1
|
Regan J, DeJarnette C, Reitler P, Gihaz S, Srivastava A, Ge W, Tucker KM, Peters TL, Meibohm B, Ben Mamoun C, Fortwendel JR, Hevener KE, Palmer GE. Pantothenate kinase is an effective target for antifungal therapy. Cell Chem Biol 2025; 32:710-721.e6. [PMID: 40378822 DOI: 10.1016/j.chembiol.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 02/11/2025] [Accepted: 04/14/2025] [Indexed: 05/19/2025]
Abstract
Pantothenate kinase (PanK) catalyzes the first step in the conversion of pantothenate to coenzyme A (CoA), an essential cofactor in all living organisms. The findings of this study demonstrate that PanK is essential for the viability and virulence of two of the most medically significant fungi-the pathogenic yeast Candida albicans, and the infectious mold Aspergillus fumigatus-within the mammalian host. Biochemical, biophysical as well as chemical-genetic approaches were applied to identify 3,4-methylenedioxy-β-nitrostyrene (MNS) as a broad-spectrum antifungal that directly engages and inhibits PanK to block CoA production. Importantly, MNS is inactive against a mammalian PanK and demonstrates in vivo antifungal efficacy a mouse model of disseminated C. albicans infection. Thus, MNS has provided a valuable chemical probe to establish the validity of targeting PanK with small molecule inhibitors as a strategy to develop efficacious antifungal therapeutics.
Collapse
Affiliation(s)
- Jessica Regan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Christian DeJarnette
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Parker Reitler
- Department of Molecular Immunology and Biochemistry, College of Graduate Health Sciences, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Shalev Gihaz
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ashish Srivastava
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Wenbo Ge
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Katie M Tucker
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Tracy L Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Kirk E Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA.
| | - Glen E Palmer
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA.
| |
Collapse
|
2
|
Liu Z, Ma X, Zeng X, Li Z, Liu R, Luo R, Wang W, Tahir MS, Wang C, Gu Y. Identification of the ADH gene family in Trichosporon asahii and the role of TaADH_like in pathogenicity and fluconazole resistance. BMC Genomics 2025; 26:352. [PMID: 40197151 PMCID: PMC11978018 DOI: 10.1186/s12864-025-11546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
Alcohol dehydrogenase has been studied in regulation of fungal growth and development, stress response and pathogenesis, but its function in T. asahii remains unexplored. In this study, we analyzed the ADH gene family in T. asahii for the first time, identifying six ADH genes and containing conserved ADH_N and ADH_Zinc_N domains. We constructed an overexpression strain of the most significantly differentially expressed gene TaADH_like and compared its phenotypes with those of the wild-type strain, focusing on colony morphology, biofilm biomass, stress response, drug resistance, and pathogenicity. The results showed that TaADH_like overexpression reduced sensitivity to hypoxic conditions, altered the hyphae-to-yeast transition, and led to slower growth, decreased colonization ability, reduced tissue damage, and lower lethality. Increased osmotic stress sensitivity and the involvement of the HOG MAPK pathway in the hyphae-to-yeast conversion contributed to the reduced colonization capacity of T. asahii. Furthermore, the overexpression of TaADH_like promoted biofilm formation and led to a slight enhancement in fluconazole resistance in T. asahii. This study is the first to elucidate the function of the alcohol dehydrogenase gene in T. asahii, providing a foundation for future genetic research on this pathogen.
Collapse
Affiliation(s)
- Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiangwen Zeng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiguo Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ruiguo Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rongyan Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weichen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Salman Tahir
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Chengdu, 611800, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
De Paiva Macedo J, Watanabe AAS, Machado ABF, Diniz CG, Da Silva VL, Dias VC. Unveiling antifungal resistance and biocide tolerance in clinical isolates of Candida spp. Future Microbiol 2025; 20:457-468. [PMID: 40119655 PMCID: PMC11980505 DOI: 10.1080/17460913.2025.2480924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/14/2025] [Indexed: 03/24/2025] Open
Abstract
AIMS Candidiasis, caused by Candida spp. is an opportunistic infection with significant healthcare risks, worsened by trends in antifungal resistance. This study aimed to evaluate the antifungal susceptibility profile, investigate resistance mechanisms, assess efflux pump activity, and examine biocide tolerance in clinical Candida isolates. METHODS A total of 100 Candida isolates from hospitalized and outpatient individuals were analyzed for their antifungal susceptibility profile, molecular resistance mechanisms through PCR, efflux pump activity with the Cartwheel method, and biocide tolerance (sodium hypochlorite, hydrogen peroxide, and benzalkonium chloride), which was assessed by disk diffusion. RESULTS A high prevalence of resistance (87%) to at least one antifungal was observed, with 47.12% of isolates showing simultaneous multiple resistance to three azole derivatives. The highest antifungal agent resistance was observed for fluconazole (n = 70) and the highest susceptibility for amphotericin B (n = 1). The most common mutation was in the ERG11 gene (n = 38/43.7%). Efflux pump activity was detected in both C. albicans and non-albicans Candida species. Biocide testing revealed a higher tolerance for sodium hypochlorite, with an inhibition zone ranging from 18.25 (4.40) to 34.0 (4.00). CONCLUSIONS This study highlights significant antifungal resistance in Candida spp. particularly to azoles, stressing the need for improved infection control and novel therapeutic strategies.
Collapse
Affiliation(s)
- Jamile De Paiva Macedo
- Department of Biological Sciences, Federal University of Juiz de Fora – UFJF Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Aripuana Aranha Sakurada Watanabe
- Department of Parasitology, Microbiology, and Immunology, Federal University of Juiz de Fora – UFJF Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Alessandra Barbosa Ferreira Machado
- Department of Parasitology, Microbiology, and Immunology, Federal University of Juiz de Fora – UFJF Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Cláudio Galuppo Diniz
- Department of Parasitology, Microbiology, and Immunology, Federal University of Juiz de Fora – UFJF Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Vania Lucia Da Silva
- Department of Parasitology, Microbiology, and Immunology, Federal University of Juiz de Fora – UFJF Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Vanessa Cordeiro Dias
- Department of Parasitology, Microbiology, and Immunology, Federal University of Juiz de Fora – UFJF Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| |
Collapse
|
4
|
Mohamed NE, Rabie DF, Ahmed FA, Abdelghani R, Yaseen SM. Evaluation of safety and efficacy of calcipotriol 0.005% cream versus terbinafine hydrochloride 1% cream in treatment of onychomycosis; a randomized split body comparative pilot study. Arch Dermatol Res 2025; 317:402. [PMID: 39951153 DOI: 10.1007/s00403-025-03932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 05/09/2025]
Abstract
Onychomycosis is a chronic fungal infection of the nails that accounts for10% of the population worldwide and about 50% of the nail diseases in clinical practice. It has negative impact on patient's quality of life. Multiple treatments are introduced to treat onychomycosis but they are limited by high cost, side effects, drug interaction, and reduced transungual delivery. We aimed to investigate the safety and efficacy of calcipotriol 0.005% cream versus terbinafine hydrochloride 1% cream in treatment of onychomycosis. Twenty adult patients with bilateral onychomycosis were randomized. Twenty adult patients with bilateral onychomycosis were randomized in this study. The patients received calcipotriol 0.005% cream on one side and terbinafine hydrochloride 1% cream on the other side twice/day for 3 months. Outcome was evaluated after treatment by onychomycosis severity index (OSI), mycological evaluation, investigator's assessment and patient's satisfaction. Side effects were also evaluated. Study registration number (IRB approval number M602, 30/8/2022). Calcipotriol 0.005% cream had significant higher degree of improvement after 3-month treatment of onychomycosis compared to terbinafine hydrochloride 1% cream (p value = 0.02), while calcipotriol had significantly higher side effects in terms of tolerable irritation compared to terbenafine (p value < 0.05). Insignificant differences between both sides were found regarding post treatment OSI, investigator's assessment and patient's satisfaction (p value = 0.12, 0.73, 0.22 respectively). This pilot study provided preliminary data for significant superiority of calcipotriol 0.005% cream in treatment of onychomycosis regarding degree of improvement after 3-month treatment compared to terbinafine hydrochloride 1% cream. Irritation induced by calcipotriol 0.005% cream was tolerable by the patients. Further studies are still needed.
Collapse
Affiliation(s)
- Noha E Mohamed
- Dermatology and Venereology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Doha F Rabie
- Resident of Dermatology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Fatma A Ahmed
- Medical Microbiology and Immunology, Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Rania Abdelghani
- Dermatology and Venereology Associate Professor of Dermatology and Venereology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
- Armed Forces College of Medicine (AFCM), Cairo, Egypt.
| | - Sara M Yaseen
- Dermatology and Venereology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
5
|
Kortenbosch HH, van Leuven F, van den Heuvel C, Schoustra SE, Zwaan BJ, Snelders E. Catching some air: a method to spatially quantify aerial triazole resistance in Aspergillus fumigatus. Appl Environ Microbiol 2024; 90:e0027124. [PMID: 38842339 PMCID: PMC11267943 DOI: 10.1128/aem.00271-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
Airborne triazole-resistant spores of the human fungal pathogen Aspergillus fumigatus are a significant human health problem as the agricultural use of triazoles has been selecting for cross-resistance to life-saving clinical triazoles. However, how to quantify exposure to airborne triazole-resistant spores remains unclear. Here, we describe a method for cost-effective wide-scale outdoor air sampling to measure both spore abundance as well as antifungal resistance fractions. We show that prolonged outdoor exposure of sticky seals placed in delta traps, when combined with a two-layered cultivation approach, can regionally yield sufficient colony-forming units (CFUs) for the quantitative assessment of aerial resistance levels at a spatial scale that was up to now unfeasible. When testing our method in a European pilot sampling 12 regions, we demonstrate that there are significant regional differences in airborne CFU numbers, and the triazole-resistant fraction of airborne spores is widespread and varies between 0 and 0.1 for itraconazole (∼4 mg/L) and voriconazole (∼2 mg/L). Our efficient and accessible air sampling protocol opens up extensive options for fine-scale spatial sampling and surveillance studies of airborne A. fumigatus.IMPORTANCEAspergillus fumigatus is an opportunistic fungal pathogen that humans and other animals are primarily exposed to through inhalation. Due to the limited availability of antifungals, resistance to the first choice class of antifungals, the triazoles, in A. fumigatus can make infections by this fungus untreatable and uncurable. Here, we describe and validate a method that allows for the quantification of airborne resistance fractions and quick genotyping of A. fumigatus TR-types. Our pilot study provides proof of concept of the suitability of the method for use by citizen-scientists for large-scale spatial air sampling. Spatial air sampling can open up extensive options for surveillance, health-risk assessment, and the study of landscape-level ecology of A. fumigatus, as well as investigating the environmental drivers of triazole resistance.
Collapse
Affiliation(s)
- Hylke H. Kortenbosch
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Gelderland, the Netherlands
| | - Fabienne van Leuven
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Gelderland, the Netherlands
| | - Cathy van den Heuvel
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Gelderland, the Netherlands
| | - Sijmen E. Schoustra
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Gelderland, the Netherlands
| | - Bas J. Zwaan
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Gelderland, the Netherlands
| | - Eveline Snelders
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Gelderland, the Netherlands
| |
Collapse
|
6
|
Arun N, Kumar S, Prasad N, Rajpal K. Changing Paradigm of Yeast Isolates in HIV-Seropositive Patients with Oropharyngeal Candidiasis (OPC). Cureus 2024; 16:e62454. [PMID: 39022508 PMCID: PMC11251931 DOI: 10.7759/cureus.62454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Background Oropharyngeal candidiasis (OPC) is a common fungal infection in HIV-seropositive patients. Understanding the spectrum of yeast isolates and their antifungal susceptibility patterns is crucial for effective management. This study aimed to determine the yeast isolates, antifungal susceptibility patterns, and associated factors in HIV-seropositive patients with OPC. Material and methods A prospective observational study was conducted on 350 HIV-seropositive patients attending an Integrated Counselling and Testing Centre (ICTC) at the Indira Gandhi Institute of Medical Sciences (IGIMS), Patna, Bihar. Yeast isolates from oropharyngeal lesions were identified, and their antifungal susceptibility was determined by automated method VITEK 2. Demographic characteristics, highly active antiretroviral therapy (HAART) status, and CD4+ cell count categories were analyzed for associations. Results This study of 350 HIV-seropositive patients revealed that 100 tested positive for Candida, with distinct differences between HAART (n=67) and non-HAART (n=33) groups. HAART patients had a younger age distribution and higher median CD4+ cell counts (350 vs. 250 cells/mm³, U = 175, p < 0.05) compared to non-HAART patients. Candida albicans was the most common species in both groups, but significant variations in species distribution (χ² = 9.23, p < 0.05) and antifungal susceptibility were noted. Specifically, susceptibility differences were significant for flucytosine (χ² = 7.21, p = 0.027) and voriconazole (χ² = 8.64, p = 0.013), emphasizing the influence of HAART on managing immune function and antifungal resistance in HIV patients. Conclusion This study provides insights into the spectrum of yeast isolates and their antifungal susceptibility patterns in HIV-seropositive patients with OPC. The findings emphasize the importance of considering multiple factors, such as Candida species, HAART status, and individual patient characteristics, in treatment decisions. The results will aid in the development of evidence-based management protocols for this vulnerable population. Further research is warranted to explore additional factors influencing antifungal susceptibility and optimize treatment strategies for this patient population.
Collapse
Affiliation(s)
- Nitali Arun
- Microbiology, Radha Devi Jageshwari Memorial Medical College and Hospital, Muzaffarpur, IND
| | - Shailesh Kumar
- Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Nidhi Prasad
- Virology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Kamlesh Rajpal
- Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| |
Collapse
|
7
|
Esfandiary MA, Khosravi AR, Asadi S, Nikaein D, Hassan J, Sharifzadeh A. Antimicrobial and anti-biofilm properties of oleuropein against Escherichia coli and fluconazole-resistant isolates of Candida albicans and Candida glabrata. BMC Microbiol 2024; 24:154. [PMID: 38704559 PMCID: PMC11069153 DOI: 10.1186/s12866-024-03305-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Side effects associated with antimicrobial drugs, as well as their high cost, have prompted a search for low-cost herbal medicinal substances with fewer side effects. These substances can be used as supplements to medicine or to strengthen their effects. The current study investigated the effect of oleuropein on the inhibition of fungal and bacterial biofilm in-vitro and at the molecular level. MATERIALS AND METHODS In this experimental study, antimicrobial properties were evaluated using microbroth dilution method. The effect of oleuropein on the formation and eradication of biofilm was assessed on 96-well flat bottom microtiter plates and their effects were observed through scanning electron microscopy (SEM). Its effect on key genes (Hwp1, Als3, Epa1, Epa6, LuxS, Pfs) involved in biofilm formation was investigated using the quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) method. RESULTS The minimum inhibitory concentration (MIC) and minimum fungicidal/bactericidal concentration (MFC/MBC) for oleuropein were found to be 65 mg/ml and 130 mg/ml, respectively. Oleuropein significantly inhibited biofilm formation at MIC/2 (32.5 mg/ml), MIC/4 (16.25 mg/ml), MIC/8 (8.125 mg/ml) and MIC/16 (4.062 mg/ml) (p < 0.0001). The anti-biofilm effect of oleuropein was confirmed by SEM. RT-qPCR indicated significant down regulation of expression genes involved in biofilm formation in Candida albicans (Hwp1, Als3) and Candida glabrata (Epa1, Epa6) as well as Escherichia coli (LuxS, Pfs) genes after culture with a MIC/2 of oleuropein (p < 0.0001). CONCLUSIONS The results indicate that oleuropein has antifungal and antibacterial properties that enable it to inhibit or destroy the formation of fungal and bacterial biofilm.
Collapse
Affiliation(s)
- Mohammad Ali Esfandiary
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, PO Box: 14155-6453, Tehran, Iran
| | - Ali Reza Khosravi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, PO Box: 14155-6453, Tehran, Iran.
| | - Sepideh Asadi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, PO Box: 14155-6453, Tehran, Iran
| | - Donya Nikaein
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, PO Box: 14155-6453, Tehran, Iran
| | - Jalal Hassan
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Aghil Sharifzadeh
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, PO Box: 14155-6453, Tehran, Iran
| |
Collapse
|
8
|
Szekely J, Rakchang W, Rattanaphan P, Kositpantawong N. Fluconazole and echinocandin resistance of Candida species in invasive candidiasis at a university hospital during pre-COVID-19 and the COVID-19 outbreak. Epidemiol Infect 2023; 151:e146. [PMID: 37622338 PMCID: PMC10540169 DOI: 10.1017/s0950268823001346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Antifungal susceptibility of Candida species is decreasing. Successful treatment for antifungal-resistant candida infection is challenging and associated with significant mortality. We performed a prospective observational study to identify the species and antifungal susceptibilities of invasive isolates of Candida species over a 5-year period at a university hospital in southern Thailand. Between 2017 and 2021, the species distribution was 39.1% Candida tropicalis, 24.8% Candida albicans, 20.3% Candida parapsilosis complex, 10.5% Candida glabrata, and 5.2% miscellaneous Candida spp. Notable observations include elevated minimal inhibitory concentration (MIC) and decrease susceptibility of C. tropicalis and C. glabrata to echinocandin and all tested triazoles. A shift of MIC90 value in the COVID-19 era was seen in C. albicans and C. tropicalis with azoles and echinocandins. Azole resistance increased among C. tropicalis isolates, and echinocandin resistance also increased among C. parapsilosis and C. glabrata isolates. Novel alterations in FKS1 HS1 and HS2 were detected in both isolates of anidulafungin-resistant C. parapsilosis. As Candida species have become more resistant to azoles and less susceptible to echinocandin development, the need arose to observe the emergence of resistance to both antifungal classes in candida clinical isolates, for a more effective infection control in the hospital.
Collapse
Affiliation(s)
- Jidapa Szekely
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Thailand
| | - Wiraphan Rakchang
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Paramaporn Rattanaphan
- Clinical Microbiology Unit, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Narongdet Kositpantawong
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
9
|
Vahedi-Shahandashti R, Hahn L, Houbraken J, Lass-Flörl C. Aspergillus Section Terrei and Antifungals: From Broth to Agar-Based Susceptibility Testing Methods. J Fungi (Basel) 2023; 9:jof9030306. [PMID: 36983474 PMCID: PMC10056208 DOI: 10.3390/jof9030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Providing timely antifungal treatment to patients suffering from life-threatening invasive fungal infections (IFIs) is essential. Due to the changing epidemiology and the emergence of antifungal resistance in Aspergillus, the most commonly responsible mold of IFIs, antifungal susceptibility testing (AFST) has become increasingly important to guide clinical decisions. This study assessed the essential agreement (EA) between broth microdilution methods (the Clinical and Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST)) and the Etest of amphotericin B (AmB), liposomal amphotericin B (L-AmB), and isavuconazole (ISA) against 112 Aspergillus section Terrei. An EA within ±2 dilutions of ≥90% between the two methods was considered acceptable. Excellent EA was found between EUCAST and CLSI of AmB and ISA (98.2% and 95.5%, respectively). The correlation of Etest results and EUCAST/CLSI was not acceptable (<90%) for any tested antifungal; however, Etest and CLSI for AmB (79.6%) and ISA (77.6%) showed a higher EA than Etest and EUCAST for AmB (49.5%) and ISA (46.4%). It was concluded that the Etest method requires its own clinical breakpoints (CBPs) and epidemiological cutoff values (ECVs), and interpreting Etest results using EUCAST and CLSI-adapted CBPs and ECVs could result in misinterpretation as Etest shows lower minimum inhibitory concentrations (MICs).
Collapse
Affiliation(s)
- Roya Vahedi-Shahandashti
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lisa Hahn
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
10
|
Wiederhold NP. Antifungal Susceptibility of Yeasts and Filamentous Fungi by CLSI Broth Microdilution Testing. Methods Mol Biol 2023; 2658:3-16. [PMID: 37024691 DOI: 10.1007/978-1-0716-3155-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Antifungal susceptibility testing is performed against yeasts and filamentous fungi (molds) for various purposes. In clinical settings, the results of these in vitro assays may be used to help guide therapy for individual patients. Surveillance studies use susceptibility testing to monitor for the development of resistance to different agents. These assays are also frequently used in preclinical drug development to determine the spectrum of activity and assess the in vitro potency of investigational agents. Broth microdilution is a form of antifungal susceptibility testing that is frequently used for each of these purposes. The Clinical and Laboratory Standards Institute (CLSI) has developed standardized methods for broth microdilution antifungal susceptibility testing of both yeasts and molds. These methods are useful in the clinical diagnostics arena for determining if a particular fungal isolate may be resistant to clinically available antifungals, and they are also amendable for research purposes, as the microtiter trays can be prepared in different formats with different antifungal and investigational agent concentration ranges and with different growth media if necessary. This chapter describes the CLSI methods for antifungal susceptibility testing by broth microdilution for both yeasts and molds, how endpoints are read for different classes of antifungal agents, and how the results may be interpreted.
Collapse
Affiliation(s)
- Nathan P Wiederhold
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
11
|
Hobi S, Cafarchia C, Romano V, Barrs VR. Malassezia: Zoonotic Implications, Parallels and Differences in Colonization and Disease in Humans and Animals. J Fungi (Basel) 2022; 8:jof8070708. [PMID: 35887463 PMCID: PMC9324274 DOI: 10.3390/jof8070708] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022] Open
Abstract
Malassezia spp. are commensals of the skin, oral/sinonasal cavity, lower respiratory and gastrointestinal tract. Eighteen species have been recovered from humans, other mammals and birds. They can also be isolated from diverse environments, suggesting an evolutionary trajectory of adaption from an ecological niche in plants and soil to the mucocutaneous ecosystem of warm-blooded vertebrates. In humans, dogs and cats, Malassezia-associated dermatological conditions share some commonalities. Otomycosis is common in companion animals but is rare in humans. Systemic infections, which are increasingly reported in humans, have yet to be recognized in animals. Malassezia species have also been identified as pathogenetic contributors to some chronic human diseases. While Malassezia species are host-adapted, some species are zoophilic and can cause fungemia, with outbreaks in neonatal intensive care wards associated with temporary colonization of healthcare worker’s hands from contact with their pets. Although standardization is lacking, susceptibility testing is usually performed using a modified broth microdilution method. Antifungal susceptibility can vary depending on Malassezia species, body location, infection type, disease duration, presence of co-morbidities and immunosuppression. Antifungal resistance mechanisms include biofilm formation, mutations or overexpression of ERG11, overexpression of efflux pumps and gene rearrangements or overexpression in chromosome 4.
Collapse
Affiliation(s)
- Stefan Hobi
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Tat Chee Avenue, Kowloon, Hong Kong, China
- Correspondence: (S.H.); (V.R.B.)
| | - Claudia Cafarchia
- Department of Veterinary Medicine, University of Bari, Str. prov. per Casamassima Km 3, Valenzano, (Bari), 70010, Italy; (C.C.); (V.R.)
| | - Valentina Romano
- Department of Veterinary Medicine, University of Bari, Str. prov. per Casamassima Km 3, Valenzano, (Bari), 70010, Italy; (C.C.); (V.R.)
| | - Vanessa R. Barrs
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Tat Chee Avenue, Kowloon, Hong Kong, China
- Centre for Animal Health and Welfare, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Correspondence: (S.H.); (V.R.B.)
| |
Collapse
|
12
|
Odiba AS, Durojaye OA, Ezeonu IM, Mgbeahuruike AC, Nwanguma BC. A New Variant of Mutational and Polymorphic Signatures in the ERG11 Gene of Fluconazole-Resistant Candida albicans. Infect Drug Resist 2022; 15:3111-3133. [PMID: 35747333 PMCID: PMC9213107 DOI: 10.2147/idr.s360973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background Resistance to antifungal drugs for treating Candida infections remains a major concern globally despite the range of medications available. Most of these drugs target key proteins essential to the life cycle of the organism. An enzyme essential for fungal cell membrane integrity, lanosterol 14–α demethylase (CYP51), is encoded by the ERG11 gene in Candida species. This enzyme is the target of azole–based drugs. The organism has, however, devised molecular adaptations to evade the activity of these drugs. Materials and Methods Classical methods were employed to characterize clinical isolates sampled from women and dogs of reproductive age. For fluconazole efficacy studies, CLSI guidelines on drug susceptibility testing were used. To understand the susceptibility pattern, various molecular and structural analytic approaches, including sequencing, in silico site-directed mutagenesis, and protein-ligand profiling, were applied to the ERG11 gene and CYP51 protein sequences. Several platforms, comprising Clustal Omega, Pymol plugin manager, Pymol molecular visualizer, Chimera–curated Dynameomics rotamer library, protein–ligand interaction profiler, Charmm36 force field, GROMACS, Geneious, and Mega7, were employed for this analysis. Results The following Candida species distribution was obtained: 37.84% C. albicans, 8.12% C. glabrata, 10.81% C. krusei, 5.41% C. tropicalis, and 37.84% of other unidentified Candida species. Two codons in the nucleotide sequence of the wild-type (CTC and CCA) coding for LEU–370 and PRO–375, respectively, were mutated to L370S and P375H in the resistant strain. The mutation stabilized the protein at the expense of the heme moiety. We found that the susceptible isolate from dogs (Can–iso–029/dog) is closely related to the most resistant isolate from humans. Conclusion Taken together, our results showed new mutations in the heme-binding pocket of caCYP51 that explain the resistance to fluconazole exhibited by the Candida isolates. So far, the L370S and P375H resistance-linked mutations have not been previously reported.
Collapse
Affiliation(s)
- Arome Solomon Odiba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria.,Department of Molecular Genetics and Biotechnology, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Olanrewaju Ayodeji Durojaye
- Department of Chemical Sciences, Coal City University, Emene, Enugu State, Nigeria.,Department of Molecular and Cell Biology, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.,MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Ifeoma Maureen Ezeonu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Anthony Christian Mgbeahuruike
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Bennett Chima Nwanguma
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria.,Department of Molecular Genetics and Biotechnology, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| |
Collapse
|
13
|
A green protocol for the electrochemical synthesis of a fluorescent dye with antibacterial activity from imipramine oxidation. Sci Rep 2022; 12:4921. [PMID: 35318352 PMCID: PMC8941072 DOI: 10.1038/s41598-022-08770-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/02/2022] [Indexed: 12/31/2022] Open
Abstract
Electrochemical oxidation of imipramine (IMP) has been studied in aqueous solutions by cyclic voltammetry and controlled-potential coulometry techniques. Our voltammetric results show a complex behavior for oxidation of IMP at different pH values. In this study, we focused our attention on the electrochemical oxidation of IMP at a pH of about 5. Under these conditions, our results show that the oxidation of IMP leads to the formation of a unique dimer of IMP (DIMP). The structure of synthesized dimer is fully characterized by UV-visible, FTIR, 1H NMR, 13C NMR and mass spectrometry techniques. It seems that the first step in the oxidation of IMP is the cleavage of the alkyl group (formation of IMPH). After this, a domino oxidation-hydroxylation-dimerization-oxidation reaction, converts IMPH to (E)-10,10',11,11'-tetrahydro-[2,2'-bidibenzo[b,f]azepinylidene]-1,1'(5H,5'H)-dione (DIMP). The synthesis of DIMP is performed in an aqueous solution under mild conditions, without the need for any catalyst or oxidant. Based on our electrochemical findings as well as the identification of the final product, a possible reaction mechanism for IMP oxidation has been proposed. Conjugated double bonds in the DIMP structure cause the compound to become colored with sufficient fluorescence activity (excitation wave-length 535 nm and emission wave-length 625 nm). Moreover, DIMP has been evaluated for in vitro antibacterial. The antibacterial tests indicated that DIMP showed good antibacterial performance against all examined gram-positive and gram-negative bacteria (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Shigella sonnei).
Collapse
|
14
|
Espinel-Ingroff A. Commercial Methods for Antifungal Susceptibility Testing of Yeasts: Strengths and Limitations as Predictors of Resistance. J Fungi (Basel) 2022; 8:309. [PMID: 35330310 PMCID: PMC8954760 DOI: 10.3390/jof8030309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Susceptibility testing can yield variable results because it is method (commercial or reference), agent, and species dependent. Therefore, in order for results to be clinically relevant, MICs (minimal inhibitory concentrations) or MECs (minimal effective concentrations) should help in selecting the best treatment agent in the clinical setting. This is accomplished by categorical endpoints, ideally, breakpoints (BPs) and/or ECVs/ECOFFs (epidemiological cutoff values). BPs and ECVs are available by the reference methods (CLSI [Clinical and Laboratory Standards Institute] and EUCAST [European Committee on Antifungal Susceptibility Testing]) for a variety of species/agent combinations. The lack of clinical data precludes establishment of BPs for susceptibility testing by the commercial methods and ECVs have only been calculated for the Etest and SYO assays. The goal of this review is to summarize the variety of commercial methods for antifungal susceptibility testing and the potential value of Etest and SYO ECVs for detecting mutants/non-wild type (NWT) Candida isolates. Therefore, the literature search focused on publications where the commercial method, meaning MICs and ECVs, were reported for specific NWT isolates; genetic mutations have also been listed. For the Etest, the best performers recognizing the NWT were anidulafungin ECVs: 92% for the common species; 97% for C. glabrata and fluconazole ECVs, mostly for C. parapsilosis (45 NWT isolates). By the SYO, posaconazole ECVs recognized 93% of the C. albicans and 96% of the C. parapsilosis NWT isolates and micafungin ECVs 94% (mostly C. albicans and C. glabrata). Smaller sets, some with clinical data, were also listed. These are promising results for the use of both commercial methods to identify antifungal resistance (NWT isolates). However, ECVs for other species and methods need to be defined, including the C. neoformans complex and emerging species.
Collapse
|
15
|
Evaluation of synergistic anticandidal activity of Galenia africana extract and fluconazole against Candida albicans and Candida glabrata. J Herb Med 2022. [DOI: 10.1016/j.hermed.2021.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
DeJarnette C, Meyer CJ, Jenner AR, Butts A, Peters T, Cheramie MN, Phelps GA, Vita NA, Loudon-Hossler VC, Lee RE, Palmer GE. Identification of Inhibitors of Fungal Fatty Acid Biosynthesis. ACS Infect Dis 2021; 7:3210-3223. [PMID: 34786940 DOI: 10.1021/acsinfecdis.1c00404] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fungal fatty acid (FA) synthase and desaturase enzymes are essential for the growth and virulence of human fungal pathogens. These enzymes are structurally distinct from their mammalian counterparts, making them attractive targets for antifungal development. However, there has been little progress in identifying chemotypes that target fungal FA biosynthesis. To accomplish this, we applied a whole-cell-based method known as Target Abundance-based FItness Screening using Candida albicans. Strains with varying levels of FA synthase or desaturase expression were grown in competition to screen a custom small-molecule library. Hit compounds were defined as preferentially inhibiting the growth of the low target-expressing strains. Dose-response experiments confirmed that 16 hits (11 with an acyl hydrazide core) differentially inhibited the growth of strains with an altered desaturase expression, indicating a specific chemical-target interaction. Exogenous unsaturated FAs restored C. albicans growth in the presence of inhibitory concentrations of the most potent acyl hydrazides, further supporting the primary mechanism being inhibition of FA desaturase. A systematic analysis of the structure-activity relationship confirmed the acyl hydrazide core as essential for inhibitory activity. This collection demonstrated broad-spectrum activity against Candida auris and mucormycetes and retained the activity against azole-resistant candida isolates. Finally, a preliminary analysis of toxicity to mammalian cells identified potential lead compounds with desirable selectivities. Collectively, these results establish a scaffold that targets fungal FA biosynthesis with a potential for development into novel therapeutics.
Collapse
Affiliation(s)
- Christian DeJarnette
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee 38163, United States
| | - Chris J. Meyer
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Alexander R. Jenner
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Arielle Butts
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, United States
| | - Tracy Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, United States
| | - Martin N. Cheramie
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Gregory A. Phelps
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis Tennessee 38103, United States
| | - Nicole A. Vita
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee 38163, United States
| | - Victoria C. Loudon-Hossler
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Glen E. Palmer
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
17
|
Wiederhold NP. Antifungal Susceptibility Testing: A Primer for Clinicians. Open Forum Infect Dis 2021; 8:ofab444. [PMID: 34778489 PMCID: PMC8579947 DOI: 10.1093/ofid/ofab444] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Clinicians treating patients with fungal infections may turn to susceptibility testing to obtain information regarding the activity of different antifungals against a specific fungus that has been cultured. These results may then be used to make decisions regarding a patient's therapy. However, for many fungal species that are capable of causing invasive infections, clinical breakpoints have not been established. Thus, interpretations of susceptible or resistant cannot be provided by clinical laboratories, and this is especially true for many molds capable of causing severe mycoses. The purpose of this review is to provide an overview of susceptibility testing for clinicians, including the methods used to perform these assays, their limitations, how clinical breakpoints are established, and how the results may be put into context in the absence of interpretive criteria. Examples of when susceptibility testing is not warranted are also provided.
Collapse
Affiliation(s)
- Nathan P Wiederhold
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
18
|
Pervaiz M, Sadiq S, Sadiq A, Younas U, Ashraf A, Saeed Z, Zuber M, Adnan A. Azo-Schiff base derivatives of transition metal complexes as antimicrobial agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Khurana A, Agarwal A, Singh A, Sardana K, Ghadlinge M, Agrawal D, Panesar S, Sethia K, Chowdhary A. Predicting a therapeutic cut-off serum level of itraconazole in recalcitrant tinea corporis and cruris-A prospective trial. Mycoses 2021; 64:1480-1488. [PMID: 34532888 DOI: 10.1111/myc.13367] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND With rising resistance to terbinafine, and consistently high MICs to fluconazole and griseofulvin, itraconazole is being increasingly used as a first line drug for tinea corporis/cruris. However, inadequate clinical responses are often seen with it in spite of in vitro susceptibility. This is possibly related to a variable pharmacokinetic profile of itraconazole. The drug serum levels associated with the therapeutic outcome have not been defined in dermatophytic infections. METHODS Forty treatment naïve patients with tinea corporis/cruris were randomised to one of the three dose groups (100, 200 and 400 mg/day) of itraconazole. The drug serum levels of 21 of these patients were obtained after 2 weeks of treatment and correlated with the final clinical outcome and in vitro antifungal susceptibility data. RESULTS Trichophyton indotineae was identified by sequencing of ITS region of rDNA and TEF1α. All isolates were sensitive to itraconazole (Minimum Inhibitory Concentration (MICs) range: 0.06-0.5 µg/ml), while MICs to terbinafine were uniformly high (range 8-32 µg/ml). Thirty-seven patients (92.5%) achieved complete cure, while three failed treatment. Serum levels achieved with 400 mg/day were significantly higher than levels with 100 or 200 mg dose. All patients with itraconazole serum levels of >0.2 µg/ml were cured, while two out of the 10 patients with serum levels <0.2 µg/ml failed treatment. CONCLUSIONS Therapeutic failures are uncommon with itraconazole, and the prevalent strain in India has low itraconazole MICs. Treatment failure is likely with itraconazole serum levels of <0.2 µg/ml, while levels >0.2 µg/ml are consistently associated with a positive therapeutic outcome.
Collapse
Affiliation(s)
- Ananta Khurana
- Department of Dermatology, Dr Ram Manohar Lohia Hospital and Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Aastha Agarwal
- Department of Dermatology, Dr Ram Manohar Lohia Hospital and Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Ashutosh Singh
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - Kabir Sardana
- Department of Dermatology, Dr Ram Manohar Lohia Hospital and Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Manik Ghadlinge
- Department of Pharmacology, Dr Ram Manohar Lohia Hospital and Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Diksha Agrawal
- Department of Dermatology, Dr Ram Manohar Lohia Hospital and Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Sanjeet Panesar
- Department of Community Medicine, Dr Ram Manohar Lohia Hospital and Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Khushboo Sethia
- Department of Dermatology, Dr Ram Manohar Lohia Hospital and Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| |
Collapse
|
20
|
Jamiu AT, Albertyn J, Sebolai OM, Pohl CH. Update on Candida krusei, a potential multidrug-resistant pathogen. Med Mycol 2021; 59:14-30. [PMID: 32400853 DOI: 10.1093/mmy/myaa031] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Although Candida albicans remains the main cause of candidiasis, in recent years a significant number of infections has been attributed to non-albicans Candida (NAC) species, including Candida krusei. This epidemiological change can be partly explained by the increased resistance of NAC species to antifungal drugs. C. krusei is a diploid, dimorphic ascomycetous yeast that inhabits the mucosal membrane of healthy individuals. However, this yeast can cause life-threatening infections in immunocompromised patients, with hematologic malignancy patients and those using prolonged azole prophylaxis being at higher risk. Fungal infections are usually treated with five major classes of antifungal agents which include azoles, echinocandins, polyenes, allylamines, and nucleoside analogues. Fluconazole, an azole, is the most commonly used antifungal drug due to its low host toxicity, high water solubility, and high bioavailability. However, C. krusei possesses intrinsic resistance to this drug while also rapidly developing acquired resistance to other antifungal drugs. The mechanisms of antifungal resistance of this yeast involve the alteration and overexpression of drug target, reduction in intracellular drug concentration and development of a bypass pathway. Antifungal resistance menace coupled with the paucity of the antifungal arsenal as well as challenges involved in antifungal drug development, partly due to the eukaryotic nature of both fungi and humans, have left researchers to exploit alternative therapies. Here we briefly review our current knowledge of the biology, pathophysiology and epidemiology of a potential multidrug-resistant fungal pathogen, C. krusei, while also discussing the mechanisms of drug resistance of Candida species and alternative therapeutic approaches.
Collapse
Affiliation(s)
- A T Jamiu
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| | - J Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| | - O M Sebolai
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| | - C H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| |
Collapse
|
21
|
Belakhov VV, Chistyakova TB, Musayev EE, Smirnov IA, Kolodyaznaya VA. Synthesis and Antifungal Activity of N-Benzyl Derivatives of Tetramycin B. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221060086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Abstract
Pathogenic fungi have several mechanisms of resistance to antifungal drugs, driven by the genetic plasticity and versatility of their homeostatic responses to stressful environmental cues. We critically review the molecular mechanisms of resistance and cellular adaptations of pathogenic fungi in response to antifungals and discuss the factors contributing to such resistance. We offer suggestions for the translational and clinical research agenda of this rapidly evolving and medically important field. A better understanding of antifungal resistance should assist in developing better detection tools and inform optimal strategies for preventing and treating refractory mycoses in the future.
Collapse
Affiliation(s)
- Ronen Ben-Ami
- Infectious Diseases Department, Sackler School of Medicine, Tel Aviv University, Tel Aviv Sourasky Medical Center, 6 Weizmann, Tel Aviv 64239, Israel
| | - Dimitrios P Kontoyiannis
- Infectious Diseases, University of Texas M D Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Variability of Hydroxy-Itraconazole in Relation to Itraconazole Bloodstream Concentrations. Antimicrob Agents Chemother 2021; 65:AAC.02353-20. [PMID: 33468480 DOI: 10.1128/aac.02353-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/09/2021] [Indexed: 11/20/2022] Open
Abstract
We analyzed the relationship between itraconazole (ITZ) and hydroxy-itraconazole (OH-ITZ) levels in 1,223 human samples. Overall, there was a statistically significant correlation between ITZ and OH-ITZ levels (Pearson's r, 0.7838), and OH-ITZ levels were generally higher than ITZ levels (median OH-ITZ:ITZ ratio, 1.73; range, 0.13 to 8.96). However, marked variability was observed throughout the range of ITZ concentrations. Thus, it is difficult to predict OH-ITZ concentrations based solely on ITZ levels.
Collapse
|
24
|
Rayner CR, Smith PF, Andes D, Andrews K, Derendorf H, Friberg LE, Hanna D, Lepak A, Mills E, Polasek TM, Roberts JA, Schuck V, Shelton MJ, Wesche D, Rowland‐Yeo K. Model-Informed Drug Development for Anti-Infectives: State of the Art and Future. Clin Pharmacol Ther 2021; 109:867-891. [PMID: 33555032 PMCID: PMC8014105 DOI: 10.1002/cpt.2198] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Model-informed drug development (MIDD) has a long and rich history in infectious diseases. This review describes foundational principles of translational anti-infective pharmacology, including choice of appropriate measures of exposure and pharmacodynamic (PD) measures, patient subpopulations, and drug-drug interactions. Examples are presented for state-of-the-art, empiric, mechanistic, interdisciplinary, and real-world evidence MIDD applications in the development of antibacterials (review of minimum inhibitory concentration-based models, mechanism-based pharmacokinetic/PD (PK/PD) models, PK/PD models of resistance, and immune response), antifungals, antivirals, drugs for the treatment of global health infectious diseases, and medical countermeasures. The degree of adoption of MIDD practices across the infectious diseases field is also summarized. The future application of MIDD in infectious diseases will progress along two planes; "depth" and "breadth" of MIDD methods. "MIDD depth" refers to deeper incorporation of the specific pathogen biology and intrinsic and acquired-resistance mechanisms; host factors, such as immunologic response and infection site, to enable deeper interrogation of pharmacological impact on pathogen clearance; clinical outcome and emergence of resistance from a pathogen; and patient and population perspective. In particular, improved early assessment of the emergence of resistance potential will become a greater focus in MIDD, as this is poorly mitigated by current development approaches. "MIDD breadth" refers to greater adoption of model-centered approaches to anti-infective development. Specifically, this means how various MIDD approaches and translational tools can be integrated or connected in a systematic way that supports decision making by key stakeholders (sponsors, regulators, and payers) across the entire development pathway.
Collapse
Affiliation(s)
- Craig R. Rayner
- CertaraPrincetonNew JerseyUSA
- Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | | | - David Andes
- University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kayla Andrews
- Bill & Melinda Gates Medical Research InstituteCambridgeMassachusettsUSA
| | | | | | - Debra Hanna
- Bill & Melinda Gates FoundationSeattleWashingtonUSA
| | - Alex Lepak
- University of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Thomas M. Polasek
- CertaraPrincetonNew JerseyUSA
- Centre for Medicines Use and SafetyMonash UniversityMelbourneVictoriaAustralia
- Department of Clinical PharmacologyRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
| | - Jason A. Roberts
- Faculty of MedicineUniversity of Queensland Centre for Clinical ResearchThe University of QueenslandBrisbaneQueenslandAustralia
- Departments of Pharmacy and Intensive Care MedicineRoyal Brisbane and Women’s HospitalBrisbaneQueenslandAustralia
- Division of Anaesthesiology Critical Care Emergency and Pain MedicineNîmes University HospitalUniversity of MontpellierMontpellierFrance
| | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- M.A. Ghannoum
- University Center for Medical Mycology, and Mycology Reference Laboratory, Department of Dermatology, University Hospitals of Cleveland, and Case Western Reserve University, Cleveland, Ohio 44106-5028, USA. Phone , Fax. , Electronic mail address:
| |
Collapse
|
26
|
Antifungal, phyto, cyto, genotoxic and lipophilic properties of three complexes of sulfadimethoxine (HSDM) with Ag(I). Synthesis and characterization of [Ag3SDM(SCN)2]·H2O and [Ag2(SDM)2o-phenanthroline]·H2O. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Kahlmeter G, Cantón R, Giske CG, Turnidge J. Re: In the name of common sense: EUCAST breakpoints and potential pitfalls. National dissemination of EUCAST guidelines is a shared responsibility. Clin Microbiol Infect 2020; 26:1692-1693. [PMID: 32827714 PMCID: PMC7438218 DOI: 10.1016/j.cmi.2020.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Gunnar Kahlmeter
- European Committee on Antimicrobial Susceptibility Testing (EUCAST), Växjö, Sweden.
| | - Rafael Cantón
- European Committee on Antimicrobial Susceptibility Testing (EUCAST), Madrid, Spain
| | - Christian G Giske
- European Committee on Antimicrobial Susceptibility Testing (EUCAST), Stockholm, Sweden
| | - John Turnidge
- European Committee on Antimicrobial Susceptibility Testing (EUCAST), Adelaide, Australia
| |
Collapse
|
28
|
Camp I, Spettel K, Willinger B. Molecular Methods for the Diagnosis of Invasive Candidiasis. J Fungi (Basel) 2020; 6:E101. [PMID: 32640656 PMCID: PMC7558065 DOI: 10.3390/jof6030101] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
Invasive infections caused by members of the genus Candida are on the rise. Especially patients in intensive care units, immunocompromised patients, and those recovering from abdominal surgery are at risk for the development of candidemia or deep-seated candidiasis. Rapid initiation of appropriate antifungal therapy can increase survival rates significantly. In the past, most of these infections were caused by C. albicans, a species that typically is very susceptible to antifungals. However, in recent years a shift towards infections caused by non-albicans species displaying various susceptibly patterns has been observed and the prompt diagnosis of the underlying species has become an essential factor determining the therapeutic outcome. The gold standard for diagnosing invasive candidiasis is blood culture, even though its sensitivity is low and the time required for species identification usually exceeds 48 h. To overcome these issues, blood culture can be combined with other methods, and a large number of tests have been developed for this purpose. The aim of this review was to give an overview on strengths and limitations of currently available molecular methods for the diagnosis of invasive candidiasis.
Collapse
Affiliation(s)
| | | | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (I.C.); (K.S.)
| |
Collapse
|
29
|
Antifungal Resistance Regarding Malassezia pachydermatis: Where Are We Now? J Fungi (Basel) 2020; 6:jof6020093. [PMID: 32630397 PMCID: PMC7345795 DOI: 10.3390/jof6020093] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/29/2022] Open
Abstract
Malassezia pachydermatis is a yeast inhabiting the skin and ear canals in healthy dogs. In the presence of various predisposing conditions it can cause otitis and dermatitis, which are treated with multiple antifungal agents, mainly azole derivatives. This manuscript aims to review the available evidence regarding the occurrence of resistance phenomena in this organism. Various findings support the capacity of M. pachydermatis for developing resistance. These include some reports of treatment failure in dogs, the reduced antifungal activity found against yeast isolates sampled from dogs with exposure to antifungal drugs and strains exposed to antifungal agents in vitro, and the description of resistance mechanisms. At the same time, the data reviewed may suggest that the development of resistance is a rare eventuality in canine practice. For example, only three publications describe confirmed cases of treatment failure due to antifungal resistance, and most claims of resistance made by past studies are based on interpretive breakpoints that lack sound support from the clinical perspective. However, it is possible that resistant cases are underreported in literature, perhaps due to the difficulty of obtaining a laboratory confirmation given that a standard procedure for susceptibility testing of M. pachydermatis is still unavailable. These considerations highlight the need for maintaining surveillance for the possible emergence of clinically relevant resistance, hopefully through a shared strategy put in place by the scientific community.
Collapse
|
30
|
Dihydrofolate Reductase Is a Valid Target for Antifungal Development in the Human Pathogen Candida albicans. mSphere 2020; 5:5/3/e00374-20. [PMID: 32581079 PMCID: PMC7316490 DOI: 10.1128/msphere.00374-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The folate biosynthetic pathway is a promising and understudied source for novel antifungals. Even dihydrofolate reductase (DHFR), a well-characterized and historically important drug target, has not been conclusively validated as an antifungal target. Here, we demonstrate that repression of DHFR inhibits growth of Candida albicans, a major human fungal pathogen. Methotrexate, an antifolate, also inhibits growth but through pH-dependent activity. In addition, we show that C. albicans has a limited ability to take up or utilize exogenous folates as only the addition of high concentrations of folinic acid restored growth in the presence of methotrexate. Finally, we show that repression of DHFR in a mouse model of infection was sufficient to eliminate host mortality. Our work conclusively establishes DHFR as a valid antifungal target in C. albicans. While the folate biosynthetic pathway has provided a rich source of antibacterial, antiprotozoal, and anticancer therapies, it has not yet been exploited to develop uniquely antifungal agents. Although there have been attempts to develop fungal-specific inhibitors of dihydrofolate reductase (DHFR), the protein itself has not been unequivocally validated as essential for fungal growth or virulence. The purpose of this study was to establish dihydrofolate reductase as a valid antifungal target. Using a strain with doxycycline-repressible transcription of DFR1 (PTETO-DFR1 strain), we were able to demonstrate that Dfr1p is essential for growth in vitro. Furthermore, nutritional supplements of most forms of folate are not sufficient to restore growth when Dfr1p expression is suppressed or when its activity is directly inhibited by methotrexate, indicating that Candida albicans has a limited capacity to acquire or utilize exogenous sources of folate. Finally, the PTETO-DFR1 strain was rendered avirulent in a mouse model of disseminated candidiasis upon doxycycline treatment. Collectively, these results confirm the validity of targeting dihydrofolate reductase and, by inference, other enzymes in the folate biosynthetic pathway as a strategy to devise new and efficacious therapies to combat life-threatening invasive fungal infections. IMPORTANCE The folate biosynthetic pathway is a promising and understudied source for novel antifungals. Even dihydrofolate reductase (DHFR), a well-characterized and historically important drug target, has not been conclusively validated as an antifungal target. Here, we demonstrate that repression of DHFR inhibits growth of Candida albicans, a major human fungal pathogen. Methotrexate, an antifolate, also inhibits growth but through pH-dependent activity. In addition, we show that C. albicans has a limited ability to take up or utilize exogenous folates as only the addition of high concentrations of folinic acid restored growth in the presence of methotrexate. Finally, we show that repression of DHFR in a mouse model of infection was sufficient to eliminate host mortality. Our work conclusively establishes DHFR as a valid antifungal target in C. albicans.
Collapse
|
31
|
Nev OA, Jepson A, Beardmore RE, Gudelj I. Predicting community dynamics of antibiotic-sensitive and -resistant species in fluctuating environments. J R Soc Interface 2020; 17:20190776. [PMID: 32453982 DOI: 10.1098/rsif.2019.0776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Microbes occupy almost every niche within and on their human hosts. Whether colonizing the gut, mouth or bloodstream, microorganisms face temporal fluctuations in resources and stressors within their niche but we still know little of how environmental fluctuations mediate certain microbial phenotypes, notably antimicrobial-resistant ones. For instance, do rapid or slow fluctuations in nutrient and antimicrobial concentrations select for, or against, resistance? We tackle this question using an ecological approach by studying the dynamics of a synthetic and pathogenic microbial community containing two species, one sensitive and the other resistant to an antibiotic drug where the community is exposed to different rates of environmental fluctuation. We provide mathematical models, supported by experimental data, to demonstrate that simple community outcomes, such as competitive exclusion, can shift to coexistence and ecosystem bistability as fluctuation rates vary. Theory gives mechanistic insight into how these dynamical regimes are related. Importantly, our approach highlights a fundamental difference between resistance in single-species populations, the context in which it is usually assayed, and that in communities. While fast environmental changes are known to select against resistance in single-species populations, here we show that they can promote the resistant species in mixed-species communities. Our theoretical observations are verified empirically using a two-species Candida community.
Collapse
Affiliation(s)
- Olga A Nev
- Biosciences and Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Alys Jepson
- Biosciences and Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Robert E Beardmore
- Biosciences and Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
32
|
Knabl L, Lass-Flörl C. Antifungal susceptibility testing in Candida species: current methods and promising new tools for shortening the turnaround time. Expert Rev Anti Infect Ther 2020; 18:779-787. [PMID: 32324090 DOI: 10.1080/14787210.2020.1760841] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Invasive fungal diseases (IFDs) have received attention as an emerging public health threat, are difficult to diagnose and to treat, and are associated with substantial morbidity and mortality. The standard of care in IFD management requires an early and targeted antifungal treatment, hence covers - amongst others - species identification and antifungal susceptibility testing (AFST). AREAS COVERED This review gives an overview of methods currently applied in AFST and highlights promising new tools for shortening the turnaround time focusing on Candida species. EXPERT OPINION The performance of the broth microdilution reference methods for AFST is not suitable for daily laboratory practice as they are too labor-intensive and time-consuming. Other conventional approaches such as disk diffusion assays, epsilometer tests, colorimetric or automated approaches are easier in handling, and in part, show good correlations with the reference methods. Promising results for shortening the turnaround time in providing MIC data or resistance detection include matrix-assisted laser desorption/ionization-time of flight mass spectrometer (MALDI-TOF MS) assisted AFST, molecular-based techniques and modified conventional approaches applying direct inoculation methods. These underlying AFST concepts are promising but in part completely different, have their own advantages and disadvantages, and need further clinical validation.
Collapse
Affiliation(s)
- Ludwig Knabl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck , Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck , Innsbruck, Austria
| |
Collapse
|
33
|
Abstract
Although not as ubiquitous as antibacterial susceptibility testing, antifungal susceptibility testing (AFST) is a tool of increasing importance in clinical microbiology laboratories. The goal of AFST is to reliably produce MIC values that may be used to guide patient therapy, inform epidemiological studies, and track rates of antifungal drug resistance. There are three methods that have been standardized by standards development organizations: broth dilution, disk diffusion, and azole agar screening for Aspergillus Other commonly used methods include gradient diffusion and the use of rapid automated instruments. Novel methodologies for susceptibility testing are in development. It is important for laboratories to consider not only the method of testing but also the interpretation (or lack thereof) of in vitro data.
Collapse
|
34
|
Moazam S, Eades CP, Muldoon EG, Moore CB, Richardson MD, Rautemaa‐Richardson R. Positive
Aspergillus
PCR as a marker of azole resistance or sub‐therapeutic antifungal therapy in patients with chronic pulmonary aspergillosis. Mycoses 2020; 63:376-381. [DOI: 10.1111/myc.13052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Samihah Moazam
- National Aspergillosis Centre Manchester University NHS Foundation Trust Wythenshawe Hospital Manchester UK
- Division of Infection, Inflammation and Respiratory Medicine Faculty of Biology, Medicine and Health University of Manchester Manchester UK
| | - Christopher Philip Eades
- National Aspergillosis Centre Manchester University NHS Foundation Trust Wythenshawe Hospital Manchester UK
- Division of Infection, Inflammation and Respiratory Medicine Faculty of Biology, Medicine and Health University of Manchester Manchester UK
| | - Eavan Gabrielle Muldoon
- National Aspergillosis Centre Manchester University NHS Foundation Trust Wythenshawe Hospital Manchester UK
- Division of Infection, Inflammation and Respiratory Medicine Faculty of Biology, Medicine and Health University of Manchester Manchester UK
| | - Caroline B. Moore
- Division of Infection, Inflammation and Respiratory Medicine Faculty of Biology, Medicine and Health University of Manchester Manchester UK
- Mycology Reference Centre Manchester ECMM Centre of Mycological Excellence Manchester University NHS Foundation Trust Wythenshawe Hospital Manchester UK
| | - Malcolm D. Richardson
- Division of Infection, Inflammation and Respiratory Medicine Faculty of Biology, Medicine and Health University of Manchester Manchester UK
- Mycology Reference Centre Manchester ECMM Centre of Mycological Excellence Manchester University NHS Foundation Trust Wythenshawe Hospital Manchester UK
| | - Riina Rautemaa‐Richardson
- National Aspergillosis Centre Manchester University NHS Foundation Trust Wythenshawe Hospital Manchester UK
- Division of Infection, Inflammation and Respiratory Medicine Faculty of Biology, Medicine and Health University of Manchester Manchester UK
- Mycology Reference Centre Manchester ECMM Centre of Mycological Excellence Manchester University NHS Foundation Trust Wythenshawe Hospital Manchester UK
| |
Collapse
|
35
|
What's New from the CLSI Subcommittee on Antimicrobial Susceptibility Testing M100, 29th Edition. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.clinmicnews.2019.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Daneshyar A, Nematollahi D, Varmaghani F, Goljani H, Alizadeh H. Electrochemical synthesis of a new phosphonium betaine. Kinetic evaluation and antibacterial susceptibility. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
|
38
|
Sun L, Wan Z, Li R, Yu J. In vitro activities of nine antifungal agents against rare pathogenic fungi. J Med Microbiol 2019; 68:1664-1670. [PMID: 31553302 DOI: 10.1099/jmm.0.001083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose. To assess in vitro activities of nine antifungal agents (amphotericin B, fluconazole, voriconazole, itraconazole, posaconazole, caspofungin, micafungin, terbinafine and 5-flucytosine) against 93 strains of rare pathogenic fungi and the combined effects of drug combinations against several multidrug-resistant fungi.Methodology. The broth microdilution method M38-A3 and M27-A4 from the Clinical and Laboratory Standards Institute and the checkerboard method were performed in this study.Results. Low MICs for fluconazole were observed in moulds including Tritirachium oryzae, Exophiala attenuata and yeasts. MICs for amphotericin B>2 µg ml-1 were found among Aspergillus nidulans, Fusarium napiforme, Trichoderma longibrachiatum, Tritirachium oryzae, Cunninghamella bertholletiae, Cunninghamella phaeospora, Conidiobolus coronatus, Exophiala attenuata, Ochroconis mirabilis and Rhinocladiella basitona. Multidrug resistance was observed in Microascus spp., Lomentospora prolificans and Pythium insidiosum.Conclusion. Our study illustrated in vitro drug susceptibilities of some rare pathogenic fungi, which provide data to guide clinical treatment of fungal infections.
Collapse
Affiliation(s)
- Lingyue Sun
- Department of Dermatology and Venereology, Peking University First Hospital, Research Center for Medical Mycology, Peking University, National Clinical Research Center for Skin and Immune Diseases, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, PR China
| | - Zhe Wan
- Department of Dermatology and Venereology, Peking University First Hospital, Research Center for Medical Mycology, Peking University, National Clinical Research Center for Skin and Immune Diseases, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, PR China
| | - Ruoyu Li
- Department of Dermatology and Venereology, Peking University First Hospital, Research Center for Medical Mycology, Peking University, National Clinical Research Center for Skin and Immune Diseases, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, PR China
| | - Jin Yu
- Department of Dermatology and Venereology, Peking University First Hospital, Research Center for Medical Mycology, Peking University, National Clinical Research Center for Skin and Immune Diseases, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, PR China
| |
Collapse
|
39
|
Point-Counterpoint: Differences between the European Committee on Antimicrobial Susceptibility Testing and Clinical and Laboratory Standards Institute Recommendations for Reporting Antimicrobial Susceptibility Results. J Clin Microbiol 2019; 57:JCM.01129-19. [PMID: 31315957 DOI: 10.1128/jcm.01129-19] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTIONAntibiotic susceptibility test results are among the most important results issued by clinical microbiology laboratories because they routinely guide critical treatment decisions. Interpretations of MIC or disk diffusion test results, such as "susceptible" or "resistant," are easily understood. Clinical laboratories also need to determine whether and how their reports will reflect more complex situations. Such situations include, first, whether there is need to administer higher or more frequent doses of antibiotic than usual for clinical efficacy; second, whether an antimicrobial is likely to be effective at a body site where it concentrates; and third, whether there is some uncertainty in the test results due to technical variability that cannot be eliminated. Two leading organizations that set standards for antimicrobial susceptibility testing, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Clinical and Laboratory Standards Institute (CLSI), have taken different strategies to deal with these challenges. In this Point-Counterpoint, Gunnar Kahlmeter and Christian Giske discuss how EUCAST is addressing these issues, and Thomas Kirn and Susan Sharp discuss the CLSI approach.
Collapse
|
40
|
Sun L, Wan Z, Li R, Yu J. In vitro activities of six antifungal agents and their combinations against Chaetomium spp. J Med Microbiol 2019; 68:1042-1046. [PMID: 31140972 DOI: 10.1099/jmm.0.001004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To assess in vitro activities of six antifungal agents (amphotericin B, itraconazole, voriconazole, posaconazole, caspofungin and terbinafine) and the combined effects of eight pairs of them (caspofungin or terbinafine with amphotericin B, itraconazole, voriconazole or posaconazole) against 22 isolates of Chaetomium spp. METHODOLOGY The broth microdilution method drafted by the Clinical and Laboratory Standards Institute and the checkerboard method were used in this study to evaluate in vitro activities of antifungal drugs both alone and in combination against Chaetomium spp. RESULTS Amphotericin B and triazoles exhibited lower geometric mean, MIC50 and MIC90 than caspofungin and terbinafine. Besides, all the paired drugs displayed varying degrees of synergism, with the interactions between caspofungin and itraconazole ranking first (86.36 %). CONCLUSION Our study illustrated varying degrees of synergism between caspofungin or terbinafine and itraconazole, voriconazole, posaconazole or amphotericin B towards Chaetomium spp., which could be a reference for the clinical treatment of Chaetomium spp. infections.
Collapse
Affiliation(s)
- Lingyue Sun
- Research Center for Medical Mycology, Peking University; Department of Dermatology and Venereology, Peking University First Hospital; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, PR China
| | - Zhe Wan
- Research Center for Medical Mycology, Peking University; Department of Dermatology and Venereology, Peking University First Hospital; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, PR China
| | - Ruoyu Li
- Research Center for Medical Mycology, Peking University; Department of Dermatology and Venereology, Peking University First Hospital; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, PR China
| | - Jin Yu
- Research Center for Medical Mycology, Peking University; Department of Dermatology and Venereology, Peking University First Hospital; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, PR China
| |
Collapse
|
41
|
Population Pharmacokinetic Study of Prophylactic Fluconazole in Preterm Infants for Prevention of Invasive Candidiasis. Antimicrob Agents Chemother 2019; 63:AAC.01960-18. [PMID: 30910892 DOI: 10.1128/aac.01960-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/14/2019] [Indexed: 12/18/2022] Open
Abstract
Fluconazole is an antifungal agent with reported evidence for its prophylactic effect against systemic fungal infection in preterm infants. The aim of this study was to build a population pharmacokinetic model to evaluate the pharmacokinetic characteristics of intravenous and oral fluconazole in preterm infants with the current prophylactic fluconazole dosing regimen. A pharmacokinetic model was developed using 301 fluconazole concentrations from 75 preterm infants with a baseline body weight (WT) ranging from 0.5 to 1.5 kg and an estimated glomerular filtration rate (eGFR) ranging from 12.9 to 58.5 ml/min/1.73 m2 Eligible infants received an intravenous or oral dose of 3 mg/kg of body weight of fluconazole, twice weekly with a ≥72-h dose interval, for 4 weeks. The model was qualified with basic goodness-of-fit diagnostics, visual predictive checks, and bootstrapping. The fluconazole pharmacokinetics was well described with a one-compartment linear model with a proportional residual error. The population clearance (CL) and volume of distribution (V) were derived as 0.0197 × (WT/1.00)0.746 × (eGFR/25.0)0.463 × exp(η) and 1.04 × WT × exp(η), respectively. Such covariate analyses augment the awareness of the need for personalized dosing in preterm infants. (This study has been registered at ClinicalTrials.gov under identifier NCT01683760).
Collapse
|
42
|
A Systematic Screen Reveals a Diverse Collection of Medications That Induce Antifungal Resistance in Candida Species. Antimicrob Agents Chemother 2019; 63:AAC.00054-19. [PMID: 30858206 DOI: 10.1128/aac.00054-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/07/2019] [Indexed: 01/16/2023] Open
Abstract
The increasing incidence of and high mortality rates associated with invasive fungal infections (IFIs) impose an enormous clinical, social, and economic burden on humankind. In addition to microbiological resistance to existing antifungal drugs, the large number of unexplained treatment failures is a serious concern. Due to the extremely limited therapeutic options available, it is critical to identify and understand the various causes of treatment failure if patient outcomes are to improve. In this study, we examined one potential source of treatment failure: antagonistic drug interactions. Using a simple screen, we systematically identified currently approved medications that undermine the antifungal activity of three major antifungal drugs-fluconazole, caspofungin, and amphotericin B-on four prevalent human fungal pathogens-Candida albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis This revealed that a diverse collection of structurally distinct drugs exhibit antagonistic interactions with fluconazole. Several antagonistic agents selected for follow-up studies induce azole resistance through a mechanism that depends on Tac1p/Pdr1p zinc-cluster transcription factors, which activate the expression of drug efflux pumps belonging to the ABC-type transporter family. Few antagonistic interactions were identified with caspofungin or amphotericin B, possibly reflecting their cell surface mode of action that should not be affected by drug efflux mechanisms. Given that patients at greatest risk of IFIs usually receive a multitude of drugs to treat various underlying conditions, these studies suggest that chemically inducible azole resistance may be much more common and important than previously realized.
Collapse
|
43
|
Yuan Q, Wang Y, Song R, Hou X, Yu K, Zheng J, Zhang J, Pu X, Han J, Zong L. Study on Formulation, in vivo Exposure, and Passive Targeting of Intravenous Itraconazole Nanosuspensions. Front Pharmacol 2019; 10:225. [PMID: 30983994 PMCID: PMC6447661 DOI: 10.3389/fphar.2019.00225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/22/2019] [Indexed: 12/28/2022] Open
Abstract
The pharmacokinetic profile of a drug can be different when delivered as a nanosuspension compared with a true solution, which may in turn affect the therapeutic effect of the drug. The goal of this study was to prepare itraconazole nanosuspensions (ITZ-Nanos) stabilized by an amphipathic polymer, polyethylene glycol-poly (benzyl aspartic acid ester) (PEG-PBLA), by the precipitation-homogenization, and study the pharmacokinetic profile of the ITZ-Nanos. The particle size and morphology of nanosuspensions were determined by Zetasizer and field emission scanning electron microscope (SEM), respectively. The dissolution profile was evaluated using a paddle method according to Chinese Pharmacopoeia 2015. The level of ITZ in plasma and tissues was measured by a HPLC method. The optimized ITZ-Nanos had an average particle size of 268.1 ± 6.5 nm and the particles were in a rectangular form. The dissolution profile of ITZ-Nanos was similar to that of commercial ITZ injections, with nearly 90% ITZ released in the first 5 min. The ITZ-Nanos displayed different pharmacokinetic properties compared with the commercial ITZ injections, including a decreased initial drug concentration, increased plasma half-life and mean residence time (MRT), and increased concentration in the liver, lung, and spleen. The ITZ-Nanos can change the in vivo distribution of ITZ and result in passive targeting to the organs with mononuclear phagocyte systems (MPS).
Collapse
Affiliation(s)
- Qi Yuan
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Yanling Wang
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Rufeng Song
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Xianqiao Hou
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Keke Yu
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Jiaojiao Zheng
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Juanmei Zhang
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Xiaohui Pu
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Jihong Han
- School of Pharmacy, The Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
| | - Lanlan Zong
- School of Pharmacy, The Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
| |
Collapse
|
44
|
Dalvand A, Katiraee F, Jafari Joozani R, Shokri H. Genotyping of Candida albicans isolated from animals using 25S ribosomal DNA and ALT repeats polymorphism in repetitive sequence. Curr Med Mycol 2019; 4:12-19. [PMID: 30815612 PMCID: PMC6386504 DOI: 10.18502/cmm.4.4.381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose: Candida albicans is the most prevalent Candida species isolated from animals. Candidiasis can be systemic in animals or may affect a single organ, such as the mouth, urinary tract, and skin. The aim of the present study was to determine the genetic diversity of C. albicans isolated from different animals and investigate the presence of a relationship between host specificity and genetic typing of C. albicans. Materials and Methods: For the purpose of the study, DNA extraction was performed on 27 clinical isolates of C. albicans obtained from animals. Subsequently, they were subjected to 25S ribosomal DNA amplification and ALT repeats in repetitive sequences (RPSs). The minimum inhibitory concentrations of fluconazole, ketoconazole, clotrimazole, nystatin, amphotericin B, and caspofungin were determined using the microdilution method based on the Clinical and Laboratory Standards Institute M27-S4 standard. Results: Out of 27 C. albicans strains, 11, 6, 5, and 5 cases were recognized as genotypes A (40.8%), E (22.2%), B (18.5%), and C (18.5%), respectively, through amplification using AS-I, which revealed 17 different types of C. albicans. By combining the two typing methods, 27 C. albicans strains were finally divided into 22 genotypes. Conclusion: Different genotypes showed genetic diversity among the C. albicans strains isolated from animal sources. The results revealed no special genotype relationship according to the host, anatomical source of isolation, and antifungal susceptibility.
Collapse
Affiliation(s)
- Armina Dalvand
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Farzad Katiraee
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raziallah Jafari Joozani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hojjatolah Shokri
- Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
45
|
Delavy M, Dos Santos AR, Heiman CM, Coste AT. Investigating Antifungal Susceptibility in Candida Species With MALDI-TOF MS-Based Assays. Front Cell Infect Microbiol 2019; 9:19. [PMID: 30792970 PMCID: PMC6375026 DOI: 10.3389/fcimb.2019.00019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
Half of invasive fungal infections lead to death. Amongst pathogenic fungi, the most widespread species belong to the Candida genus and vary in their susceptibility to antifungal drugs. The emergence of antifungal resistance has become a major clinical problem. Therefore, the definition of susceptibility patterns is crucial for the survival of patients and the monitoring of resistance epidemiology. Although, most routinely used methods of AntiFungal Susceptibility Testing (AFST) have reached their limits, the rediscovery of Matrix Associated Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) in the field of mycology provides a promising alternative for the study of antifungal resistance. MALDI-TOF MS is already used in mycology for fungal identification, which permits to highlight inherent antifungal resistance. However, the main concern of clinicians is the rise of acquired antifungal resistance and the time needed for their detection. For this purpose, MALDI-TOF MS has been shown to be an accurate tool for AFST, presenting numerous advantages in comparison to commonly used techniques. Finally, MALDI-TOF MS could be used directly to detect resistance mechanisms through typing. Consequently, MALDI-TOF MS offers new perspectives in the context of healthcare associated outbreaks of emerging multi-drug resistant fungi, such as C. auris. As a proof of concept, we will illustrate the current and future benefits in using and adapting MALDI-TOF MS-based assays to define the susceptibility pattern of C. auris, by species identification, AFST, and typing.
Collapse
Affiliation(s)
- Margot Delavy
- Institute of Microbiology, University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland
| | - Andrea R Dos Santos
- Institute of Microbiology, University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland
| | - Clara M Heiman
- Institute of Microbiology, University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland
| | - Alix T Coste
- Institute of Microbiology, University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
46
|
Pea F, Lewis RE. Overview of antifungal dosing in invasive candidiasis. J Antimicrob Chemother 2019; 73:i33-i43. [PMID: 29304210 DOI: 10.1093/jac/dkx447] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the past, most antifungal therapy dosing recommendations for invasive candidiasis followed a 'one-size fits all' approach with recommendations for lowering maintenance dosages for some antifungals in the setting of renal or hepatic impairment. A growing body of pharmacokinetic/pharmacodynamic research, however now points to a widespread 'silent epidemic' of antifungal underdosing for invasive candidiasis, especially among critically ill patients or special populations who have altered volume of distribution, protein binding and drug clearance. In this review, we explore how current adult dosing recommendations for antifungal therapy in invasive candidiasis have evolved, and special populations where new approaches to dose optimization or therapeutic drug monitoring may be needed, especially in light of increasing antifungal resistance among Candida spp.
Collapse
Affiliation(s)
- Federico Pea
- Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital of Udine, ASUIUD, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Russell E Lewis
- Infectious Diseases Unit, S. Orsola-Malpighi Hospital; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
47
|
Chandra S, Sancheti K, Podder I, Das A, Sarkar TK, Chowdhury M, Sil A, Bhattacharya S, Das NK. A Randomized, Double-blind Study of Amorolfine 5% Nail Lacquer with Oral Fluconazole Compared with Oral Fluconazole Alone in the Treatment of Fingernail Onychomycosis. Indian J Dermatol 2019; 64:253-260. [PMID: 31516132 PMCID: PMC6714192 DOI: 10.4103/ijd.ijd_385_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background It is a challenge to treat onychomycosis due to frequent treatment failures and relapses. Systemic and topical therapies need to be combined to improve cure rates. Antifungal susceptibility might play a role in the treatment resistance of onychomycosis. Aims To compare the safety and effectiveness of amorolfine 5% nail lacquer + oral fluconazole versus only oral fluconazole in the treatment of fingernail onychomycosis. Methodology In this double-blind trial (CTRI/2015/02/005369), patients were randomized (1:1) into amorolfine 5% nail lacquer + fluconazole and dummy lacquer + fluconazole. Treatment was given for 3 months with monthly follow-ups. Antifungal sensitivity was carried out for Candida. Effectiveness was assessed by reduction in the number and percentage area of nails involved and mycological cure. At the end of 3-month treatment period, the association between drug sensitivity and treatment response was explored for the Candida infections. Results Among 30 study participants, the combination group showed significantly lower number of nail involvement (P = 0.004) and percentage nail involvement (P = 0.005) than only fluconazole group. Pretreatment fungal culture showed a comparable number of dermatophytes, Candida, Aspergillus in both the groups. Sensitivity testing was done for the isolated Candida species. Antifungal sensitivity for Candida (n = 11) was tested, and 8 (72.7%) of the organisms were sensitive to fluconazole (minimum inhibitory concentration [MIC] 1.25 ± 1.19 μg/ml), 100% were sensitive to itraconazole (MIC 0.0726 ± 0.021 μg/ml), and 3 (27.3%) were susceptible-dose dependent (S-DD) to fluconazole (MIC 16 μg/ml). Fluconazole only group patients with Candida who showed resistance to fluconazole did not respond to therapy; however, patients in the combination group showed moderate improvement (reduction in area involvement = 55.56 ± 35.36%). Conclusion The combination of amorolfine/fluconazole achieved a higher cure rate not only for sensitive fungus but also for those which were S-DD to fluconazole.
Collapse
Affiliation(s)
- Somodyuti Chandra
- Department of Dermatology, Medical College, Rampurhat, Birbhum, West Bengal, India
| | - Karan Sancheti
- Department of Dermatology, Medical College, Rampurhat, Birbhum, West Bengal, India
| | - Indrashis Podder
- Department of Dermatology, Sagore Datta Medical College, Rampurhat, Birbhum, West Bengal, India
| | - Anupam Das
- Department of Dermatology, KPC Medical College, Rampurhat, Birbhum, West Bengal, India
| | - Tushar Kanti Sarkar
- Department of Dermatology, Medical College, Rampurhat, Birbhum, West Bengal, India
| | - Moitreyee Chowdhury
- Department of Biochemistry, Medical College, Rampurhat, Birbhum, West Bengal, India
| | - Amrita Sil
- Department of Pharmacology, Rampurhat Government Medical College, Rampurhat, Birbhum, India
| | | | - Nilay Kanti Das
- Department of Dermatology, Bankura Sammilani Medical College, Bankura, West Bengal, India
| |
Collapse
|
48
|
Elkanzi NAA, Bakr RB, Ghoneim AA. Design, Synthesis, Molecular Modeling Study, and Antimicrobial Activity of Some Novel Pyrano[2,3‐
b
]pyridine and Pyrrolo[2,3‐
b
]pyrano[2.3‐
d
]pyridine Derivatives. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nadia A. A. Elkanzi
- Chemistry DepartmentCollege of Science, Jouf University P.O. Box, 2014 Sakakah Saudi Arabia
- Chemistry DepartmentFaculty of Science, Aswan University P.O. Box, 81528 Aswan Egypt
| | - Rania B. Bakr
- Department of Pharmaceutical ChemistryCollege of Pharmacy, Jouf University Sakakah Aljouf 2014 Saudi Arabia
- Department of Pharmaceutical Organic ChemistryFaculty of Pharmacy, Beni‐Suef University Beni‐Suef 62514 Egypt
| | - Amira A. Ghoneim
- Chemistry DepartmentCollege of Science, Jouf University P.O. Box, 2014 Sakakah Saudi Arabia
- Department of Chemistry, Faculty of ScienceZagazig University Zagazig Egypt
| |
Collapse
|
49
|
Are In Vitro Susceptibilities to Azole Antifungals Predictive of Clinical Outcome in the Treatment of Candidemia? J Clin Microbiol 2018; 56:JCM.01072-18. [PMID: 30135234 DOI: 10.1128/jcm.01072-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this review is to critically analyze published data evaluating the impact of azole pharmacokinetic and pharmacodynamic parameters, MICs, and Candida species on clinical outcomes in patients with candidemia. Clinical breakpoints (CBPs) for fluconazole and voriconazole, which are used to determine susceptibility, have been defined by the Clinical and Laboratory Standards Institute (CLSI) for Candida species. Studies evaluating the relationship between treatment efficacy and in vitro susceptibility, as well as the pharmacodynamic targets, have been conducted in patients treated with fluconazole for candidemia; however, for species other than Candida albicans and Candida glabrata, and for other forms of invasive candidiasis, data remain limited and randomized trials are not available. Limited data evaluating these relationships with voriconazole are available. While pharmacodynamic targets for posaconazole and isavuconazole have been proposed based upon studies conducted in murine models, CBPs have not been established by CLSI. Fluconazole remains an important antifungal agent for the treatment of candidemia, and data supporting its use based on in vitro susceptibility are growing, particularly for C. albicans and C. glabrata Further investigation is needed to establish the roles of voriconazole, posaconazole, and isavuconazole in the treatment of candidemia and for all agents in the treatment of other forms of invasive candidiasis.
Collapse
|
50
|
Reduced Antifungal Susceptibility of Vulvovaginal Candida Species at Normal Vaginal pH Levels: Clinical Implications. J Low Genit Tract Dis 2018; 22:152-158. [PMID: 29474241 DOI: 10.1097/lgt.0000000000000383] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aims of the study were to assess for differences in antifungal in vitro potency at pH 7 and pH 4 and to discuss any potential clinical implications of that difference. MATERIALS AND METHODS A retrospective analysis of 217 first positive yeast cultures from 217 patients. Yeast isolates underwent antifungal susceptibility testing, with minimum inhibitory concentrations (MICs) (microgram per milliliter) measured at pH 7 and pH 4 for fluconazole, itraconazole, miconazole, clotrimazole, terconazole, and nystatin. Only the first isolates collected from each patient were included in the analysis. RESULTS Yeast first isolates included 173 Candida albicans, 15 Candida glabrata, and 29 isolates from 8 other species. Geometric mean (GM) MIC values for all antifungals were significantly higher when tested at pH 4 (p < .001 for all comparisons). For C. albicans, the largest GM MIC differences were observed for terconazole (0.17 pH 7 vs 6.17 pH 4) and clotrimazole (0.04 vs 0.24). For terconazole, 97.7% of the isolates had a MIC of 1 or less at pH 7 but 83.2% had a MIC of 4 or higher at pH 4. For C. glabrata, terconazole (GM MIC = 0.26 pH 7 vs >64 pH 4), clotrimazole (0.13 vs 6.96), miconazole (0.06 vs 0.76), and fluconazole (3.17 vs 26.6) were most affected. All C. glabrata isolates had a MIC of 1 or less for terconazole at pH 7 and one had a MIC of 8 at pH 4, whereas all the rest were highly resistant (MIC > 64). CONCLUSIONS Antifungals have reduced in vitro potency when tested at lower pH. Candida glabrata is more affected than C. albicans. The impact may be greatest for the antifungal terconazole and against C. glabrata isolates.
Collapse
|