1
|
Barham KE, Dwyer RG, Frere CH, Bentley LK, Baker CJ, Campbell HA, Irwin TR, Franklin CE. Cooling down is as important as warming up for a large-bodied tropical reptile. Proc Biol Sci 2024; 291:20241804. [PMID: 39500376 PMCID: PMC11537756 DOI: 10.1098/rspb.2024.1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 11/09/2024] Open
Abstract
An ectotherm's performance and physiological function are strongly tied to environmental temperature, and many ectotherms thermoregulate behaviourally to reach optimum body temperatures. Tropical ectotherms are already living in environments matching their thermal tolerance range and may be expected to conform to environmental temperatures. We tracked the body temperatures (Tb) of 163 estuarine crocodiles across 13 years and compared Tb of 39 crocodiles to water temperature gathered using fish-borne sensors (Tw) across 3 years (2015-2018). While Tb largely conformed closely to Tw, we found inter- and intra-individual differences in relative body temperature (Tb-Tw) that depended on sex and body size as well as the time of day and year. Deviations from Tw, especially during the warm parts of the year, suggest that thermoregulatory behaviour was taking place: we found patterns of warming and cooling events that seemed to mediate this variation in Tb. Thermoregulatory behaviour was observed most frequently in larger individuals, with warming events common during winter and cooling events common during summer. By observing free-ranging animals across multiple years, we found that estuarine crocodiles show yearly patterns of active cooling and warming behaviours that modify their body temperature, highlighting their resilience in the face of recent climate warming. Our work also provides the first evidence for thermal type in large-bodied reptiles.
Collapse
Affiliation(s)
- Kaitlin E. Barham
- School of the Environment, University of Queensland, Saint Lucia, Queensland4072, Australia
| | - Ross G. Dwyer
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland4556, Australia
| | - Celine H. Frere
- School of the Environment, University of Queensland, Saint Lucia, Queensland4072, Australia
| | - Lily K. Bentley
- School of the Environment, University of Queensland, Saint Lucia, Queensland4072, Australia
- Centre for Biodiversity and Conservation Science, University of Queensland, Saint Lucia, Queensland4072, Australia
| | - Cameron J. Baker
- Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory0909, Australia
| | - Hamish A. Campbell
- Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory0909, Australia
| | - Terri R. Irwin
- Australia Zoo, Steve Irwin Way, Beerwah, Queensland4519, Australia
| | - Craig E. Franklin
- School of the Environment, University of Queensland, Saint Lucia, Queensland4072, Australia
| |
Collapse
|
2
|
Serrano OS, Garcês A, Pires I, Calderón Mateus JA, Olivera JM, Dávila JJ. Congenital Anomalies in American Crocodile ( Crocodylus acutus, Cuvier, 1807) Embryos from a Farm Breeder in Colombia. Vet Sci 2024; 11:317. [PMID: 39058001 PMCID: PMC11281568 DOI: 10.3390/vetsci11070317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The American crocodile (Crocodylus acutus, Cuvier, 1807) (Class Reptilia, Family Crocodylidae) is a crocodile species inhabiting the Neotropics. Congenital defects have been described in almost every vertebrate group. In crocodiles, teratology alterations have been described in captive animals (pets, zoos, farms) such as Crocodylus niloticus or Gavialis gangeticus. The present study aimed to characterize congenital malformations of C. acutus from a farm in Lomas de Matunilla, Ballestas, Bolívar, Colombia. A total of 550 unhatched eggs were examined after embryo death. A total of 61 embryos presented malformations, with 42 different types of anomalies observed. Limb and tail malformations (29%) were the most common malformations observed. Several malformations, such as cephalothoracopagus, thoracopagus, sternopagus, xiphopagus twins, campylorrachis scoliosa, and acrania, were documented in crocodiles for the first time. Research in teratology enhances our understanding of crocodile biology. It plays a role in their conservation and management, thus helping to ensure the long-term viability of these species in their natural habitats.
Collapse
Affiliation(s)
| | - Andreia Garcês
- Wildlife Rehabilitation Center and Exotic Service, Teaching Veterinary Hospital University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 5000-801 Vila Real, Portugal
- Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science—AL4AnimalS, University of Trás-os-Montes e Alto Douro, Quinta dos Prados, 5000-801 Vila Real, Portugal;
| | - Isabel Pires
- Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science—AL4AnimalS, University of Trás-os-Montes e Alto Douro, Quinta dos Prados, 5000-801 Vila Real, Portugal;
| | - John Alexander Calderón Mateus
- Parque Vivarium del Caribe, Via-Pontezuela-Bayunca, Cartagena 130001, Colombia;
- Cocodrilos de Colombia, Cartagena 130001, Colombia
| | - Juan Medina Olivera
- University of Córdoba, Monteria, Poniente Sur, Córdoba 14071, Colombia;
- Instituto de Investigaciones Geográficas de Investigaciones Geográficas y Ambientales del Caribe (GEOCARIBE), Poniente Sur, Córbora 14071, Colombia
| | - Jhesteiner Julio Dávila
- Grupo de Investigación Biología Evolutiva, Programa de Biología, Facultad de Educación y Ciencias, Universidad de Sucre, Sincelejo, 5-267 Barrio Puerta Roja, Sincelejo 700001, Colombia;
| |
Collapse
|
3
|
Ariano‐Sánchez D, Mortensen RM, Wilson RP, Bjureke P, Reinhardt S, Rosell F. Temperature and barometric pressure affect the activity intensity and movement of an endangered thermoconforming lizard. Ecosphere 2022. [DOI: 10.1002/ecs2.3990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Daniel Ariano‐Sánchez
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
- Centro de Estudios Ambientales y Biodiversidad Universidad del Valle de Guatemala Guatemala City Guatemala
| | - Rasmus M. Mortensen
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| | - Rory P. Wilson
- Biosciences, College of Science Swansea University Swansea Wales UK
| | - Peder Bjureke
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| | - Stefanie Reinhardt
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| | - Frank Rosell
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| |
Collapse
|
4
|
Finger JW, Kelley MD, Zhang Y, Hamilton MT, Elsey RM, Mendonca MT, Kavazis AN. Antioxidant Enzymes in Destructible and Non-Destructible Tissues in American Alligators (Alligator mississippiensis). SOUTH AMERICAN JOURNAL OF HERPETOLOGY 2021. [DOI: 10.2994/sajh-d-19-00118.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- John W. Finger
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Meghan D. Kelley
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yufeng Zhang
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| | - Matthew T. Hamilton
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Ruth M. Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA 70643, USA
| | - Mary T. Mendonca
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
5
|
Bautista NM, Damsgaard C, Fago A, Wang T. Carbon dioxide and bicarbonate accumulation in caiman erythrocytes during diving. J Exp Biol 2021; 224:jeb.242435. [PMID: 33771914 DOI: 10.1242/jeb.242435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
The ability of crocodilian haemoglobins to bind HCO3 - has been appreciated for more than half a century, but the functional implication of this is exceptional mechanism has not previously been assessed in vivo Therefore, the goal of the present study was to address the hypothesis that CO2 primarily binds to Hb, rather than being accumulated in plasma as in other vertebrates, during diving in caimans. Here, we demonstrate that CO2 primarily accumulates within the erythrocyte during diving and that most of the accumulated CO2 is bound to haemoglobin. Furthermore, we show that this HCO3 --binding is tightly associated with the progressive blood deoxygenation during diving, therefore, crocodilians differ from the classic vertebrate pattern, where HCO3 - accumulates in the plasma upon excretion from the erythrocytes by the Cl--HCO3 --exchanger.
Collapse
Affiliation(s)
- Naim M Bautista
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Christian Damsgaard
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Angela Fago
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Rodgers EM, Franklin CE, Noble DWA. Diving in hot water: a meta-analytic review of how diving vertebrate ectotherms will fare in a warmer world. J Exp Biol 2021; 224:224/Suppl_1/jeb228213. [PMID: 33627460 DOI: 10.1242/jeb.228213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Diving ectothermic vertebrates are an important component of many aquatic ecosystems, but the threat of climate warming is particularly salient to this group. Dive durations typically decrease as water temperatures rise; yet, we lack an understanding of whether this trend is apparent in all diving ectotherms and how this group will fare under climate warming. We compiled data from 27 studies on 20 ectothermic vertebrate species to quantify the effect of temperature on dive durations. Using meta-analytic approaches, we show that, on average, dive durations decreased by 11% with every 1°C increase in water temperature. Larger increases in temperature (e.g. +3°C versus +8-9°C) exerted stronger effects on dive durations. Although species that respire bimodally are projected to be more resilient to the effects of temperature on dive durations than purely aerial breathers, we found no significant difference between these groups. Body mass had a weak impact on mean dive durations, with smaller divers being impacted by temperature more strongly. Few studies have examined thermal phenotypic plasticity (N=4) in diving ectotherms, and all report limited plasticity. Average water temperatures in marine and freshwater habitats are projected to increase between 1.5 and 4°C in the next century, and our data suggest that this magnitude of warming could translate to substantial decreases in dive durations, by approximately 16-44%. Together, these data shed light on an overlooked threat to diving ectothermic vertebrates and suggest that time available for underwater activities, such as predator avoidance and foraging, may be shortened under future warming.
Collapse
Affiliation(s)
- Essie M Rodgers
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, St Lucia, 4072 Queensland, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
7
|
Rodgers EM, Franklin CE. Aerobic scope and climate warming: Testing the “
plastic floors and concrete ceilings
” hypothesis in the estuarine crocodile (
Crocodylus porosus
). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:108-117. [DOI: 10.1002/jez.2412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Essie M. Rodgers
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - Craig E. Franklin
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
8
|
Tran TT, Janssens L, Dinh KV, Stoks R. An adaptive transgenerational effect of warming but not of pesticide exposure determines how a pesticide and warming interact for antipredator behaviour. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:307-315. [PMID: 30447473 DOI: 10.1016/j.envpol.2018.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/18/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
The impact of pesticides on organisms may strongly depend on temperature. While many species will be exposed to pesticides and warming both in the parental and offspring generations, transgenerational effects of pesticides under warming are still poorly studied, particularly for behaviour. We therefore studied the single and combined effects of exposure to the pesticide chlorpyrifos (CPF) and warming both within and across generations on antipredator behaviour of larvae of the vector mosquito Culex pipiens. Within each generation pesticide exposure and warming reduced the escape diving time, making the larvae more susceptible to predation. Pesticide exposure of the parents did not affect offspring antipredator behaviour. Yet, parental exposure to warming determined how warming and the pesticide interacted in the offspring generation. When parents were reared at 24 °C, warming no longer reduced offspring diving times in the solvent control, suggesting an adaptive transgenerational effect to prepare the offspring to better deal with a higher predation risk under warming. Related to this, the CPF-induced reduction in diving time was stronger at 20 °C than at 24 °C, except in the offspring whose parents had been exposed to 24 °C. This dependency of the widespread interaction between warming and pesticide exposure on an adaptive transgenerational effect of warming is an important finding at the interface of global change ecology and ecotoxicology.
Collapse
Affiliation(s)
- Tam T Tran
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium; Department of Aquatic Animal Health, Institute of Aquaculture, Nha Trang University, Nha Trang, Viet Nam.
| | - Lizanne Janssens
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium.
| | - Khuong V Dinh
- Department of Fisheries Biology, Institute of Aquaculture, Nha Trang University, Nha Trang, Viet Nam; National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark.
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Uriona TJ, Lyon M, Farmer CG. Lithophagy Prolongs Voluntary Dives in American alligators ( Alligator mississippiensis). Integr Org Biol 2019; 1:oby008. [PMID: 33791515 PMCID: PMC7671140 DOI: 10.1093/iob/oby008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many vertebrates ingest stones, but the function of this behavior is not fully understood. We tested the hypothesis that lithophagy increases the duration of voluntary dives in juvenile American alligators (Alligator mississippiensis). After ingestion of granite stones equivalent to 2.5% of body weight, the average duration of dives increased by 88% and the maximum duration increased by 117%. These data are consistent with the hypothesis that gastroliths serve to increase specific gravity, and that the animals compensate by increasing lung volume, thereby diving with larger stores of pulmonary oxygen.
Collapse
Affiliation(s)
- T J Uriona
- Trinity College Dublin, Dublin 2, Ireland; Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - M Lyon
- Trinity College Dublin, Dublin 2, Ireland; Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - C G Farmer
- Trinity College Dublin, Dublin 2, Ireland; Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Rodgers EM, Franklin CE. Physiological mechanisms constraining ectotherm fright-dive performance at elevated temperatures. J Exp Biol 2017; 220:3556-3564. [DOI: 10.1242/jeb.155440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/25/2017] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Survival of air-breathing, diving ectotherms is dependent on their capacity to optimise the time available for obligate underwater activities, such as predator avoidance. Submergence times are thermally sensitive, with dive durations significantly reduced by increases in water temperature, deeming these animals particularly vulnerable to the effects of climate change. The physiological mechanisms underlying this compromised performance are unclear but are hypothesised to be linked to increased oxygen demand and a reduced capacity for metabolic depression at elevated temperatures. Here, we investigated how water temperature (both acute and chronic exposures) affected the physiology of juvenile estuarine crocodiles (Crocodylus porosus) performing predator avoidance dives (i.e. fright-dives). Diving oxygen consumption, ‘fright’ bradycardia, haematocrit and haemoglobin (indicators of blood oxygen carrying capacity) were assessed at two test temperatures, reflective of different climate change scenarios (i.e. current summer water temperatures, 28°C, and ‘high’ climate warming, 34°C). Diving oxygen consumption rate increased threefold between 28 and 34°C (Q10=7.4). The capacity to depress oxygen demand was reduced at elevated temperatures, with animals lowering oxygen demand from surface levels by 52.9±27.8% and 27.8±16.5% (means±s.e.m.) at 28°C and 34°C, respectively. Resting and post-fright-dive haematocrit and haemoglobin were thermally insensitive. Together these findings suggest decrements in fright-dive performance at elevated temperatures stem from increased oxygen demand coupled with a reduced capacity for metabolic depression.
Collapse
Affiliation(s)
- Essie M. Rodgers
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Craig E. Franklin
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|