1
|
Smilkou S, Ntzifa A, Tserpeli V, Balgkouranidou I, Papatheodoridi A, Razis E, Linardou H, Papadimitriou C, Psyrri A, Zagouri F, Kakolyris S, Lianidou E. Detection rate for ESR1 mutations is higher in circulating-tumor-cell-derived genomic DNA than in paired plasma cell-free DNA samples as revealed by ddPCR. Mol Oncol 2025. [PMID: 39754401 DOI: 10.1002/1878-0261.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/21/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
Plasma cell-free DNA (cfDNA) analysis to track estrogen receptor 1 (ESR1) mutations is highly beneficial for the identification of tumor molecular dynamics and the improvement of personalized treatments for patients with metastatic breast cancer (MBC). Plasma-cfDNA is, up to now, the most frequent liquid biopsy analyte used to evaluate ESR1 mutational status. Circulating tumor cell (CTC) enumeration and molecular characterization analysis provides important clinical information in patients with MBC. In this study, we investigated whether analysis of CTCs and circulating tumor DNA (ctDNA) provide similar or complementary information for the analysis of ESR1 mutations. We analyzed both plasma-cfDNA (n = 90) and paired CTC-derived genomic DNA (gDNA; n = 42) from 90 MBC patients for seven ESR1 mutations. Eight out of 90 (8.9%) plasma-cfDNA samples tested using the ddPLEX Mutation Detection Assay (Bio-Rad, Hercules, CA, USA), were found positive for one ESR1 mutation, whereas 11/42 (26.2%) CTC-derived gDNA samples were found positive for at least one ESR1 mutation. Direct comparison of paired samples (n = 42) revealed that the ESR1 mutation rate was higher in CTC-derived gDNA (11/42, 26.2%) than in plasma-cfDNA (6/42, 14.3%) samples. Our results, using this highly sensitive ddPLEX assay, reveal a higher percentage of mutations in CTC-derived gDNAs than in paired ctDNA in patients with MBC. CTC-derived gDNA analysis should be further evaluated as an important and complementary tool to ctDNA for identifying patients with ESR1 mutations and for guiding individualized therapy.
Collapse
Affiliation(s)
- Stavroula Smilkou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Greece
| | - Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Greece
| | - Victoria Tserpeli
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Greece
| | - Ioanna Balgkouranidou
- Department of Medical Oncology, University General Hospital of Alexandroupolis, Greece
| | - Alkistis Papatheodoridi
- Department of Clinical Therapeutics, School of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Christos Papadimitriou
- Oncology Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens, Greece
| | - Amanda Psyrri
- Department of Medical Oncology, Second Department of Internal Medicine, "Attikon" University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, School of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stylianos Kakolyris
- Department of Medical Oncology, University General Hospital of Alexandroupolis, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Greece
| |
Collapse
|
2
|
Zhao B, Ye DM, Li S, Zhang Y, Zheng Y, Kang J, Wang L, Zhao N, Ahmad B, Sun J, Yu T, Wu H. FMNL3 Promotes Migration and Invasion of Breast Cancer Cells via Inhibiting Rad23B-Induced Ubiquitination of Twist1. J Cell Physiol 2025; 240:e31481. [PMID: 39582466 DOI: 10.1002/jcp.31481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Breast cancer is a heterogeneous malignant tumor, and its high metastasis rate depends on the abnormal activation of cell dynamics. Formin-like protein 3 (FMNL3) plays an important role in the formation of various cytoskeletons that participate in cell movement. The objective of this study was to explore the function of FMNL3 in breast cancer progression and endeavor to reveal the molecular mechanism of this phenomenon. We found that FMNL3 was abnormally highly expressed in aggressive breast cancer cells and tissues, and it significantly inhibited E-cadherin expression. FMNL3 could specifically interact with Twist1 rather than other epithelial-mesenchymal transition transcription factors (EMT-TFs). We also found that FMNL3 enhanced the repressive effect of Twist1 on CDH1 transcription in breast cancer cells. Further mechanism studies showed that FMNL3 suppressed the ubiquitin degradation of Twist1 by inhibiting the interaction between Twist1 and Rad23B, the ubiquitin transfer protein of Twist1. In vitro functional experiments, it was confirmed that FMNL3 promoted the migration and invasion of breast cancer cells by regulating Twist1. Furthermore, Twist1 could directly bind to the fmnl3 promoter to facilitate FMNL3 transcription. To conclude, this study indicated that FMNL3 acted as a pro-metastasis factor in breast cancer by promoting Twist1 stability to suppress CDH1 transcription.
Collapse
Affiliation(s)
- Binggong Zhao
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Dong-Man Ye
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Shujing Li
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Yong Zhang
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Yang Zheng
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Jie Kang
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Luhong Wang
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Nannan Zhao
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Bashir Ahmad
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Jing Sun
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Huijian Wu
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
3
|
Smilkou S, Kaklamanis L, Balgouranidou I, Linardou H, Papatheodoridi AM, Zagouri F, Razis E, Kakolyris S, Psyrri A, Papadimitriou C, Markou A, Lianidou E. Direct comparison of an ultrasensitive real-time PCR assay with droplet digital PCR for the detection of PIK3CA hotspot mutations in primary tumors, plasma cell-free DNA and paired CTC-derived gDNAs. Front Oncol 2024; 14:1435559. [PMID: 39711963 PMCID: PMC11659196 DOI: 10.3389/fonc.2024.1435559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/28/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Detection of PIK3CA mutations in primary tumors and liquid biopsy samples is of increasing importance for treatment decisions and therapy resistance in many types of cancer. The aim of the present study was to directly compare the efficacy of a relatively inexpensive ultrasensitive real-time PCR with the well-established and highly sensitive technology of ddPCR for the detection of the three most common hotspot mutations of PIK3CA, in exons 9 and 20, that are all of clinical importance in various types of cancer. Patients and methods We analyzed 42 gDNAs from primary tumors (FFPEs), 29 plasma-cfDNA samples, and 29 paired CTC-derived gDNAs, all from patients with ER+ metastatic breast cancer, and plasma from 10 healthy donors. The same blood draws were used for CTC isolation using EpCAM beads for positive immunomagnetic enrichment. All FFPEs and plasma-cfDNA samples were analyzed in parallel for PIK3CA mutations by ultrasensitive real-time PCR assay and droplet digital PCR. Results In gDNAs from FFPEs, using ultrasensitive real-time PCR, the p.E545K mutation was detected in 22/42(52.4%), and the p.E542K and p.H1047R mutations were detected in 14/42(33.3%) and 16/42(38.1%), respectively. Using ddPCR, the p.E545K mutation was detected in 22/42(52.4%), p.E542K in 17/42(40.5%), and p.H1047R in 19/42(45.2%) samples, revealing a concordance between the two methodologies of 81%, 78.6% and 78.6% for each mutation respectively. In plasma-cfDNA, using ultrasensitive real-time PCR, the p.E545K mutation was detected in 11/29(38%) and both p.E542K and p.H1047R mutations in 2/29(6.9%).In the same plasma-cfDNA samples using ddPCR, p.E545K was detected in 1/29(3.5%), p.E542K in 2/29(6.9%), and p.H1047R in 3/29(10.5%) samples, revealing a concordance of 65.5%,100% and 93.1% for each mutation respectively. In paired CTC-derived gDNAs p.E545K was detected in 11/29(38%), p.E542K in 3/29(10.3%), and p.H1047R in 7/29(24.1%) samples. Conclusions This low-cost, high-throughput and ultrasensitive real-time PCR assay provides accurate and specific detection of PIK3CA hotspot mutations in liquid biopsy samples and gives similar results to ddPCR. This assay can be performed in labs where digital PCR instrumentation is not available. In CTC-derived gDNA and paired plasma-cfDNA, PIK3CA mutations detected were not identical, revealing that CTC and plasma-cfDNA give complementary information.
Collapse
Affiliation(s)
- Stavroula Smilkou
- Analysis of Circulating Tumor Cells, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Loukas Kaklamanis
- Department of Pathology, Onassis Cardiac Surgery Center, Athens, Greece
| | - Ioanna Balgouranidou
- Department of Medical Oncology, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | | | - Alkistis Maria Papatheodoridi
- Department of Clinical Therapeutics, School of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, School of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Razis
- Third Department of Medical Oncology, Hygeia Hospital, Athens, Greece
| | - Stylianos Kakolyris
- Department of Medical Oncology, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Amanda Psyrri
- Section of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Attikon University Hospital, Athens, Greece
| | - Christos Papadimitriou
- Oncology Unit, 2nd Department of Surgery, School of Medicine, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina Markou
- Analysis of Circulating Tumor Cells, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| |
Collapse
|
4
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Roumeliotou A, Strati A, Chamchougia F, Xagara A, Tserpeli V, Smilkou S, Lagopodi E, Christopoulou A, Kontopodis E, Drositis I, Androulakis N, Georgoulias V, Koinis F, Kotsakis A, Lianidou E, Kallergi G. Comprehensive Analysis of CXCR4, JUNB, and PD-L1 Expression in Circulating Tumor Cells (CTCs) from Prostate Cancer Patients. Cells 2024; 13:782. [PMID: 38727318 PMCID: PMC11083423 DOI: 10.3390/cells13090782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
CXCR4, JUNB and PD-L1 are implicated in cancer progression and metastasis. The current study investigated these biomarkers in CTCs isolated from metastatic prostate cancer (mPCa) patients at the RNA and protein levels. CTCs were isolated from 48 mPCa patients using the Ficoll density gradient and ISET system (17 out of 48). The (CK/PD-L1/CD45) and (CK/CXCR4/JUNB) phenotypes were identified using two triple immunofluorescence stainings followed by VyCAP platform analysis. Molecular analysis was conducted with an EpCAM-dependent method for 25/48 patients. CK-8, CK-18, CK-19, JUNB, CXCR4, PD-L1, and B2M (reference gene) were analyzed with RT-qPCR. The (CK+/PD-L1+/CD45-) and the (CK+/CXCR4+/JUNB+) were the most frequent phenotypes (61.1% and 62.5%, respectively). Furthermore, the (CK+/CXCR4+/JUNB-) phenotype was correlated with poorer progression-free survival [(PFS), HR: 2.5, p = 0.049], while the (CK+/PD-L1+/CD45-) phenotype was linked to decreased overall survival [(OS), HR: 262.7, p = 0.007]. Molecular analysis revealed that 76.0% of the samples were positive for CK-8,18, and 19, while 28.0% were positive for JUNB, 44.0% for CXCR4, and 48.0% for PD-L1. Conclusively, CXCR4, JUNB, and PD-L1 were highly expressed in CTCs from mPCa patients. The CXCR4 protein expression was associated with poorer PFS, while PD-L1 was correlated with decreased OS, providing new biomarkers with potential clinical relevance.
Collapse
Affiliation(s)
- Argyro Roumeliotou
- Laboratory of Biochemistry/Metastatic Signaling, Department of Biology, University of Patras, 26504 Patras, Greece; (A.R.); (F.C.)
| | - Areti Strati
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | - Foteini Chamchougia
- Laboratory of Biochemistry/Metastatic Signaling, Department of Biology, University of Patras, 26504 Patras, Greece; (A.R.); (F.C.)
| | - Anastasia Xagara
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (A.X.); (F.K.); (A.K.)
- Hellenic Oncology Research Group, 11526 Athens, Greece;
| | - Victoria Tserpeli
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | - Stavroula Smilkou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | - Elina Lagopodi
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | | | - Emmanouil Kontopodis
- Department of Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion, Greece; (E.K.); (I.D.); (N.A.)
| | - Ioannis Drositis
- Department of Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion, Greece; (E.K.); (I.D.); (N.A.)
| | - Nikolaos Androulakis
- Department of Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion, Greece; (E.K.); (I.D.); (N.A.)
| | - Vassilis Georgoulias
- Hellenic Oncology Research Group, 11526 Athens, Greece;
- First Department of Medical Oncology, Metropolitan General Hospital, 15562 Athens, Greece
| | - Filippos Koinis
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (A.X.); (F.K.); (A.K.)
- Hellenic Oncology Research Group, 11526 Athens, Greece;
| | - Athanasios Kotsakis
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (A.X.); (F.K.); (A.K.)
- Hellenic Oncology Research Group, 11526 Athens, Greece;
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | - Galatea Kallergi
- Laboratory of Biochemistry/Metastatic Signaling, Department of Biology, University of Patras, 26504 Patras, Greece; (A.R.); (F.C.)
| |
Collapse
|
6
|
Ntzifa A, Lianidou E. Pre-analytical conditions and implementation of quality control steps in liquid biopsy analysis. Crit Rev Clin Lab Sci 2023; 60:573-594. [PMID: 37518938 DOI: 10.1080/10408363.2023.2230290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
Over the last decade, great advancements have been made in the field of liquid biopsy through extensive research and the development of new technologies that facilitate the use of liquid biopsy for cancer patients. This is shown by the numerous liquid biopsy tests that gained clearance by the US Food and Drug Administration (FDA) in recent years. Liquid biopsy has significantly altered cancer treatment by providing clinicians with powerful and immediate information about therapeutic decisions. However, the clinical integration of liquid biopsy is still challenging and there are many critical factors to consider prior to its implementation into routine clinical practice. Lack of standardization due to technical challenges and the definition of the clinical utility of specific assays further complicates the establishment of Standard Operating Procedures (SOPs) in liquid biopsy. Harmonization of laboratories to established guidelines is of major importance to overcome inter-lab variabilities observed. Quality control assessment in diagnostic laboratories that offer liquid biopsy testing will ensure that clinicians can base their therapeutic decisions on robust results. The regular participation of laboratories in external quality assessment schemes for liquid biopsy testing aims to promptly pinpoint deficiencies and efficiently educate laboratories to improve their quality of services. Accreditation of liquid biopsy diagnostic laboratories based on the ISO15189 standard in Europe or by CLIA/CAP accreditation procedures in the US is the best way to achieve the adaptation of liquid biopsy into the clinical setting by assuring reliable results for the clinicians and their cancer patients. Nowadays, various organizations from academia, industry, and regulatory agencies collaborate to set a framework that will include all procedures from the pre-analytical phase and the analytical process to the final interpretation of results. In this review, we underline several challenges in the analysis of circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) concerning standardization of protocols, quality control assessment, harmonization of laboratories, and compliance to specific guidelines that need to be thoroughly considered before liquid biopsy enters the clinic.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Chen Y, Qi Y, Wang K. Neoadjuvant chemotherapy for breast cancer: an evaluation of its efficacy and research progress. Front Oncol 2023; 13:1169010. [PMID: 37854685 PMCID: PMC10579937 DOI: 10.3389/fonc.2023.1169010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) for breast cancer is widely used in the clinical setting to improve the chance of surgery, breast conservation and quality of life for patients with advanced breast cancer. A more accurate efficacy evaluation system is important for the decision of surgery timing and chemotherapy regimen implementation. However, current methods, encompassing imaging techniques such as ultrasound and MRI, along with non-imaging approaches like pathological evaluations, often fall short in accurately depicting the therapeutic effects of NAC. Imaging techniques are subjective and only reflect macroscopic morphological changes, while pathological evaluation is the gold standard for efficacy assessment but has the disadvantage of delayed results. In an effort to identify assessment methods that align more closely with real-world clinical demands, this paper provides an in-depth exploration of the principles and clinical applications of various assessment approaches in the neoadjuvant chemotherapy process.
Collapse
Affiliation(s)
- Yushi Chen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan, China
| | - Yu Qi
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Muchlińska A, Wenta R, Ścińska W, Markiewicz A, Suchodolska G, Senkus E, Żaczek AJ, Bednarz-Knoll N. Improved Characterization of Circulating Tumor Cells and Cancer-Associated Fibroblasts in One-Tube Assay in Breast Cancer Patients Using Imaging Flow Cytometry. Cancers (Basel) 2023; 15:4169. [PMID: 37627197 PMCID: PMC10453498 DOI: 10.3390/cancers15164169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Circulating tumor cells (CTCs) and circulating cancer-associated fibroblasts (cCAFs) have been individually considered strong indicators of cancer progression. However, technical limitations have prevented their simultaneous analysis in the context of CTC phenotypes different from epithelial. This study aimed to analyze CTCs and cCAFs simultaneously in the peripheral blood of 210 breast cancer patients using DAPI/pan-keratin (K)/vimentin (V)/alpha-SMA/CD29/CD45/CD31 immunofluorescent staining and novel technology-imaging flow cytometry (imFC). Single and clustered CTCs of different sizes and phenotypes (i.e., epithelial phenotype K+/V- and epithelial-mesenchymal transition (EMT)-related CTCs, such as K+/V+, K-/V+, and K-/V-) were detected in 27.6% of the samples and correlated with metastases. EMT-related CTCs interacted more frequently with normal cells and tended to occur in patients with tumors progressing during therapy, while cCAFs coincided with CTCs (mainly K+/V- and K-/V-) in seven (3.3%) patients and seemed to correlate with the presence of metastases, particularly visceral ones. This study emphasizes the advantages of imFC in the field of liquid biopsy and highlights the importance of multimarker-based analysis of different subpopulations and phenotypes of cancer progression-related cells, i.e., CTCs and cCAFs. The co-detection of CTCs and cCAFs might improve the identification of patients at higher risk of progression and their monitoring during therapy.
Collapse
Affiliation(s)
- Anna Muchlińska
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Robert Wenta
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Wiktoria Ścińska
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Grażyna Suchodolska
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Elżbieta Senkus
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Anna J. Żaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Natalia Bednarz-Knoll
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-211 Gdańsk, Poland
| |
Collapse
|
9
|
Kravitz CJ, Yan Q, Nguyen DX. Epigenetic markers and therapeutic targets for metastasis. Cancer Metastasis Rev 2023; 42:427-443. [PMID: 37286865 PMCID: PMC10595046 DOI: 10.1007/s10555-023-10109-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
The last few years have seen an increasing number of discoveries which collectively demonstrate that histone and DNA modifying enzyme modulate different stages of metastasis. Moreover, epigenomic alterations can now be measured at multiple scales of analysis and are detectable in human tumors or liquid biopsies. Malignant cell clones with a proclivity for relapse in certain organs may arise in the primary tumor as a consequence of epigenomic alterations which cause a loss in lineage integrity. These alterations may occur due to genetic aberrations acquired during tumor progression or concomitant to therapeutic response. Moreover, evolution of the stroma can also alter the epigenome of cancer cells. In this review, we highlight current knowledge with a particular emphasis on leveraging chromatin and DNA modifying mechanisms as biomarkers of disseminated disease and as therapeutic targets to treat metastatic cancers.
Collapse
Affiliation(s)
- Carolyn J Kravitz
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT, 06520, USA.
| | - Don X Nguyen
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Internal Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
10
|
Strati A, Markou A, Kyriakopoulou E, Lianidou E. Detection and Molecular Characterization of Circulating Tumour Cells: Challenges for the Clinical Setting. Cancers (Basel) 2023; 15:cancers15072185. [PMID: 37046848 PMCID: PMC10092977 DOI: 10.3390/cancers15072185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Over the last decade, liquid biopsy has gained much attention as a powerful tool in personalized medicine since it enables monitoring cancer evolution and follow-up of cancer patients in real time. Through minimally invasive procedures, liquid biopsy provides important information through the analysis of circulating tumour cells (CTCs) and circulating tumour-derived material, such as circulating tumour DNA (ctDNA), circulating miRNAs (cfmiRNAs) and extracellular vehicles (EVs). CTC analysis has already had an important impact on the prognosis, detection of minimal residual disease (MRD), treatment selection and monitoring of cancer patients. Numerous clinical trials nowadays include a liquid biopsy arm. CTC analysis is now an exponentially expanding field in almost all types of solid cancers. Functional studies, mainly based on CTC-derived cell-lines and CTC-derived explants (CDx), provide important insights into the metastatic process. The purpose of this review is to summarize the latest findings on the clinical significance of CTCs for the management of cancer patients, covering the last four years. This review focuses on providing a comprehensive overview of CTC analysis in breast, prostate and non-small-cell lung cancer. The unique potential of CTC single-cell analysis for understanding metastasis biology, and the importance of quality control and standardization of methodologies used in this field, is also discussed.
Collapse
Affiliation(s)
- Areti Strati
- Analysis of Circulating Tumour Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Athina Markou
- Analysis of Circulating Tumour Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | - Evi Lianidou
- Analysis of Circulating Tumour Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
11
|
Li J, Dong C, Gan H, Gu X, Zhang J, Zhu Y, Xiong J, Song C, Wang L. Nondestructive separation/enrichment and rolling circle amplification-powered sensitive SERS enumeration of circulating tumor cells via aptamer recognition. Biosens Bioelectron 2023; 231:115273. [PMID: 37054599 DOI: 10.1016/j.bios.2023.115273] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Nondestructive separation/enrichment and reliable detection of extremely rare circulating tumor cells (CTCs) in peripheral blood are of considerable importance in tumor precision diagnosis and treatment, yet this remains a big challenge. Herein, a novel strategy for nondestructive separation/enrichment and ultra-sensitive surface-enhanced Raman scattering (SERS)-based enumeration of CTCs is proposed via aptamer recognition and rolling circle amplification (RCA). In this work the magnetic beads modified with "Aptamer (Apt)-Primer" (AP) probes were utilized to specifically capture CTCs, and then after magnetic separation/enrichment, the RCA-powered SERS counting and benzonase nuclease cleavage-assisted nondestructive release of CTCs were realized, respectively. The AP was assembled by hybridizing the EpCAM-specific aptamer with a primer, and the optimal AP contains 4 mismatched bases. The RCA enhanced SERS signal nearly 4.5-fold, and the SERS strategy has good specificity, uniformity and reproducibility. The proposed SERS detection possesses a good linear relationship with the concentration of MCF-7 cells spiked in PBS with the limit of detection (LOD) of 2 cells/mL, which shows good potential practicality for detecting CTCs in blood with recoveries ranging from 100.56% to 116.78%. Besides, the released CTCs remained good cellular activity with the normal proliferation after re-culture for 48 h and normal growth for at least three generations. The proposed strategy of nondestructive separation/enrichment and SERS-based sensitive enumeration is promising for reliable analysis of EpCAM-positive CTCs in blood, which is expected to provide a powerful tool for analysis of extremely rare circulating tumor cells in complex peripheral blood for liquid biopsy.
Collapse
|
12
|
Signatures of Breast Cancer Progression in the Blood: What Could Be Learned from Circulating Tumor Cell Transcriptomes. Cancers (Basel) 2022; 14:cancers14225668. [PMID: 36428760 PMCID: PMC9688726 DOI: 10.3390/cancers14225668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Gene expression profiling has revolutionized our understanding of cancer biology, showing an unprecedented ability to impact patient management especially in breast cancer. The vast majority of breast cancer gene expression signatures derive from the analysis of the tumor bulk, an experimental approach that limits the possibility to dissect breast cancer heterogeneity thoroughly and might miss the message hidden in biologically and clinically relevant cell populations. During disease progression or upon selective pressures, cancer cells undergo continuous transcriptional changes, which inevitably affect tumor heterogeneity, response to therapy and tendency to disseminate. Therefore, metastasis-associated signatures and transcriptome-wide gene expression measurement at single-cell resolution hold great promise for the future of breast cancer clinical care. Seen from this perspective, transcriptomics of circulating tumor cells (CTCs) represent an attractive opportunity to bridge the knowledge gap and develop novel biomarkers. This review summarizes the current state-of-the-science on CTC gene expression analysis in breast cancer, addresses technical and clinical issues related to the application of CTC-derived signatures, and discusses potential research directions.
Collapse
|
13
|
Liu Z, Kong Y, Dang Q, Weng S, Zheng Y, Ren Y, Lv J, Li N, Han Y, Han X. Liquid Biopsy in Pre-Metastatic Niche: From Molecular Mechanism to Clinical Application. Front Immunol 2022; 13:958360. [PMID: 35911705 PMCID: PMC9334814 DOI: 10.3389/fimmu.2022.958360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Metastatic dissemination represents a hallmark of cancer that is responsible for the high mortality rate. Recently, emerging evidence demonstrates a time-series event—pre-metastatic niche (PMN) has a profound impact on cancer metastasis. Exosomes, cell-free DNA (cfDNA), circulating tumor cells (CTC), and tumor microenvironment components, as critical components in PMN establishment, could be monitored by liquid biopsy. Intensive studies based on the molecular profile of liquid biopsy have made it a viable alternative to tissue biopsy. Meanwhile, the complex molecular mechanism and intercellular interaction are great challenges for applying liquid biopsy in clinical practice. This article reviews the cellular and molecular components involved in the establishment of the PMN and the promotion of metastasis, as well as the mechanisms of their interactions. Better knowledge of the characteristics of the PMN may facilitate the application of liquid biopsy for clinical diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Ying Kong
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youyang Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinxiang Lv
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yilin Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
- *Correspondence: Xinwei Han,
| |
Collapse
|
14
|
Keup C, Kimmig R, Kasimir-Bauer S. Combinatorial Power of cfDNA, CTCs and EVs in Oncology. Diagnostics (Basel) 2022; 12:870. [PMID: 35453918 PMCID: PMC9031112 DOI: 10.3390/diagnostics12040870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
Liquid biopsy is a promising technique for clinical management of oncological patients. The diversity of analytes circulating in the blood useable for liquid biopsy testing is enormous. Circulating tumor cells (CTCs), cell-free DNA (cfDNA) and extracellular vesicles (EVs), as well as blood cells and other soluble components in the plasma, were shown as liquid biopsy analytes. A few studies directly comparing two liquid biopsy analytes showed a benefit of one analyte over the other, while most authors concluded the benefit of the additional analyte. Only three years ago, the first studies to examine the value of a characterization of more than two liquid biopsy analytes from the same sample were conducted. We attempt to reflect on the recent development of multimodal liquid biopsy testing in this review. Although the analytes and clinical purposes of the published multimodal studies differed significantly, the additive value of the analytes was concluded in almost all projects. Thus, the blood components, as liquid biopsy reservoirs, are complementary rather than competitive, and orthogonal data sets were even shown to harbor synergistic effects. The unmistakable potential of multimodal liquid biopsy testing, however, is dampened by its clinical utility, which is yet to be proven, the lack of methodical standardization and insufficiently mature reimbursement, logistics and data handling.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|
15
|
Froelich MF, Capoluongo E, Kovacs Z, Patton SJ, Lianidou ES, Haselmann V. The value proposition of integrative diagnostics for (early) detection of cancer. On behalf of the EFLM interdisciplinary Task and Finish Group "CNAPS/CTC for early detection of cancer". Clin Chem Lab Med 2022; 60:821-829. [PMID: 35218176 DOI: 10.1515/cclm-2022-0129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
Disruptive imaging and laboratory technologies can improve clinical decision processes and outcomes in oncology. However, certain obstacles must be overcome before these technologies can be fully implemented as part of the standard for care. An integrative diagnostic approach represents a unique opportunity to unleash the full diagnostic potential and paves the way towards personalized cancer diagnostics. To meet this demand, an interdisciplinary Task Force of the EFLM was initiated as a consequence of an EFLM/ESR during the CELME 2019 meeting in order to evaluate the clinical value of CNAPS/CTC (circulating nucleic acids in plasma and serum/circulating tumor cells) in early detection of cancer. Here, an overview of current disruptive techniques, their clinical implications and potential value of an integrative diagnostic approach is provided. Furthermore, requirements such as the establishment of diagnostic tumor boards, development of adequate software solutions and a change of mindset towards a new generation of diagnosticians providing actionable health information are presented. This development has the potential to elevate the position and clinical recognition of diagnosticians.
Collapse
Affiliation(s)
- Matthias F Froelich
- Department of Radiology and Nuclear Medicine, University Medicine Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Ettore Capoluongo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, Napoli, Italy
| | - Zsolt Kovacs
- Department of Pathology, Clinical County Emergency Hospital, Targu-Mures, Romania
| | | | - Evi S Lianidou
- Department of Chemistry, Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, University of Athens, Athens, Greece
| | - Verena Haselmann
- Medical Faculty Mannheim of the University of Heidelberg, Institute of Clinical Chemistry, University Hospital Mannheim, Mannheim, Germany
| |
Collapse
|