1
|
Buchmiller NE, Weaver SJ, Bedard RE, Taylor EN, Moniz HA. Short communication: Storage time and temperature affect plasma osmolality values in field-collected blood samples. Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111665. [PMID: 38762048 DOI: 10.1016/j.cbpa.2024.111665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
As climate change alters the hydric regime of many habitats, understanding the hydric physiology of animals becomes increasingly important. Plasma osmolality is a popular metric to assess an organism's hydration, but samples often need to be stored before being analyzed, under varying conditions and for different lengths of time. Previous studies on plasma storage conditions, and how they impact sample integrity, are minimal and have focused more on clinical applications than field studies. We studied the stability of osmolality values from wild rattlesnake plasma samples stored in commonly used plastic snap-cap tubes under different time (0, 2, 3, 7, 29 days) and temperature (refrigerated at 2 °C and frozen at -18 °C) treatments. We hypothesized that frozen samples would remain more stable (e.g., retain osmolality values more similar to baseline values) than refrigerated samples because freezing the plasma would reduce evaporation. We found that osmolality of samples increased over time at both temperatures, becoming significantly higher than baseline after 7 days. Contrary to our prediction, osmolality increased more in frozen samples than in refrigerated samples. We discuss possible reasons for our results, along with their implications. To obtain the most accurate plasma osmolality values, we recommend refrigerating plasma samples for as short a time as possible, 3 days or fewer, before analyzing them on an osmometer.
Collapse
Affiliation(s)
- Nemo E Buchmiller
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407-0411, United States of America
| | - Savannah J Weaver
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407-0411, United States of America
| | - Robin E Bedard
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407-0411, United States of America
| | - Emily N Taylor
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407-0411, United States of America
| | - Haley A Moniz
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407-0411, United States of America.
| |
Collapse
|
2
|
Soravia C, Ashton BJ, Thornton A, Bourne AR, Ridley AR. High temperatures during early development reduce adult cognitive performance and reproductive success in a wild animal population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169111. [PMID: 38070557 DOI: 10.1016/j.scitotenv.2023.169111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Global warming is rapidly changing the phenology, distribution, behaviour and demography of wild animal populations. Recent studies in wild animals have shown that high temperatures can induce short-term cognitive impairment, and captive studies have demonstrated that heat exposure during early development can lead to long-term cognitive impairment. Given that cognition underpins behavioural flexibility and can be directly linked to fitness, understanding how high temperatures during early life might impact adult cognitive performance in wild animals is a critical next step to predict wildlife responses to climate change. Here, we investigated the relationship between temperatures experienced during development, adult cognitive performance, and reproductive success in wild southern pied babblers (Turdoides bicolor). We found that higher mean daily maximum temperatures during nestling development led to long-term cognitive impairment in associative learning performance, but not reversal learning performance. Additionally, a higher number of hot days (exceeding 35.5 °C, temperature threshold at which foraging efficiency and offspring provisioning decline) during post-fledging care led to reduced reproductive success in adulthood. We did not find evidence that low reproductive success was linked to impaired associative learning performance: associative learning performance was not related to reproductive success. In contrast, reversal learning performance was negatively related to reproductive success in breeding adults. This suggests that reproduction can carry a cost in terms of reduced performance in cognitively demanding tasks, confirming previous evidence in this species. Taken together, these findings indicate that naturally occurring high temperatures during early development have long-term negative effects on cognition and reproductive success in wild animals. Compounding effects of high temperatures on current nestling mortality and on the long-term cognitive and reproductive performance of survivors are highly concerning given ongoing global warming.
Collapse
Affiliation(s)
- Camilla Soravia
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia.
| | - Benjamin J Ashton
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia; School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa.
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK.
| | - Amanda R Bourne
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa; Australian Wildlife Conservancy, 322 Hay Street, Subiaco, WA, Australia.
| | - Amanda R Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia; FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
3
|
Soravia C, Ashton BJ, Thornton A, Ridley AR. High temperatures are associated with reduced cognitive performance in wild southern pied babblers. Proc Biol Sci 2023; 290:20231077. [PMID: 37989242 PMCID: PMC10688443 DOI: 10.1098/rspb.2023.1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
Global temperatures are increasing rapidly. While considerable research is accumulating regarding the lethal and sublethal effects of heat on wildlife, its potential impact on animal cognition has received limited attention. Here, we tested wild southern pied babblers (Turdoides bicolor) on three cognitive tasks (associative learning, reversal learning and inhibitory control) under naturally occurring heat stress and non-heat stress conditions. We determined whether cognitive performance was explained by temperature, heat dissipation behaviours, individual and social attributes, or proxies of motivation. We found that temperature, but not heat dissipation behaviours, predicted variation in associative learning performance. Individuals required on average twice as many trials to learn an association when the maximum temperature during testing exceeded 38°C compared with moderate temperatures. Higher temperatures during testing were also associated with reduced inhibitory control performance, but only in females. By contrast, we found no temperature-related decline in performance in the reversal learning task, albeit individuals reached learning criterion in only 14 reversal learning tests. Our findings provide novel evidence of temperature-mediated cognitive impairment in a wild animal and indicate that its occurrence depends on the cognitive trait examined and individual sex.
Collapse
Affiliation(s)
- Camilla Soravia
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
| | - Benjamin J. Ashton
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia 2109
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa, 7701
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | - Amanda R. Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa, 7701
| |
Collapse
|
4
|
Eastwood JR, Dupoué A, Verhulst S, Cockburn A, Peters A. Cool, dry nights and short heatwaves during growth result in longer telomeres in temperate songbird nestlings. Mol Ecol 2023; 32:5382-5393. [PMID: 37606092 DOI: 10.1111/mec.17107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Exposure to rising sublethal temperatures can affect development and somatic condition, and thereby Darwinian fitness. In the context of climate warming, these changes could have implications for population viability, but they can be subtle and consequently difficult to quantify. Using telomere length (TL) as a known biomarker of somatic condition in early life, we investigated the impact of pre-hatching and nestling climate on six cohorts of wild nestling superb fairy wrens (Malurus cyaneus) in temperate south-eastern Australia. Models incorporating only climate information from the nestling phase were best supported compared to those including the (pre-)laying to incubation phase (previously shown to affect mass) or both phases combined. This implies that nestling TL is most sensitive to ambient climate in the nestling phase. The top model showed a negative relationship between early-life TL and nestling mean daily minimum temperature when rainfall was low which gradually became positive with increasing rainfall. In addition, there was a positive relationship between TL and the frequency of hot days (daily maximum temperature ≥35°C), although these temperatures were rare and short-term. Including other pre-hatching and nestling period, climate variables (e.g., mean daily maximum temperature and mean diurnal temperature variability) did not improve the prediction of nestling TL. Overall, our results suggest that cooler nights when conditions are dry and short-term temperature spikes above 35°C during development are conducive for somatic maintenance. While these findings indicate a potential pathway for climate warming to impact wildlife fitness, they emphasize the need to elucidate the mechanisms underlying these complex associations.
Collapse
Affiliation(s)
- Justin R Eastwood
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Andréaz Dupoué
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, Plouzane, France
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Andrew Cockburn
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Anne Peters
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Radolfzell, Germany
| |
Collapse
|
5
|
Diehl JN, Alton LA, White CR, Peters A. Thermoregulatory strategies of songbird nestlings reveal limited capacity for cooling and high risk of dehydration. J Therm Biol 2023; 117:103707. [PMID: 37778091 DOI: 10.1016/j.jtherbio.2023.103707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
How the accelerating pace of global warming will affect animal populations depends on the effects of increasing temperature across the life cycle. Developing young are sensitive to environmental challenges, often with life-long consequences, but the risks of climate warming during this period are insufficiently understood. This may be due to limited insight into physiological sensitivity and the temperatures that represent a thermal challenge for young. Here we examined the physiological and behavioural effects of increasing temperatures by measuring metabolic rate, water loss, and heat dissipation behaviours between 25-45 °C in nestlings of a small free-living songbird of temperate SE-Australia, the superb fairy-wren. We found a high and relatively narrow thermoneutral zone from 33.1 to 42.3 °C, with metabolic rate increasing and all nestlings panting above this range. Evaporative water loss sharply increased above 33.5 °C; at the same temperature, nestlings changed their posture (extended their wings) to facilitate passive heat loss. However, at all temperatures measured, water loss was insufficient to dissipate metabolically produced heat, indicating poor cooling capabilities, which persisted even when individuals were panting. While nestlings are relatively tolerant to higher temperatures, with no evidence for hyperthermia at temperatures below 42 °C, they are at a high risk of dehydration even at lower temperatures, with limited ability to mitigate this. Thus, climate warming is likely to elevate the risk dehydration, which is concerning, since it is accompanied by drier conditions.
Collapse
Affiliation(s)
- Jenna N Diehl
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| | - Lesley A Alton
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| | - Craig R White
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| | - Anne Peters
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
6
|
Bourne AR, Ridley AR, Cunningham SJ. Helpers don't help when it's hot in a cooperatively breeding bird, the Southern Pied Babbler. Behav Ecol 2023; 34:562-570. [PMID: 37434640 PMCID: PMC10332451 DOI: 10.1093/beheco/arad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/25/2023] [Accepted: 04/04/2023] [Indexed: 07/13/2023] Open
Abstract
Cooperative breeding, where more than two individuals invest in rearing a single brood, occurs in many bird species globally and often contributes to improved breeding outcomes. However, high temperatures are associated with poor breeding outcomes in many species, including cooperative species. We used data collected over three austral summer breeding seasons to investigate the contribution that helpers make to daytime incubation in a cooperatively breeding species, the Southern Pied Babbler Turdoides bicolor, and the ways in which their contribution is influenced by temperature. Helpers spent a significantly higher percentage of their time foraging (41.8 ± 13.7%) and a significantly lower percentage of their time incubating (18.5 ± 18.8%) than members of the breeding pair (31.3 ± 11% foraging and 37.4 ± 15.7% incubating). In groups with only one helper, the helper's contribution to incubation was similar to that of breeders. However, helpers in larger groups contributed less to incubation, individually, with some individuals investing no time in incubation on a given observation day. Helpers significantly decrease their investment in incubation on hot days (>35.5°C), while breeders tend to maintain incubation effort as temperatures increase. Our results demonstrate that pied babblers share the workload of incubation unequally between breeders and helpers, and this inequity is more pronounced during hot weather. These results may help to explain why recent studies have found that larger group size does not buffer against the impacts of high temperatures in this and other cooperatively breeding species.
Collapse
Affiliation(s)
- Amanda R Bourne
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
- Australian Wildlife Conservancy, 322 Hay Street, Subiaco 6008, Western Australia
| | - Amanda R Ridley
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley 6009, Australia
| | - Susan J Cunningham
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| |
Collapse
|
7
|
Grunst ML, Grunst AS. Endocrine effects of exposure to artificial light at night: A review and synthesis of knowledge gaps. Mol Cell Endocrinol 2023; 568-569:111927. [PMID: 37019171 DOI: 10.1016/j.mce.2023.111927] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Animals have evolved with natural patterns of light and darkness, such that light serves as an important zeitgeber, allowing adaptive synchronization of behavior and physiology to external conditions. Exposure to artificial light at night (ALAN) interferes with this process, resulting in dysregulation of endocrine systems. In this review, we evaluate the endocrine effects of ALAN exposure in birds and reptiles, identify major knowledge gaps, and highlight areas for future research. There is strong evidence for ecologically relevant levels of ALAN acting as an environmental endocrine disruptor. However, most studies focus on the pineal hormone melatonin, corticosterone release via the hypothalamus-pituitary-adrenal axis, or regulation of reproductive hormones via the hypothalamus-pituitary-gonadal axis, leaving effects on other endocrine systems largely unknown. We call for more research spanning a diversity of hormonal systems and levels of endocrine regulation (e.g. circulating hormone levels, receptor numbers, strength of negative feedback), and investigating involvement of molecular mechanisms, such as clock genes, in hormonal responses. In addition, longer-term studies are needed to elucidate potentially distinct effects arising from chronic exposure. Other important areas for future research effort include investigating intraspecific and interspecific variability in sensitivity to light exposure, further distinguishing between distinct effects of different types of light sources, and assessing impacts of ALAN exposure early in life, when endocrine systems remain sensitive to developmental programming. The effects of ALAN on endocrine systems are likely to have a plethora of downstream effects, with implications for individual fitness, population persistence, and community dynamics, especially within urban and suburban environments.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENS), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000, La Rochelle, France.
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENS), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000, La Rochelle, France
| |
Collapse
|
8
|
Borger MJ, Richardson DS, Dugdale H, Burke T, Komdeur J. Testing the environmental buffering hypothesis of cooperative breeding in the Seychelles warbler. Acta Ethol 2023. [DOI: 10.1007/s10211-022-00408-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractSpecies are facing environmental challenges caused by rapidly changing environments. Globally, extreme weather events, like droughts or extreme rainfall, are increasing in frequency. Natural selection usually acts slowly, while adaptations through phenotypic plasticity are limited. Therefore, organisms may utilise other mechanisms to cope with such rapid change. Cooperative breeding is hypothesised to be one such mechanism, as helpers could increase survival probabilities of offspring, especially in harsh years. Rainfall is a cue for onset of breeding in many tropical species, to ensure young are born when food abundance is highest. Using 21 years of data, we investigate the effect of rainfall on social behaviour and life history in the insectivorous Seychelles warbler (Acrocephalus sechellensis), a facultative cooperative breeder. We found that low rainfall is associated with reduced reproductive output and possibly with decreased survival. However, there were no statistical differences in response between groups with helpers, groups with only non-helping subordinates, and breeding pairs without subordinates. With low rainfall, more sons (the sex less likely to help) were produced, and those subordinate males already present were less likely to help. Thus, in contrast to expectations, cooperative breeding does not seem to buffer against harsh environments in Seychelles warblers, indicating that group living may be costly and thus not a mechanism for coping with changing environments. Our study showed that the interaction between the environment and life histories, including social behaviour, is complex, but that this interaction is important to consider when studying the impact of changing environments on species survival.
Collapse
|
9
|
Soravia C, Ashton BJ, Ridley AR. Periorbital temperature responses to natural air temperature variation in wild birds. J Therm Biol 2022; 109:103323. [DOI: 10.1016/j.jtherbio.2022.103323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
|
10
|
Sandfoss MR, Brischoux F, Lillywhite HB. Intraspecific investigation of dehydration-enhanced innate immune performance and endocrine stress response to sublethal dehydration in a semi-aquatic species of pit viper. J Exp Biol 2022; 225:276533. [PMID: 35946379 DOI: 10.1242/jeb.243894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
Sublethal dehydration can cause negative physiological effects, but recent studies investigating the sub-lethal effects of dehydration on innate immune performance in reptiles have found a positive correlation between innate immune response and plasma osmolality. To investigate if this is an adaptive trait that evolved in response to dehydration in populations inhabiting water-scarce environments, we sampled free-ranging cottonmouths (n=26 adult cottonmouths) from two populations inhabiting contrasting environments in terms of water availability: Snake Key (n=12), an island with no permanent sources of fresh water and Paynes Prairie (n=14), a flooded freshwater prairie. In addition to field surveys, we manipulated the hydration state of 17 cottonmouths (Paynes Prairie n=9, Snake Key n=8) in a laboratory setting and measured the response of corticosterone and innate immune performance to dehydration with the aim of identifying any correlation or trade-offs between them. We measured corticosterone of cottonmouths at a baseline level and then again following a 60-min stress test when at three hydration states: hydrated, dehydrated, and rehydrated. We found that innate immune performance improved with dehydration and then returned to baseline levels within 48 hours of rehydration, which agrees with previous research in reptiles. Despite the frequent exposure of cottonmouths on Snake Key to dehydrating conditions, we did not find cottonmouths inhabiting the island to show a greater magnitude or more prolonged immune response compared to cottonmouths from Paynes Prairie. We also found a positive association between dehydration and corticosterone values.
Collapse
Affiliation(s)
- Mark R Sandfoss
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS and La Rochelle Université, 79360 Villiers en Bois, France
| | | |
Collapse
|
11
|
Hot and dry conditions predict shorter nestling telomeres in an endangered songbird: Implications for population persistence. Proc Natl Acad Sci U S A 2022; 119:e2122944119. [PMID: 35696588 PMCID: PMC9231487 DOI: 10.1073/pnas.2122944119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Climate warming is increasingly exposing wildlife to sublethal high temperatures, which may lead to chronic impacts and reduced fitness. Telomere length (TL) may link heat exposure to fitness, particularly at early-life stages, because developing organisms are especially vulnerable to adverse conditions, adversity can shorten telomeres, and TL predicts fitness. Here, we quantify how climatic and environmental conditions during early life are associated with TL in nestlings of wild purple-crowned fairy-wrens (Malurus coronatus), endangered songbirds of the monsoonal tropics. We found that higher average maximum air temperature (range 31 to 45 °C) during the nestling period was associated with shorter early-life TL. This effect was mitigated by water availability (i.e., during the wet season, with rainfall), but independent of other pertinent environmental conditions, implicating a direct effect of heat exposure. Models incorporating existing information that shorter early-life TL predicts shorter lifespan and reduced fitness showed that shorter TL under projected warming scenarios could lead to population decline across plausible future water availability scenarios. However, if TL is assumed to be an adaptive trait, population viability could be maintained through evolution. These results are concerning because the capacity to change breeding phenology to coincide with increased water availability appears limited, and the evolutionary potential of TL is unknown. Thus, sublethal climate warming effects early in life may have repercussions beyond individual fitness, extending to population persistence. Incorporating the delayed reproductive costs associated with sublethal heat exposure early in life is necessary for understanding future population dynamics with climate change.
Collapse
|
12
|
Pattinson NB, van de Ven TMFN, Finnie MJ, Nupen LJ, McKechnie AE, Cunningham SJ. Collapse of Breeding Success in Desert-Dwelling Hornbills Evident Within a Single Decade. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.842264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rapid anthropogenic climate change potentially severely reduces avian breeding success. While the consequences of high temperatures and drought are reasonably well-studied within single breeding seasons, their impacts over decadal time scales are less clear. We assessed the effects of air temperature (Tair) and drought on the breeding output of southern yellow-billed hornbills (Tockus leucomelas; hornbills) in the Kalahari Desert over a decade (2008–2019). We aimed to document trends in breeding performance in an arid-zone bird during a time of rapid global warming and identify potential drivers of variation in breeding performance. The breeding output of our study population collapsed during the monitoring period. Comparing the first three seasons (2008–2011) of monitoring to the last three seasons (2016–2019), the mean percentage of nest boxes that were occupied declined from 52% to 12%, nest success from 58% to 17%, and mean fledglings produced per breeding attempt from 1.1 to 0.4. Breeding output was negatively correlated with increasing days on which Tmax (mean maximum daily Tair) exceeded the threshold Tair at which male hornbills show a 50% likelihood of engaging in heat dissipation behavior [i.e., panting (Tthresh; Tair = 34.5°C)] and the occurrence of drought within the breeding season, as well as later dates for entry into the nest cavity (i.e., nest initiation) and fewer days post-hatch, spent incarcerated in the nest by the female parent. The apparent effects of high Tair were present even in non-drought years; of the 115 breeding attempts that were recorded, all 18 attempts that had ≥ 72% days during the attempt on which Tmax > Tthresh failed (equivalent to Tmax during the attempt ≥ 35.7°C). This suggests that global warming was likely the primary driver of the recent, rapid breeding success collapse. Based on current warming trends, the Tmax threshold of 35.7°C, above which no successful breeding attempts were recorded, will be exceeded during the entire hornbill breeding season by approximately 2027 at our study site. Therefore, our findings support the prediction that climate change may drive rapid declines and cause local extinctions despite the absence of direct lethal effects of extreme heat events.
Collapse
|
13
|
Bourne AR, Ridley AR, Spottiswoode CN, Cunningham SJ. Direct and indirect effects of high temperatures on fledging in a cooperatively breeding bird. Behav Ecol 2021. [DOI: 10.1093/beheco/arab087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
High temperatures and low rainfall consistently constrain reproduction in arid-zone bird species. Understanding the mechanisms underlying this pattern is critical for predicting how climate change will influence population persistence and to inform conservation and management. In this study, we analyzed Southern Pied Babbler Turdoides bicolor nestling survival, daily growth rate and adult investment behavior during the nestling period over three austral summer breeding seasons. High temperatures were associated with lower body mass, shorter tarsi, and reduced daily growth rates of nestlings. Our piecewise structural equation models suggested that direct impacts of temperature had the strongest influence on nestling size and daily growth rates for both 5-day-old and 11-day-old nestlings, followed by temperature-related adjustments to provisioning rates by adults. Rainfall and group size influenced the behavior of provisioning adults but did not influence nestling growth or survival. Adjustments to adult provisioning strategies did not compensate for direct negative effects of high air temperatures on nestling size or daily growth rates. Detailed mechanistic data like these allow us to model the pathways by which high temperature causes nest failure. In turn, this could allow us to design targeted conservation action to effectively mitigate climate effects.
Collapse
Affiliation(s)
- Amanda R Bourne
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, South Africa
| | - Amanda R Ridley
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, South Africa
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Hackett Drive, Crawley, Perth WA, Australia
| | - Claire N Spottiswoode
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, South Africa
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Susan J Cunningham
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|