1
|
Li S, Yuan T, Yuan J, Zhu B, Chen D. Opportunities and challenges of using circulating tumor DNA to predict lung cancer immunotherapy efficacy. J Cancer Res Clin Oncol 2024; 150:501. [PMID: 39545998 PMCID: PMC11568038 DOI: 10.1007/s00432-024-06030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Immune checkpoint inhibitors (ICIs), particularly anti-programmed death 1 (PD-1)/ programmed death ligand 1 (PD-L1) antibodies, have led to significant progress in lung cancer treatment. However, only a minority of patients have responses to these therapies. Detecting peripheral blood of circulating tumor DNA (ctDNA) allows minimally invasive diagnosis, characterization, and monitoring of lung cancer. ctDNA has potential to be a prognostic biomarker and a predictor of the response to ICI therapy since it can indicate the genomic status and tumor burden. Recent studies on lung cancer have shown that pretreatment ctDNA analysis can detect residual proliferative disease in the adjuvant immunotherapy setting and evaluate tumor burden in patients with metastatic disease. Early ctDNA dynamics can not only predict the clinical outcome of ICI therapy but also help distinguish between pseudoprogression and real progression. Furthermore, in addition to quantitative assessment, ctDNA can also detect genetic predictors of response to ICI therapy. However, barriers still exist in the application of ctDNA analysis in clinical lung cancer treatment. The predictive value of ctDNA in lung cancer immunotherapy requires further identification and resolution of these challenges. This review aims to summarize the existing data of ctDNA analysis in patients receiving immunotherapy for lung cancer, understand the limitations of clinical treatment, and discuss future research directions.
Collapse
Affiliation(s)
- Shanshan Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Ting Yuan
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jing Yuan
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Degao Chen
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
2
|
Tan K, Chen L, Cao D, Xiao W, Lv Q, Zou L. Two-layer cascaded catalytic hairpin assemblies based on locked nucleic acids for one-step and highly sensitive ctDNA detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3515-3521. [PMID: 38774994 DOI: 10.1039/d4ay00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Enzyme-free signal amplification of catalytic hairpin assembly (CHA) has enabled sensitive detection of circulating tumor DNA (ctDNA) in early clinical diagnosis. Conventional CHA strategies are restrained by the limited amplification efficiency of the single-stage system, and signal leakage from "breathing" influence and nuclease degradation. Here, we introduced two-layer cascaded locked nucleic acid (LNA)-assisted CHA circuits with the intelligent incorporation of LNA in the hairpins and reporter for the highly sensitive one-step detection of scarce ctDNA. The target-triggered upstream CHA reaction continuously generates hybrid products to catalyze the downstream CHA reaction for transducing the primary sensing event, and the released target and the produced hybrid product trigger the next catalytic reaction round at the same time and finally cascade to amplify the target ctDNA fluorescence output signal. Meanwhile, the stronger binding affinity of the LNA-DNA duplex endows the two-layer LNA-assisted CHA system with thermodynamic stability and nuclease resistance, and thus our designed system exhibits an excellent detection performance for target ctDNA in the range from 2 pM to 5 nM with a low detection limit of 0.6 pM. Significantly, the two-layer LNA-assisted CHA circuits have been successfully implemented for the feasible analysis of clinical samples. This two-layer cascaded LNA-assisted CHA strategy provides a promising high sensitivity tool for one-step detection of scarce ctDNA from complex clinical samples and would facilitate the reconfiguration of DNA circuit-based DNA nanotechnology for the precise analysis of other biomarkers in clinical research fields.
Collapse
Affiliation(s)
- Kaiyue Tan
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510316, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510316, China
| | - Longsheng Chen
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510316, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510316, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Point-of-Care Testing (POCT), Guangdong Second Provincial General Hospital, Guangzhou, 510500, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Point-of-Care Testing (POCT), Guangdong Second Provincial General Hospital, Guangzhou, 510500, China
| | - Qian Lv
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510316, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510316, China
| | - Lili Zou
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510316, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510316, China
| |
Collapse
|
3
|
Tan K, Chen L, Cao D, Xiao W, Lv Q, Zou L. A rapid and highly sensitive ctDNA detection platform based on locked nucleic acid-assisted catalytic hairpin assembly circuits. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4548-4554. [PMID: 37642516 DOI: 10.1039/d3ay01150j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
As a promising biomarker of liquid biopsy, circulating tumor DNA (ctDNA) plays a paramount role in the early diagnosis of noninvasive cancer. The isothermal catalytic hairpin assembly (CHA) strategy has great potential for in vitro detection of ctDNA in low abundance. However, a traditional CHA strategy for ctDNA detection at the earlier stages of cancer remains extremely challenging, as annoying signal leakage from the 'breathing' phenomenon and nuclease degradation occur. Herein, we report a locked nucleic acid (LNA)-incorporated CHA circuit for the rapid and sensitive detection of target ctDNA. The target ctDNA intelligently catalyzed LNA-modified hairpins H1 and H2via a range of toehold-mediated strand displacement processes, leading to the continuous generation of an H1-H2 hybrid for the amplified fluorescence signal. In comparison to conventional CHA circuits, the stronger binding affinity of LNA-DNA bases greatly inhibited the breathing effect, which endowed it with greater thermodynamic stability and resistance to nuclease degradation in the LNA-assisted CHA system, thus achieving a high signal gain. The developed CHA circuit demonstrated excellent performance during target ctDNA detection, with a linear range from 10 pM to 5 nM, and its target detection limit was reached at 3.3 pM. Moreover, this LNA-assisted CHA system was successfully applied to the analysis of target ctDNA in clinical serum samples of breast cancer patients. This updated CHA system provides a general and robust platform for the sensitive detection of biomarkers of interest, thus facilitating the accurate identification and diagnosis of cancers.
Collapse
Affiliation(s)
- Kaiyue Tan
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences & National Engineering Research Center for Healthcare Devices, Guangzhou 510632, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510632, China
| | - Longsheng Chen
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences & National Engineering Research Center for Healthcare Devices, Guangzhou 510632, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510632, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Point-of-care Testing (POCT), Guangdong Second Provincial General Hospital, Guangzhou 510500, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Point-of-care Testing (POCT), Guangdong Second Provincial General Hospital, Guangzhou 510500, China
| | - Qian Lv
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences & National Engineering Research Center for Healthcare Devices, Guangzhou 510632, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510632, China
| | - Lili Zou
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences & National Engineering Research Center for Healthcare Devices, Guangzhou 510632, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510632, China
| |
Collapse
|
4
|
Varlı M, Ngo MT, Kim SM, Taş İ, Zhou R, Gamage CD, Pulat S, Park SY, Sesal NC, Hur JS, Kang KB, Kim H. A fatty acid-rich fraction of an endolichenic fungus Phoma sp. suppresses immune checkpoint markers via AhR/ARNT and ESR1. Heliyon 2023; 9:e19185. [PMID: 37662726 PMCID: PMC10474435 DOI: 10.1016/j.heliyon.2023.e19185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Lung cancer has the highest mortality rates worldwide. The disease is caused by environmental pollutants, smoking, and many other factors. Recent treatments include immunotherapeutics, which have shown some success; however, the search for new therapeutics is ongoing. Endolichenic fungi produce a whale of a lot of secondary metabolites, the therapeutic effects of which are being evaluated. Here, we used a crude extract and subfractions of the endolichenic fungus, Phoma sp. (EL006848), isolated from the Pseudevernia furfuracea. It was identified the fatty acid components, palmitic acid, stearic acid, and oleic acid, exist in subfractions E1 and E2. In addition, EL006848 and its fatty acids fractions suppressed benzo[a]pyrene (an AhR ligand)- induced expression of PD-L1 to inhibit the activity of multiple immune checkpoints. E2 subfraction, which had a higher fatty acid content than E1, downregulated expression of AhR/ARNT and several human transcription factors related to ESR1. Moreover, E2 showed a strong inhibitory effect on STAT3 expression and mild effect on NF-kB activity. These results suggest that fatty acids extracted from an endolichenic fungus can exert strong immunotherapeutic effects.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Men Thi Ngo
- College of Pharmacy, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Seoul 04310, Republic of Korea
| | - Seong-Min Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - İsa Taş
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Rui Zhou
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Chathurika D.B. Gamage
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Sultan Pulat
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - So-Yeon Park
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Nüzhet Cenk Sesal
- Faculty of Arts and Sciences, Department of Biology, Marmara University, Istanbul, Turkey
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Seoul 04310, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| |
Collapse
|
5
|
Bertoli E, De Carlo E, Basile D, Zara D, Stanzione B, Schiappacassi M, Del Conte A, Spina M, Bearz A. Liquid Biopsy in NSCLC: An Investigation with Multiple Clinical Implications. Int J Mol Sci 2023; 24:10803. [PMID: 37445976 DOI: 10.3390/ijms241310803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Tissue biopsy is essential for NSCLC diagnosis and treatment management. Over the past decades, liquid biopsy has proven to be a powerful tool in clinical oncology, isolating tumor-derived entities from the blood. Liquid biopsy permits several advantages over tissue biopsy: it is non-invasive, and it should provide a better view of tumor heterogeneity, gene alterations, and clonal evolution. Consequentially, liquid biopsy has gained attention as a cancer biomarker tool, with growing clinical applications in NSCLC. In the era of precision medicine based on molecular typing, non-invasive genotyping methods became increasingly important due to the great number of oncogene drivers and the small tissue specimen often available. In our work, we comprehensively reviewed established and emerging applications of liquid biopsy in NSCLC. We made an excursus on laboratory analysis methods and the applications of liquid biopsy either in early or metastatic NSCLC disease settings. We deeply reviewed current data and future perspectives regarding screening, minimal residual disease, micrometastasis detection, and their implication in adjuvant and neoadjuvant therapy management. Moreover, we reviewed liquid biopsy diagnostic utility in the absence of tissue biopsy and its role in monitoring treatment response and emerging resistance in metastatic NSCLC treated with target therapy and immuno-therapy.
Collapse
Affiliation(s)
- Elisa Bertoli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Elisa De Carlo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Debora Basile
- Department of Medical Oncology, San Giovanni Di Dio Hospital, 88900 Crotone, Italy
| | - Diego Zara
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Brigida Stanzione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Monica Schiappacassi
- Molecular Oncology Unit, (OMMPPT) Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alessandro Del Conte
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
6
|
Souza VGP, Forder A, Brockley LJ, Pewarchuk ME, Telkar N, de Araújo RP, Trejo J, Benard K, Seneda AL, Minutentag IW, Erkan M, Stewart GL, Hasimoto EN, Garnis C, Lam WL, Martinez VD, Reis PP. Liquid Biopsy in Lung Cancer: Biomarkers for the Management of Recurrence and Metastasis. Int J Mol Sci 2023; 24:ijms24108894. [PMID: 37240238 DOI: 10.3390/ijms24108894] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Liquid biopsies have emerged as a promising tool for the detection of metastases as well as local and regional recurrence in lung cancer. Liquid biopsy tests involve analyzing a patient's blood, urine, or other body fluids for the detection of biomarkers, including circulating tumor cells or tumor-derived DNA/RNA that have been shed into the bloodstream. Studies have shown that liquid biopsies can detect lung cancer metastases with high accuracy and sensitivity, even before they are visible on imaging scans. Such tests are valuable for early intervention and personalized treatment, aiming to improve patient outcomes. Liquid biopsies are also minimally invasive compared to traditional tissue biopsies, which require the removal of a sample of the tumor for further analysis. This makes liquid biopsies a more convenient and less risky option for patients, particularly those who are not good candidates for invasive procedures due to other medical conditions. While liquid biopsies for lung cancer metastases and relapse are still being developed and validated, they hold great promise for improving the detection and treatment of this deadly disease. Herein, we summarize available and novel approaches to liquid biopsy tests for lung cancer metastases and recurrence detection and describe their applications in clinical practice.
Collapse
Affiliation(s)
- Vanessa G P Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Liam J Brockley
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | | | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Rachel Paes de Araújo
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Jessica Trejo
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Katya Benard
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Ana Laura Seneda
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Iael W Minutentag
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Melis Erkan
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Greg L Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Erica N Hasimoto
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Cathie Garnis
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Wan L Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Victor D Martinez
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Patricia P Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| |
Collapse
|
7
|
Farina B, Guerra ADR, Bermejo-Peláez D, Miras CP, Peral AA, Madueño GG, Jaime JC, Vilalta-Lacarra A, Pérez JR, Muñoz-Barrutia A, Peces-Barba GR, Maceiras LS, Gil-Bazo I, Gómez MD, Ledesma-Carbayo MJ. Integration of longitudinal deep-radiomics and clinical data improves the prediction of durable benefits to anti-PD-1/PD-L1 immunotherapy in advanced NSCLC patients. J Transl Med 2023; 21:174. [PMID: 36872371 PMCID: PMC9985838 DOI: 10.1186/s12967-023-04004-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Identifying predictive non-invasive biomarkers of immunotherapy response is crucial to avoid premature treatment interruptions or ineffective prolongation. Our aim was to develop a non-invasive biomarker for predicting immunotherapy clinical durable benefit, based on the integration of radiomics and clinical data monitored through early anti-PD-1/PD-L1 monoclonal antibodies treatment in patients with advanced non-small cell lung cancer (NSCLC). METHODS In this study, 264 patients with pathologically confirmed stage IV NSCLC treated with immunotherapy were retrospectively collected from two institutions. The cohort was randomly divided into a training (n = 221) and an independent test set (n = 43), ensuring the balanced availability of baseline and follow-up data for each patient. Clinical data corresponding to the start of treatment was retrieved from electronic patient records, and blood test variables after the first and third cycles of immunotherapy were also collected. Additionally, traditional radiomics and deep-radiomics features were extracted from the primary tumors of the computed tomography (CT) scans before treatment and during patient follow-up. Random Forest was used to implementing baseline and longitudinal models using clinical and radiomics data separately, and then an ensemble model was built integrating both sources of information. RESULTS The integration of longitudinal clinical and deep-radiomics data significantly improved clinical durable benefit prediction at 6 and 9 months after treatment in the independent test set, achieving an area under the receiver operating characteristic curve of 0.824 (95% CI: [0.658,0.953]) and 0.753 (95% CI: [0.549,0.931]). The Kaplan-Meier survival analysis showed that, for both endpoints, the signatures significantly stratified high- and low-risk patients (p-value< 0.05) and were significantly correlated with progression-free survival (PFS6 model: C-index 0.723, p-value = 0.004; PFS9 model: C-index 0.685, p-value = 0.030) and overall survival (PFS6 models: C-index 0.768, p-value = 0.002; PFS9 model: C-index 0.736, p-value = 0.023). CONCLUSIONS Integrating multidimensional and longitudinal data improved clinical durable benefit prediction to immunotherapy treatment of advanced non-small cell lung cancer patients. The selection of effective treatment and the appropriate evaluation of clinical benefit are important for better managing cancer patients with prolonged survival and preserving quality of life.
Collapse
Affiliation(s)
- Benito Farina
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| | - Ana Delia Ramos Guerra
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - David Bermejo-Peláez
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | | | | | | | | | | | | | - Arrate Muñoz-Barrutia
- Bioengineering Department, Universidad Carlos III de Madrid, 28911, Leganés, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, 28007, Madrid, Spain
| | - German R Peces-Barba
- Hospital Universitario Fundación Jiménez Díaz, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Pamplona, Spain
| | - Luis Seijo Maceiras
- Clínica Universidad de Navarra, 28027, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Pamplona, Spain
| | - Ignacio Gil-Bazo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 31008, Pamplona, Spain.,Department of Oncology, Clínica Universidad de Navarra, 31008, Pamplona, Spain.,Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008, Pamplona, Spain.,Navarra Institute for Health Research, IdiSNA, 31008, Pamplona, Spain.,Department of Oncology, Fundación Instituto Valenciano de Oncología (FIVO), 46009, Valencia, Spain
| | | | - María J Ledesma-Carbayo
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
8
|
Jiang S, Liu Y, Xu Y, Sang X, Lu X. Research on liquid biopsy for cancer: A bibliometric analysis. Heliyon 2023; 9:e14145. [PMID: 36915518 PMCID: PMC10006671 DOI: 10.1016/j.heliyon.2023.e14145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND In recent years, liquid biopsy has shown great potential for improving cancer diagnosis and treatment. This study aimed to explore the trends and prospects in liquid biopsy for cancer from a bibliometric perspective. METHODS Reviews and articles on liquid biopsy and cancer were collected from the Web of Science Core Collection (WoSCC). Key bibliometric characteristics were analyzed using CiteSpace. Co-occurrence analysis of keywords and co-citation analysis of references was performed. RESULTS A total of 6331 publications from 11 years of scientific research were retrieved. Ninety-five countries and 7004 institutions in liquid biopsy and cancer contributed. The United States (US) and China published the most articles. The institution with the most published articles was the University of Texas MD Anderson Cancer Center. The most published journals were Cancer and Frontiers in Oncology. "Bettegowda (2014)" was the most cited reference with the highest burst strength in the last decade. Cluster analysis revealed that the recent hot topics were "circulating tumor cells," "cancer," and "exosomes." CONCLUSIONS This bibliometric analysis maps the basic knowledge structure of the field of liquid biopsy for cancer. The field is entering a phase of rapid development. The hot spots identified in this study deserve further investigation.
Collapse
Affiliation(s)
- Shitao Jiang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaoge Liu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiyao Xu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Lu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Thomas QD, Colard-Thomas J, Delansay D, Leenhardt F, Solassol J, Vendrell JA, Quantin X. Case report: Liquid biopsy, the sooner the better? Front Oncol 2022; 12:1089108. [PMID: 36591516 PMCID: PMC9797958 DOI: 10.3389/fonc.2022.1089108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
The detection of circulating tumor DNA (ctDNA) by liquid biopsy is taking an increasing role in thoracic oncology management due to its predictive and prognostic value. For non-small cell lung cancer, it allows the detection of molecular mutations that can be targeted with tyrosine kinase inhibitors (TKIs). We report the case of a patient with life-threatening hepatocellular failure and thrombotic microangiopathy at the diagnosis. A salvage chemotherapy was attempted, resulting in a major worsening of her general condition and the decision to stop all anti-cancer treatment. The liquid biopsy performed at the time of immunohistochemical non-small cell lung cancer diagnosis revealed within 7 days the presence of an epidermal growth factor receptor (EGFR) DEL19 activating mutation with 736,400 DNA copies/ml of plasma. It was finally decided to attempt a treatment with osimertinib (third generation anti-EGFR TKI) despite the fact that the patient was in a pre-mortem situation. Osimertinib led to a significant and prompt improvement of her performance status after only one week of treatment. The tumor tissue genotyping performed by next-generation sequencing (NGS) was available 10 days after starting TKI treatment. It revealed in addition to the EGFR DEL19 mutation, a JAK3 and EGFR amplification, highlighting the complex interactions between EGFR and the JAK/STAT signaling pathways. The first CT-scan performed after 2 months under osimertinib showed a tumor morphologic partial response. The biological assay showed a major decrease in the EGFR DEL19 mutation ctDNA levels (40.0 copies/ml). The liquid biopsy allowed an early implementation of a targeted therapy without which the patient would probably be dead. Testing for ctDNA should be discussed routinely at diagnosis in addition to tumor tissue genotyping for patient with metastatic non-small cell lung cancer that raise the clinical profile of oncogenic addiction.
Collapse
Affiliation(s)
- Quentin Dominique Thomas
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), Montpellier, France,Oncogenic Pathways in Lung Cancer, Montpellier Cancer Research Institute (IRCM), University of Montpellier (UM), Montpellier, France,*Correspondence: Quentin Dominique Thomas,
| | - Julien Colard-Thomas
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), Montpellier, France
| | - Delphine Delansay
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), Montpellier, France
| | - Fanny Leenhardt
- Oncogenic Pathways in Lung Cancer, Montpellier Cancer Research Institute (IRCM), University of Montpellier (UM), Montpellier, France,Pharmacy department, Montpellier Cancer institute (ICM), Montpellier, France
| | - Jerome Solassol
- Department of Pathology, Montpellier University Hospital (CHU) Montpellier, Arnaud de Villeneuve Hospital, Montpellier, France
| | - Julie A. Vendrell
- Department of Pathology, Montpellier University Hospital (CHU) Montpellier, Arnaud de Villeneuve Hospital, Montpellier, France
| | - Xavier Quantin
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), Montpellier, France,Oncogenic Pathways in Lung Cancer, Montpellier Cancer Research Institute (IRCM), University of Montpellier (UM), Montpellier, France
| |
Collapse
|
10
|
Pantel K, Alix-Panabières C. Crucial roles of circulating tumor cells in the metastatic cascade and tumor immune escape: biology and clinical translation. J Immunother Cancer 2022; 10:jitc-2022-005615. [PMID: 36517082 PMCID: PMC9756199 DOI: 10.1136/jitc-2022-005615] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer-related deaths are mainly caused by metastatic spread of tumor cells from the primary lesion to distant sites via the blood circulation. Understanding the mechanisms of blood-borne tumor cell dissemination by the detection and molecular characterization of circulating tumor cells (CTCs) in the blood of patients with cancer has opened a new avenue in cancer research. Recent technical advances have enabled a comprehensive analysis of the CTCs at the genome, transcriptome and protein level as well as first functional studies using patient-derived CTC cell lines. In this review, we describe and discuss how research on CTCs has yielded important insights into the biology of cancer metastasis and the response of patients with cancer to therapies directed against metastatic cells. Future investigations will show whether CTCs leaving their primary site are more vulnerable to attacks by immune effector cells and whether cancer cell dissemination might be the 'Achilles heel' of metastatic progression. Here, we focus on the lessons learned from CTC research on the biology of cancer metastasis in patients with particular emphasis on the interactions of CTCs with the immune system. Moreover, we describe and discuss briefly the potential and challenges for implementing CTCs into clinical decision-making including detection of minimal residual disease, monitoring efficacies of systemic therapies and identification of therapeutic targets and resistance mechanisms.
Collapse
Affiliation(s)
- Klaus Pantel
- Institute of Tumour Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- European Liquid Biopsy Society (ELBS), Hamburg, Germany,Laboratory Detection of Rare Human Circulating Cells (LCCRH), University Hospital Centre Montpellier, Montpellier, France,CREEC, MIVEGEC, Montpellier, France
| |
Collapse
|