervous system (CNS) tumors, we designed B7-H3-specific chimeric antigen receptor (CAR) T cells, confirmed their preclinical efficacy, and opened BrainChild-03 (NCT04185038), a first-in-human phase I trial administering repeated locoregional B7-H3 CAR T cells to children with recurrent/refractory CNS tumors and DIPG. Here, we report the results of the first three evaluable patients with DIPG (including two who enrolled after progression), who received 40 infusions with no dose-limiting toxicities. One patient had sustained clinical and radiographic improvement through 12 months on study. Patients exhibited correlative evidence of local immune activation and persistent cerebrospinal fluid (CSF) B7-H3 CAR T cells. Targeted mass spectrometry of CSF biospecimens revealed modulation of B7-H3 and critical immune analytes (CD14, CD163, CSF-1, CXCL13, and VCAM-1). Our data suggest the feasibility of repeated intracranial B7-H3 CAR T-cell dosing and that intracranial delivery may induce local immune activation. SIGNIFICANCE This is the first report of repeatedly dosed intracranial B7-H3 CAR T cells for patients with DIPG and includes preliminary tolerability, the detection of CAR T cells in the CSF, CSF cytokine elevations supporting locoregional immune activation, and the feasibility of serial mass spectrometry from both serum and CSF. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Nicholas A. Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington.,Corresponding Author: Nicholas A. Vitanza, Seattle Children's Research Institute, M/S JMB-8, 1900 9th Avenue, Seattle, WA 98101. Phone: 206-884-4084; E-mail:
| | | | - Wenjun Huang
- Seattle Children's Therapeutics, Seattle, Washington
| | - Kristy Seidel
- Seattle Children's Therapeutics, Seattle, Washington
| | - Christopher Brown
- Seattle Children's Therapeutics, Seattle, Washington.,Therapeutic Cell Production Core, Seattle Children's Research Institute, Seattle, Washington
| | | | | | | | | | | | | | - Michael Meechan
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Matthew C. Biery
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Carrie Myers
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | | | - Catherine M. Albert
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Samuel R. Browd
- Division of Neurosurgery, Seattle Children's Hospital and Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Jason S. Hauptman
- Division of Neurosurgery, Seattle Children's Hospital and Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Amy Lee
- Division of Neurosurgery, Seattle Children's Hospital and Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Jeffrey G. Ojemann
- Division of Neurosurgery, Seattle Children's Hospital and Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Michael E. Berens
- Cancer and Cell Biology Division, The Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Matthew D. Dun
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, Callaghan, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Jessica B. Foster
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Erin E. Crotty
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Sarah E.S. Leary
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Bonnie L. Cole
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Francisco A. Perez
- Department of Radiology, Seattle Children's Hospital, Seattle, Washington
| | - Jason N. Wright
- Department of Radiology, Seattle Children's Hospital, Seattle, Washington
| | - Rimas J. Orentas
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Tony Chour
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Evan W. Newell
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Lei Zhao
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Amanda G. Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Navin Pinto
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Juliane Gust
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.,Division of Pediatric Neurology, Department of Neurology, University of Washington, Seattle, Washington
| | - Rebecca A. Gardner
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington.,Seattle Children's Therapeutics, Seattle, Washington
| | | | - Julie R. Park
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington.,Seattle Children's Therapeutics, Seattle, Washington
| |
Collapse
|
12
|
Obi EN, Tellock DA, Thomas GJ, Veenstra TD. Biomarker Analysis of Formalin-Fixed Paraffin-Embedded Clinical Tissues Using Proteomics. Biomolecules 2023; 13:biom13010096. [PMID: 36671481 PMCID: PMC9855471 DOI: 10.3390/biom13010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The relatively recent developments in mass spectrometry (MS) have provided novel opportunities for this technology to impact modern medicine. One of those opportunities is in biomarker discovery and diagnostics. Key developments in sample preparation have enabled a greater range of clinical samples to be characterized at a deeper level using MS. While most of these developments have focused on blood, tissues have also been an important resource. Fresh tissues, however, are difficult to obtain for research purposes and require significant resources for long-term storage. There are millions of archived formalin-fixed paraffin-embedded (FFPE) tissues within pathology departments worldwide representing every possible tissue type including tumors that are rare or very small. Owing to the chemical technique used to preserve FFPE tissues, they were considered intractable to many newer proteomics techniques and primarily only useful for immunohistochemistry. In the past couple of decades, however, researchers have been able to develop methods to extract proteins from FFPE tissues in a form making them analyzable using state-of-the-art technologies such as MS and protein arrays. This review will discuss the history of these developments and provide examples of how they are currently being used to identify biomarkers and diagnose diseases such as cancer.
Collapse
|
13
|
Prat A, Bardia A, Curigliano G, Hammond MEH, Loibl S, Tolaney SM, Viale G. An Overview of Clinical Development of Agents for Metastatic or Advanced Breast Cancer Without ERBB2 Amplification (HER2-Low). JAMA Oncol 2022; 8:2796438. [PMID: 36107417 DOI: 10.1001/jamaoncol.2022.4175] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Importance Erb-b2 receptor tyrosine kinase 2 (ERBB2; formerly HER2 [human epidermal growth factor receptor 2]) is an important prognostic and predictive factor in breast cancer. Anti-ERBB2 therapies have improved outcomes in ERBB2-positive breast cancer. However, based on current definitions, tumors with low ERBB2 expression are included in the ERBB2-negative subtype, and therefore, are ineligible for anti-ERBB2 therapies; patients with ERBB2-low (immunohistochemistry [IHC] 1 positive [+] or IHC 2+/in situ hybridization [ISH] negative [-]) tumors account for up to approximately 50% of breast cancer cases. Although the prognostic role of ERBB2-low needs to be defined, ERBB2 offers a potential therapeutic target in these patients. Observations Most breast cancer tumors have some ERBB2 expression, with ERBB2-low being more common in hormone receptor-positive than in hormone receptor-negative breast cancer. Although an early clinical study failed to demonstrate benefit of adjuvant trastuzumab for ERBB2-low disease, several novel anti-ERBB2 therapies have shown efficacy in ERBB2-low breast cancer, including the antibody-drug conjugate trastuzumab deruxtecan in a phase 3 trial, and trastuzumab duocarmazine and the bispecific antibody zenocutuzumab in early-phase studies. Although reports are conflicting, some differences in biology and patient outcomes have been found between ERBB2-low and ERBB2 IHC-0 breast cancer. Currently, no established guidelines exist for scoring ERBB2-low expression in breast cancer because the focus has been on binary classification as ERBB2-positive or ERBB2-negative. Additional interpretive cutoffs may be needed to select patients for treatment with effective agents in ERBB2-low breast cancer, along with standardized laboratory quality assurance programs to ensure consistent patient identification for eligibility for ERBB2-low targeting agents. Conclusions and Relevance This review suggests that ERBB2-low may be a distinct, clinically relevant breast cancer entity warranting reassessment of traditional diagnostic and therapeutic paradigms. Ongoing clinical trials and further investigations may provide optimized strategies for diagnosing and treating ERBB2-low breast cancer, including reproducible, consistent definitions to identify patients in this diagnostic category and demonstration of benefits of emerging therapies.
Collapse
Affiliation(s)
- Aleix Prat
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Aditya Bardia
- Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - M Elizabeth H Hammond
- Intermountain Healthcare and University of Utah School of Medicine, Salt Lake City, Utah
| | - Sibylle Loibl
- German Breast Group, Neu-Isenburg, Germany
- Center for Hematology and Oncology Bethanien, Frankfurt, Germany
| | - Sara M Tolaney
- Division of Breast Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Giuseppe Viale
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| |
Collapse
|
14
|
The addition of FAIMS increases targeted proteomics sensitivity from FFPE tumor biopsies. Sci Rep 2022; 12:13876. [PMID: 35974054 PMCID: PMC9381555 DOI: 10.1038/s41598-022-16358-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
Mass spectrometry-based targeted proteomics allows objective protein quantitation of clinical biomarkers from a single section of formalin-fixed, paraffin-embedded (FFPE) tumor tissue biopsies. We combined high-field asymmetric waveform ion mobility spectrometry (FAIMS) and parallel reaction monitoring (PRM) to increase assay sensitivity. The modular nature of the FAIMS source allowed direct comparison of the performance of FAIMS-PRM to PRM. Limits of quantitation were determined by spiking synthetic peptides into a human spleen matrix. In addition, 20 clinical samples were analyzed using FAIMS-PRM and the quantitation of HER2 was compared with that obtained with the Ventana immunohistochemistry assay. FAIMS-PRM improved the overall signal-to-noise ratio over that from PRM and increased assay sensitivity in FFPE tissue analysis for four (HER2, EGFR, cMET, and KRAS) of five proteins of clinical interest. FAIMS-PRM enabled sensitive quantitation of basal HER2 expression in breast cancer samples classified as HER2 negative by immunohistochemistry. Furthermore, we determined the degree of FAIMS-dependent background reduction and showed that this correlated with an improved lower limit of quantitation with FAIMS. FAIMS-PRM is anticipated to benefit clinical trials in which multiple biomarker questions must be addressed and the availability of tumor biopsy samples is limited.
Collapse
|
15
|
Zhang Y, Huang D, Lv N, Zhu G, Peng J, Chou T, Zhu Z, Wang J, Chen Y, Fang X, Qu J, Chen J, Liu S. Global Quantification of Glutathione S-Transferases in Human Serum Using LC-MS/MS Coupled with Affinity Enrichment. J Proteome Res 2022; 21:1311-1320. [PMID: 35353507 DOI: 10.1021/acs.jproteome.2c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The members of the glutathione S-transferase (GST) superfamily often exhibit functional overlap and can compensate for each other. Their concentrations in serum are considered as disease biomarkers. A global and quantitative evaluation of serum GSTs is therefore urgent, but there is a lack of efficient approaches due to technological limitations. GSH magnetic beads were examined for their affinity to enrich GSTs in serum, and the enriched GSTs were quantitatively targeted using a Q Exactive HF-X mass spectrometer in parallel reaction monitoring (PRM) mode. To optimize the quantification of GST peptides, sample types, trypsin digestion, and serum loading were carefully assessed; a biosynthetic method was employed to generate isotope-labeled GST peptides, and instrumental parameters were systematically optimized. A total of 134 clinical sera were collected for GST quantification from healthy donors and patients with four liver diseases. Using the new approach, GSTs in healthy sera were profiled: 14 GST peptides were quantified, and the abundance of five GST families was ranked GSTM > GSTP > GSTA > MGST1 > GSTT1, ranging from 0.1 to 4 pmol/L. Furthermore, combining the abundance of multiple GST peptides could effectively distinguish different types of liver diseases. Quantification of serum GSTs through targeted proteomics, therefore, has apparent clinical potential for disease diagnosis.
Collapse
Affiliation(s)
- Yuxing Zhang
- College of Life Sciences & Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.,BGI-Shenzhen, Shenzhen 518083, China.,Beijing Institute of Genomics & China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Deliang Huang
- Department of Liver Diseases, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518100, China
| | - Ning Lv
- Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen 518114, China
| | | | - Jinghan Peng
- Department of Liver Diseases, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518100, China
| | | | - Zhibin Zhu
- Department of Liver Diseases, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518100, China
| | - Ju Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yuanyuan Chen
- Department of Liver Diseases, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518100, China
| | - Xiangdong Fang
- College of Life Sciences & Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing Institute of Genomics & China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiuxin Qu
- Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen 518114, China
| | - Jun Chen
- Department of Liver Diseases, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518100, China
| | - Siqi Liu
- BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
16
|
Whiteaker JR, Lundeen RA, Zhao L, Schoenherr RM, Burian A, Huang D, Voytovich U, Wang T, Kennedy JJ, Ivey RG, Lin C, Murillo OD, Lorentzen TD, Thiagarajan M, Colantonio S, Caceres TW, Roberts RR, Knotts JG, Reading JJ, Kaczmarczyk JA, Richardson CW, Garcia-Buntley SS, Bocik W, Hewitt SM, Murray KE, Do N, Brophy M, Wilz SW, Yu H, Ajjarapu S, Boja E, Hiltke T, Rodriguez H, Paulovich AG. Targeted Mass Spectrometry Enables Multiplexed Quantification of Immunomodulatory Proteins in Clinical Biospecimens. Front Immunol 2021; 12:765898. [PMID: 34858420 PMCID: PMC8632241 DOI: 10.3389/fimmu.2021.765898] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapies are revolutionizing cancer care, producing durable responses and potentially cures in a subset of patients. However, response rates are low for most tumors, grade 3/4 toxicities are not uncommon, and our current understanding of tumor immunobiology is incomplete. While hundreds of immunomodulatory proteins in the tumor microenvironment shape the anti-tumor response, few of them can be reliably quantified. To address this need, we developed a multiplex panel of targeted proteomic assays targeting 52 peptides representing 46 proteins using peptide immunoaffinity enrichment coupled to multiple reaction monitoring-mass spectrometry. We validated the assays in tissue and plasma matrices, where performance figures of merit showed over 3 orders of dynamic range and median inter-day CVs of 5.2% (tissue) and 21% (plasma). A feasibility study in clinical biospecimens showed detection of 48/52 peptides in frozen tissue and 38/52 peptides in plasma. The assays are publicly available as a resource for the research community.
Collapse
Affiliation(s)
- Jeffrey R. Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Rachel A. Lundeen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lei Zhao
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Regine M. Schoenherr
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Aura Burian
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Dongqing Huang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Ulianna Voytovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Tao Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jacob J. Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Richard G. Ivey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Chenwei Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Oscar D. Murillo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Travis D. Lorentzen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | | | - Simona Colantonio
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Tessa W. Caceres
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Rhonda R. Roberts
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Joseph G. Knotts
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Joshua J. Reading
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jan A. Kaczmarczyk
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Christopher W. Richardson
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Sandra S. Garcia-Buntley
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - William Bocik
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Stephen M. Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| | - Karen E. Murray
- Veteran’s Administration (VA) Cooperative Studies Program, Veteran’s Administration (VA) Boston Healthcare System (151MAV), Jamaica Plain, MA, United States
| | - Nhan Do
- Veteran’s Administration (VA) Cooperative Studies Program, Veteran’s Administration (VA) Boston Healthcare System (151MAV), Jamaica Plain, MA, United States
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Mary Brophy
- Veteran’s Administration (VA) Cooperative Studies Program, Veteran’s Administration (VA) Boston Healthcare System (151MAV), Jamaica Plain, MA, United States
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Stephen W. Wilz
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
- Pathology and Laboratory Medicine Service, Program, Veteran’s Administration (VA) Boston Healthcare System, Jamaica Plain, MA, United States
| | - Hongbo Yu
- Pathology and Laboratory Medicine Service, Program, Veteran’s Administration (VA) Boston Healthcare System, Jamaica Plain, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
| | - Samuel Ajjarapu
- Veteran’s Administration (VA) Cooperative Studies Program, Veteran’s Administration (VA) Boston Healthcare System (151MAV), Jamaica Plain, MA, United States
- Department of Medicine, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, United States
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, United States
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, United States
| | - Amanda G. Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
17
|
Kennedy JJ, Whiteaker JR, Kennedy LC, Bosch DE, Lerch ML, Schoenherr RM, Zhao L, Lin C, Chowdhury S, Kilgore MR, Allison KH, Wang P, Hoofnagle AN, Baird GS, Paulovich AG. Quantification of Human Epidermal Growth Factor Receptor 2 by Immunopeptide Enrichment and Targeted Mass Spectrometry in Formalin-Fixed Paraffin-Embedded and Frozen Breast Cancer Tissues. Clin Chem 2021; 67:1008-1018. [PMID: 34136904 DOI: 10.1093/clinchem/hvab047] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/03/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Conventional HER2-targeting therapies improve outcomes for patients with HER2-positive breast cancer (BC), defined as tumors showing HER2 protein overexpression by immunohistochemistry and/or ERBB2 gene amplification determined by in situ hybridization (ISH). Emerging HER2-targeting compounds show benefit in some patients with neither HER2 protein overexpression nor ERBB2 gene amplification, creating a need for new assays to select HER2-low tumors for treatment with these compounds. We evaluated the analytical performance of a targeted mass spectrometry-based assay for quantifying HER2 protein in formalin-fixed paraffin-embedded (FFPE) and frozen BC biopsies. METHODS We used immunoaffinity-enrichment coupled to multiple reaction monitoring-mass spectrometry (immuno-MRM-MS) to quantify HER2 protein (as peptide GLQSLPTHDPSPLQR) in 96 frozen and 119 FFPE BC biopsies. We characterized linearity, lower limit of quantification (LLOQ), and intra- and inter-day variation of the assay in frozen and FFPE tissue matrices. We determined concordance between HER2 immuno-MRM-MS and predicate immunohistochemistry and ISH assays and examined the benefit of multiplexing the assay to include proteins expressed in tumor subcompartments (e.g., stroma, adipose, lymphocytes, epithelium) to account for tissue heterogeneity. RESULTS HER2 immuno-MRM-MS assay linearity was ≥103, assay coefficient of variation was 7.8% (FFPE) and 5.9% (frozen) for spiked-in analyte, and 7.7% (FFPE) and 7.9% (frozen) for endogenous measurements. Immuno-MRM-MS-based HER2 measurements strongly correlated with predicate assay HER2 determinations, and concordance was improved by normalizing to glyceraldehyde-3-phosphate dehydrogenase. HER2 was quantified above the LLOQ in all tumors. CONCLUSIONS Immuno-MRM-MS can be used to quantify HER2 in FFPE and frozen BC biopsies, even at low HER2 expression levels.
Collapse
Affiliation(s)
- Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Laura C Kennedy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dustin E Bosch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Melissa L Lerch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Regine M Schoenherr
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Lei Zhao
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - ChenWei Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark R Kilgore
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kimberly H Allison
- Department of Pathology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Geoffrey Stuart Baird
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
18
|
Su M, Zhang Z, Zhou L, Han C, Huang C, Nice EC. Proteomics, Personalized Medicine and Cancer. Cancers (Basel) 2021; 13:2512. [PMID: 34063807 PMCID: PMC8196570 DOI: 10.3390/cancers13112512] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
As of 2020 the human genome and proteome are both at >90% completion based on high stringency analyses. This has been largely achieved by major technological advances over the last 20 years and has enlarged our understanding of human health and disease, including cancer, and is supporting the current trend towards personalized/precision medicine. This is due to improved screening, novel therapeutic approaches and an increased understanding of underlying cancer biology. However, cancer is a complex, heterogeneous disease modulated by genetic, molecular, cellular, tissue, population, environmental and socioeconomic factors, which evolve with time. In spite of recent advances in treatment that have resulted in improved patient outcomes, prognosis is still poor for many patients with certain cancers (e.g., mesothelioma, pancreatic and brain cancer) with a high death rate associated with late diagnosis. In this review we overview key hallmarks of cancer (e.g., autophagy, the role of redox signaling), current unmet clinical needs, the requirement for sensitive and specific biomarkers for early detection, surveillance, prognosis and drug monitoring, the role of the microbiome and the goals of personalized/precision medicine, discussing how emerging omics technologies can further inform on these areas. Exemplars from recent onco-proteogenomic-related publications will be given. Finally, we will address future perspectives, not only from the standpoint of perceived advances in treatment, but also from the hurdles that have to be overcome.
Collapse
Affiliation(s)
- Miao Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Chao Han
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
19
|
Shin D, Rhee SJ, Lee J, Yeo I, Do M, Joo EJ, Jung HY, Roh S, Lee SH, Kim H, Bang M, Lee KY, Kwon JS, Ha K, Ahn YM, Kim Y. Quantitative Proteomic Approach for Discriminating Major Depressive Disorder and Bipolar Disorder by Multiple Reaction Monitoring-Mass Spectrometry. J Proteome Res 2021; 20:3188-3203. [PMID: 33960196 DOI: 10.1021/acs.jproteome.1c00058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because major depressive disorder (MDD) and bipolar disorder (BD) manifest with similar symptoms, misdiagnosis is a persistent issue, necessitating their differentiation through objective methods. This study was aimed to differentiate between these disorders using a targeted proteomic approach. Multiple reaction monitoring-mass spectrometry (MRM-MS) analysis was performed to quantify protein targets regarding the two disorders in plasma samples of 270 individuals (90 MDD, 90 BD, and 90 healthy controls (HCs)). In the training set (72 MDD and 72 BD), a generalizable model comprising nine proteins was developed. The model was evaluated in the test set (18 MDD and 18 BD). The model demonstrated a good performance (area under the curve (AUC) >0.8) in discriminating MDD from BD in the training (AUC = 0.84) and test sets (AUC = 0.81) and in distinguishing MDD from BD without current hypomanic/manic/mixed symptoms (90 MDD and 75 BD) (AUC = 0.83). Subsequently, the model demonstrated excellent performance for drug-free MDD versus BD (11 MDD and 10 BD) (AUC = 0.96) and good performance for MDD versus HC (AUC = 0.87) and BD versus HC (AUC = 0.86). Furthermore, the nine proteins were associated with neuro, oxidative/nitrosative stress, and immunity/inflammation-related biological functions. This proof-of-concept study introduces a potential model for distinguishing between the two disorders.
Collapse
Affiliation(s)
| | - Sang Jin Rhee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | | | | | | | - Eun-Jeong Joo
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea.,Department of Psychiatry, Nowon Eulji Medical Center, Eulji University, Seoul 01830, Republic of Korea
| | - Hee Yeon Jung
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul 07061, Republic of Korea.,Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, 101 Daehakro, Seoul 30380, Republic of Korea
| | - Sungwon Roh
- Department of Psychiatry, Hanyang University Hospital, Seoul 04763, Republic of Korea.,Department of Psychiatry, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Hyeyoung Kim
- Department of Psychiatry, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Kyu Young Lee
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea.,Department of Psychiatry, Nowon Eulji Medical Center, Eulji University, Seoul 01830, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea.,Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, 101 Daehakro, Seoul 30380, Republic of Korea
| | - Kyooseob Ha
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea.,Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, 101 Daehakro, Seoul 30380, Republic of Korea
| | - Yong Min Ahn
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea.,Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, 101 Daehakro, Seoul 30380, Republic of Korea
| | | |
Collapse
|