1
|
Zaid E, Rainsford FW, Johnsson RD, Valcu M, Vyssotski AL, Meerlo P, Lesku JA. Semelparous marsupials reduce sleep for sex. Curr Biol 2024; 34:606-614.e3. [PMID: 38278151 DOI: 10.1016/j.cub.2023.12.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/16/2023] [Accepted: 12/19/2023] [Indexed: 01/28/2024]
Abstract
Sleep is a prominent, seemingly universal animal behavior. Although sleep maintains optimal waking performance, the biological drive to sleep may be incompatible with the life history of some species. In a multi-year study on semelparous marsupials in Australia, we provide the first direct evidence of ecological sleep restriction in a terrestrial mammal. Dusky (Antechinus swainsonii) and agile (A. agilis) antechinus have an unusual reproductive strategy characterized by the synchronous death of all males at the end of their only breeding season. Using accelerometry, electrophysiology, and metabolomics, we show that males, but not females, increase their activity during the breeding season by reducing sleep. In a trade-off between the neurophysiological requirements for sleep and evolutionary necessity for reproduction, strong sexual selection might drive males to sacrifice sleep to increase access to fertile females and ultimately maximize their fitness.
Collapse
Affiliation(s)
- Erika Zaid
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia.
| | - Frederick W Rainsford
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Robin D Johnsson
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia; Department of Psychology, Franklin and Marshall College, Lancaster, PA 17603, USA
| | - Mihai Valcu
- Department of Ornithology, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich and Swiss Federal Institute of Technology (ETH), 8057 Zurich, Switzerland
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, the Netherlands
| | - John A Lesku
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
2
|
Deviche P, Sweazea K, Angelier F. Past and future: Urbanization and the avian endocrine system. Gen Comp Endocrinol 2023; 332:114159. [PMID: 36368439 DOI: 10.1016/j.ygcen.2022.114159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022]
Abstract
Urban environments are evolutionarily novel and differ from natural environments in many respects including food and/or water availability, predation, noise, light, air quality, pathogens, biodiversity, and temperature. The success of organisms in urban environments requires physiological plasticity and adjustments that have been described extensively, including in birds residing in geographically and climatically diverse regions. These studies have revealed a few relatively consistent differences between urban and non-urban conspecifics. For example, seasonally breeding urban birds often develop their reproductive system earlier than non-urban birds, perhaps in response to more abundant trophic resources. In most instances, however, analyses of existing data indicate no general pattern distinguishing urban and non-urban birds. It is, for instance, often hypothesized that urban environments are stressful, yet the activity of the hypothalamus-pituitary-adrenal axis does not differ consistently between urban and non-urban birds. A similar conclusion is reached by comparing blood indices of metabolism. The origin of these disparities remains poorly understood, partly because many studies are correlative rather than aiming at establishing causality, which effectively limits our ability to formulate specific hypotheses regarding the impacts of urbanization on wildlife. We suggest that future research will benefit from prioritizing mechanistic approaches to identify environmental factors that shape the phenotypic responses of organisms to urbanization and the neuroendocrine and metabolic bases of these responses. Further, it will be critical to elucidate whether factors affect these responses (a) cumulatively or synergistically; and (b) differentially as a function of age, sex, reproductive status, season, and mobility within the urban environment. Research to date has used various taxa that differ greatly not only phylogenetically, but also with regard to ecological requirements, social systems, propensity to consume anthropogenic food, and behavioral responses to human presence. Researchers may instead benefit from standardizing approaches to examine a small number of representative models with wide geographic distribution and that occupy diverse urban ecosystems.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Karen Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Frederic Angelier
- Centre d'Etudes Biologiques de Chizé, UMR7372, CNRS - La Rochelle Universite, Villiers en Bois, France
| |
Collapse
|
3
|
Verma AK, Singh S, Rizvi SI. Aging, circadian disruption and neurodegeneration: Interesting interplay. Exp Gerontol 2023; 172:112076. [PMID: 36574855 DOI: 10.1016/j.exger.2022.112076] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
The circadian system is an intricate molecular network of coordinating circadian clocks that organize the internal synchrony of the organism in response to the environment. These rhythms are maintained by genetically programmed positive and negative auto-regulated transcriptional and translational feedback loops that sustain 24-hour oscillations in mRNA and protein components of the endogenous circadian clock. Since inter and intracellular activity of the central pacemaker appears to reduce with aging, the interaction between the circadian clock and aging continues to elude our understanding. In this review article, we discuss circadian clock components at the molecular level and how aging adversely affects circadian clock functioning in rodents and humans. The natural decline in melatonin levels with aging strongly contributes to circadian dysregulation resulting in the development of neurological anomalies. Additionally, inappropriate environmental conditions such as Artificial Light at Night (ALAN) can cause circadian disruption or chronodisruption (CD) which can result in a variety of pathological diseases, including premature aging. Furthermore, we summarize recent evidence suggesting that CD may also be a predisposing factor for the development of age-related neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), although more investigation is required to prove this link. Finally, certain chrono-enhancement approaches have been offered as intervention strategies to prevent, alleviate, or mitigate the impacts of CD. This review thus aims to bring together recent advancements in the chronobiology of the aging process, as well as its role in NDDs.
Collapse
Affiliation(s)
- Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India; Psychedelics Research Group, Biological Psychiatry Laboratory and Hadassah BrainLabs, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
4
|
Velasque M, Denton JA, Briffa M. Under the influence of light: How light pollution disrupts personality and metabolism in hermit crabs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120594. [PMID: 36370979 DOI: 10.1016/j.envpol.2022.120594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic disturbances are known to cause significant physiological and behavioural changes in animals and, thus, are the critical focus of numerous studies. Light pollution is an increasingly recognised source of disturbance that has the potential to impact animal physiology and behaviour. Here, we investigate the effect of constant light on a personality trait and metabolic rate in the European hermit crab Pagurus bernhardus. We used Bayesian mixed models to estimate average behavioural change (i.e. sample mean level behavioural plasticity) and between- and within-individual variation in boldness in response to laboratory light. Hermit crabs experiencing constant light were consistently less bold and had a higher metabolic rate than those kept under a standard laboratory light regime (12:12 h light/dark). However, there was no effect of light on individual consistency in behaviour. As boldness is associated with coping with risk, hermit crabs exposed to light pollution at night may experience increased perceived predation risk, adjusting their behaviour to compensate for the increased conspicuousness. However, reduced boldness could lead to lower rates of foraging and this, in combination with elevated metabolic rate, has the potential for a reduction in energy balance.
Collapse
Affiliation(s)
- M Velasque
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, Devon, United Kingdom; Genomics & Regulatory Systems Unit, Okinawa Institute of Science & Technology, Okinawa, Japan; The Experimental Evolutionary Biology Lab, School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| | - J A Denton
- The World Mosquito Program, Institute of Vector-borne Disease, Monash University, Clayton, Victoria, Australia
| | - M Briffa
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, Devon, United Kingdom
| |
Collapse
|
5
|
Katabaro JM, Yan Y, Hu T, Yu Q, Cheng X. A review of the effects of artificial light at night in urban areas on the ecosystem level and the remedial measures. Front Public Health 2022; 10:969945. [PMID: 36299764 PMCID: PMC9589889 DOI: 10.3389/fpubh.2022.969945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
This paper attempts to realize the balance between humans and ecology in designing the nighttime light environment of urban parks by clarifying the influence of nighttime artificial light on the ecosystem of urban parks. Firstly, we reviewed the effects of nighttime artificial light on individual predation and reproduction of animals and personal growth and reproduction of plants. Secondly, we discuss the impact of individual changes caused by artificial lighting on ecosystem function at the ecosystem and analyze its advantages and disadvantages. The results showed that nighttime artificial light had a double-sided impact on the ecosystem, which would hurt the ecosystem function, but had a positive effect on the green space, which lacked natural light and had high plant density. This paper focuses on the areas with increased application of artificial lighting and rich species of animals and plants in night cities, such as urban forest parks and urban green spaces. It discusses how to reduce the intrusion of artificial lighting on ecosystems and how to make better use of the positive effect of artificial light.
Collapse
Affiliation(s)
- Justine Mushobozi Katabaro
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| | - Yonghong Yan
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| | - Tao Hu
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| | - Quan Yu
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| | - Xiang Cheng
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Thieux M, Guyon A, Herbillon V, Merle L, Lachaux JP, Plancoulaine S, Seugnet L, Franco P. Interest of the BLAST paradigm and salivary markers for the evaluation of sleepiness in drivers. Front Neurosci 2022; 16:991528. [PMID: 36161153 PMCID: PMC9490274 DOI: 10.3389/fnins.2022.991528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives Sleepiness is associated with decreased cognitive abilities and remains one of the main causes of fatal road accidents. The tools currently available to assess sleepiness, such as questionnaires, are subject to intra- and inter-individual variability, while multiple sleep latency tests are only feasible in few sleep laboratories. The main objective of this study was to explore new potential markers (neurocognitive, biological) to objectively assess sleepiness in drivers. Methods A total of 186 drivers (median age 44 years, range 20-74 years, 73% men, 14% obese) were included during a break at a highway service area, in the morning, while on the road for vacation. Questionnaires on sleepiness and sleep characteristics (habitual and on the night before travel), the Bron-Lyon Attention Stability Test (BLAST), and two salivary samples (α-amylase and oxalate) were collected. Associations between measures of sleepiness [Epworth Sleepiness Scale (ESS), and Stanford Sleepiness Scale (SSS)], sleep characteristics, neurocognitive, and biological markers were tested using regression models adjusted for confounding factors. Results The night before travel, 83% of the drivers reduced their sleep time and 30% slept 5 h or less. The higher the number of miles to be traveled, the higher the decrease, and the shorter the sleep time. The night before travel, 18 and 24% of the drivers complained of poor sleep quality and difficulty falling asleep. The sleep characteristics on the night before travel were associated with the habitual sleep characteristics. At the time of the test, 47% of the drivers scored pathologically on the SSS. Poor sleep quality and difficulty falling asleep the night before travel were associated with increased sleepiness as assessed by the SSS and decreased attentional ability as assessed by the BLAST. No association between salivary markers and acute sleepiness was observed. Conclusions The sleep characteristics of the night before travel were associated with sleepiness and attentional performance. The SSS and the BLAST could be used by individual drivers in a self-evaluation context. Biological markers showed a high variability and limited association with sleep parameters across subjects, emphasizing the need for within-subject designs to assess their usefulness.
Collapse
Affiliation(s)
- Marine Thieux
- Centre de Recherche en Neurosciences de Lyon (CRNL), Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
- Centre de Référence Maladies Rares (CRMR) Narcolepsie-Hypersomnies Rares, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon (HCL), Lyon, France
| | - Aurore Guyon
- Centre de Référence Maladies Rares (CRMR) Narcolepsie-Hypersomnies Rares, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon (HCL), Lyon, France
| | - Vania Herbillon
- Centre de Recherche en Neurosciences de Lyon (CRNL), Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
- Centre de Référence Maladies Rares (CRMR) Narcolepsie-Hypersomnies Rares, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon (HCL), Lyon, France
| | - Lydie Merle
- Centre de Recherche en Neurosciences de Lyon (CRNL), Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| | - Jean-Philippe Lachaux
- Centre de Recherche en Neurosciences de Lyon (CRNL), Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| | | | - Laurent Seugnet
- Centre de Recherche en Neurosciences de Lyon (CRNL), Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| | - Patricia Franco
- Centre de Recherche en Neurosciences de Lyon (CRNL), Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
- Centre de Référence Maladies Rares (CRMR) Narcolepsie-Hypersomnies Rares, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon (HCL), Lyon, France
| |
Collapse
|
7
|
A Systematic Review for Establishing Relevant Environmental Parameters for Urban Lighting: Translating Research into Practice. SUSTAINABILITY 2022. [DOI: 10.3390/su14031107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The application of lighting technologies developed in the 20th century has increased the brightness and changed the spectral composition of nocturnal night-time habitats and night skies across urban, peri-urban, rural, and pristine landscapes, and subsequently, researchers have observed the disturbance of biological rhythms of flora and fauna. To reduce these impacts, it is essential to translate relevant knowledge about the potential adverse effects of artificial light at night (ALAN) from research into applicable urban lighting practice. Therefore, the aim of this paper is to identify and report, via a systematic review, the effects of exposure to different physical properties of artificial light sources on various organism groups, including plants, arthropods, insects, spiders, fish, amphibians, reptiles, birds, and non-human mammals (including bats, rodents, and primates). PRISMA 2020 guidelines were used to identify a total of 1417 studies from Web of Science and PubMed. In 216 studies, diverse behavioral and physiological responses were observed across taxa when organisms were exposed to ALAN. The studies showed that the responses were dependent on high illuminance levels, duration of light exposure, and unnatural color spectra at night and also highlighted where research gaps remain in the domains of ALAN research and urban lighting practice. To avoid misinterpretation, and to define a common language, key terminologies and definitions connected to natural and artificial light have been provided. Furthermore, the adverse impacts of ALAN urgently need to be better researched, understood, and managed for the development of future lighting guidelines and standards to optimize sustainable design applications that preserve night-time environment(s) and their inhabiting flora and fauna.
Collapse
|
8
|
Abstract
An increase in artificial night lighting has blurred the boundaries of day and night and transformed the natural day-night environment with alteration in the temporal niche of the animals. Male zebra finches were exposed to a dim light at night (dLAN) protocol (Light: dLAN, 12L = 200 lux: 12dLAN = 5 lux) with controls on darkness at night (Light: dark, 12L = 200 lux: 12D = 0 lux) for six weeks. We assayed sleep-wake, daily behaviors, mood, and cognition, as well as changes in physiological parameters. Dim light at night increased sleep frequency, delayed sleep onset, advanced awakening latency, and caused a reduction in total sleep duration. dLAN birds did not associate (physical association) with novel object and birds spent significantly lesser time on perch with novel object as compared to LD. In colour learning task, night illuminated birds took more time to learn and made more error, compared to LD. dLAN significantly altered the 24-h daily behavioral rhythm (amplitude and acrophase) of feeding, drinking, preening, and perch-hopping behavior. In particular, birds extended their feeding hours in the nighttime under dLAN, with no difference in total food intake. Birds under dLAN increased fattening and hence significantly increased body mass. Our results show that dim light at night altered feeding rhythm, caused decrease in sleep behavior, and negatively affected learning and memory performance in male zebra finches.
Collapse
|
9
|
Wang JS, Tuanmu MN, Hung CM. Effects of artificial light at night on the nest-site selection, reproductive success and behavior of a synanthropic bird. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117805. [PMID: 34351282 DOI: 10.1016/j.envpol.2021.117805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Understanding how artificial light at night (ALAN) impacts wildlife is increasingly important because more and more species are colonizing urban areas. As most of the bird studies on ALAN use controlled light set inside or around nest-boxes, the ecological effect of ALAN resulting from in situ streetlight on birds remains contentious. The barn swallow (Hirundo rustica) often builds open nests on buildings, which are directly exposed to varying intensity of ALAN, and thus provides a good system to examine the effect of in situ ALAN on birds. By examining the nest-site selection, reproductive success and behavior of barn swallows under various ALAN intensity in Taipei City, we found a positive effect of ALAN on their fledging success; nonetheless, such effect was only found in the swallows' first brood, but not second one. We also found that parent birds in the nests with higher ALAN intensity had higher feeding rates and more extended feeding time past sunset, which were likely stimulated by the increased begging behavior of their chicks. The night-feeding behavior might contribute to the increased fledging success, especially at the early breeding season. Interestingly, despite of the reproductive benefits obtained from ALAN, we found that the barn swallows did not select nest sites regarding ALAN intensity. The weak nest-site selection perhaps result from the complex life history interactions involving ALAN and/or confounding factors associated with ALAN in cities. This study improves our understanding of how urban birds, especially open-nesting ones, respond to in situ ALAN and provides useful information for developing urban conservation strategies.
Collapse
Affiliation(s)
- Jhih-Syuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Mao-Ning Tuanmu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
10
|
Aulsebrook AE, Johnsson RD, Lesku JA. Light, Sleep and Performance in Diurnal Birds. Clocks Sleep 2021; 3:115-131. [PMID: 33525352 PMCID: PMC7931117 DOI: 10.3390/clockssleep3010008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 01/04/2023] Open
Abstract
Sleep has a multitude of benefits and is generally considered necessary for optimal performance. Disruption of sleep by extended photoperiods, moonlight and artificial light could therefore impair performance in humans and non-human animals alike. Here, we review the evidence for effects of light on sleep and subsequent performance in birds. There is accumulating evidence that exposure to natural and artificial sources of light regulates and suppresses sleep in diurnal birds. Sleep also benefits avian cognitive performance, including during early development. Nevertheless, multiple studies suggest that light can prolong wakefulness in birds without impairing performance. Although there is still limited research on this topic, these results raise intriguing questions about the adaptive value of sleep. Further research into the links between light, sleep and performance, including the underlying mechanisms and consequences for fitness, could shed new light on sleep evolution and urban ecology.
Collapse
Affiliation(s)
- Anne E. Aulsebrook
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
- School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (R.D.J.); (J.A.L.)
- Correspondence:
| | - Robin D. Johnsson
- School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (R.D.J.); (J.A.L.)
| | - John A. Lesku
- School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (R.D.J.); (J.A.L.)
| |
Collapse
|
11
|
Sepp T, Webb E, Simpson RK, Giraudeau M, McGraw KJ, Hutton P. Light at night reduces digestive efficiency of developing birds: an experiment with king quail. Naturwissenschaften 2021; 108:4. [PMID: 33399962 DOI: 10.1007/s00114-020-01715-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 11/25/2022]
Abstract
Artificial light at night (ALAN) exposes animals to a novel environmental stimulus, one that is generally thought to be maladaptive. ALAN-related health problems have received little attention in non-model species, and we generally know little about the nutritional-physiological impacts of ALAN, especially in young animals. Here, we use a novel application of the acid steatocrit method to experimentally assess changes in digestive efficiency of growing king quail (Excalfactoria chinensis) in response to ALAN. Two weeks after hatching, quail were split into two groups (n = 20-21 per group): overnight-light-treated vs. overnight-dark-treated. When the chicks were 3 weeks old, the experimental group was exposed to weak blue light (ca. 0.3 lux) throughout the entire night for 6 consecutive weeks, until all the chicks had achieved sexual maturation. Fecal samples for assessing digestive efficiency were collected every week. We found that digestive efficiency of quail was reduced by ALAN at two time points from weeks 4 to 9 after hatching (quail reach adulthood by week 9). The negative effect of ALAN on digestion coincided with the period of fastest skeletal growth, which suggests that ALAN may reduce digestive efficiency when energetic demands of growth are at their highest. Interestingly, growth rate was not influenced by ALAN. This suggests that either the negative physiological impacts of ALAN may be concealed when food is provided ad libitum, the observed changes in digestive efficiency were too small to affect growth or condition, or that ALAN-exposed birds had reduced energy expenditure. Our results illustrate that the health impacts of ALAN on wild animals should not be restricted to traditional markers like body mass or growth rate, but instead on a wide array of integrated physiological traits.
Collapse
Affiliation(s)
- Tuul Sepp
- Department of Zoology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia. .,School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| | - Emily Webb
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Richard K Simpson
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.,Department of Biological Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Mathieu Giraudeau
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.,CREEC, MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 6450134394, Montpellier Cedex 5, France
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Pierce Hutton
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
12
|
Batra T, Malik I, Prabhat A, Bhardwaj SK, Kumar V. Sleep in unnatural times: illuminated night negatively affects sleep and associated hypothalamic gene expressions in diurnal zebra finches. Proc Biol Sci 2020; 287:20192952. [PMID: 32517617 DOI: 10.1098/rspb.2019.2952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We investigated the effects of exposure at ecologically relevant levels of dim light at night (dLAN) on sleep and the 24 h hypothalamic expression pattern of genes involved in the circadian timing (per2, bmal1, reverb-β, cry1, ror-α, clock) and sleep regulatory pathways (cytokines: tlr4, tnf-α, il-1β, nos; Ca2+-dependent pathway: camk2, sik3, nr3a; cholinergic receptor, achm3) in diurnal female zebra finches. Birds were exposed to 12 h light (150 lux) coupled with 12 h of absolute darkness or of 5 lux dim light for three weeks. dLAN fragmented the nocturnal sleep in reduced bouts, and caused sleep loss as evidenced by reduced plasma oxalate levels. Under dLAN, the 24 h rhythm of per2, but not bmal1 or reverb-β, showed a reduced amplitude and altered peak expression time; however, clock, ror-α and cry1 expressions showed an abolition of the 24 h rhythm. Decreased tlr4, il-1β and nos, and the lack of diurnal difference in achm3 messenger RNA levels suggested an attenuated inhibition of the arousal system (hence, awake state promotion) under dLAN. Similarly, changes in camk2, sik3 and nr3a expressions suggested dLAN-effects on Ca2+-dependent sleep-inducing pathways. These results demonstrate dLAN-induced negative effects on sleep and associated hypothalamic molecular pathways, and provide insights into health risks of illuminated night exposures to diurnal animals.
Collapse
Affiliation(s)
- Twinkle Batra
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Indu Malik
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Abhilash Prabhat
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | | | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110 007, India
| |
Collapse
|
13
|
Grunst ML, Raap T, Grunst AS, Pinxten R, Parenteau C, Angelier F, Eens M. Early-life exposure to artificial light at night elevates physiological stress in free-living songbirds ☆. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113895. [PMID: 31926393 DOI: 10.1016/j.envpol.2019.113895] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Artificial light at night (ALAN) can disrupt adaptive patterns of physiology and behavior that promote high fitness, resulting in physiological stress and elevation of steroid glucocorticoids (corticosterone, CORT in birds). Elevated CORT may have particularly profound effects early in life, with the potential for enduring effects that persist into adulthood. Research on the consequences of early-life exposure to ALAN remains limited, especially outside of the laboratory, and whether light exposure affects CORT concentrations in wild nestling birds particularly remains to be elucidated. We used an experimental setup to test the hypothesis that ALAN elevates CORT concentrations in developing free-living birds, by exposing nestling great tits (Parus major) to ALAN inside nest boxes. We measured CORT in feathers grown over the timeframe of the experiment (7 nights), such that CORT concentrations represent an integrative metric of hormone release over the period of nocturnal light exposure, and of development. We also assessed the relationships between feather CORT concentrations, body condition, nestling size rank and fledging success. In addition, we evaluated the relationship between feather CORT concentrations and telomere length. Nestlings exposed to ALAN had higher feather CORT concentrations than control nestlings, and nestlings in poorer body condition and smaller brood members also had higher CORT. On the other hand, telomere length, fledging success, and recruitment rate were not significantly associated with light exposure or feather CORT concentrations. Results indicate that exposure to ALAN elevates CORT concentrations in nestlings, which may reflect physiological stress. In addition, the organizational effects of CORT are known to be substantial. Thus, despite the lack of an effect on telomere length and survivorship, elevated CORT concentrations in nestlings exposed to ALAN may have subsequent impacts on later-life fitness and stress sensitivity.
Collapse
Affiliation(s)
- Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Thomas Raap
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| | - Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium; Faculty of Social Sciences, Didactica Research Group, University of Antwerp, 2000, Antwerp, Belgium
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, UMR 7372, Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, UMR 7372, Villiers en Bois, France
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
14
|
Assessment of Night-Time Lighting for Global Terrestrial Protected and Wilderness Areas. REMOTE SENSING 2019. [DOI: 10.3390/rs11222699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protected areas (PAs) play an important role in biodiversity conservation and ecosystem integrity. However, human development has threatened and affected the function and effectiveness of PAs. The Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) night-time stable light (NTL) data have proven to be an effective indicator of the intensity and change of human-induced urban development over a long time span and at a larger spatial scale. We used the NTL data from 1992 to 2013 to characterize the human-induced urban development and studied the spatial and temporal variation of the NTL of global terrestrial PAs. We selected seven types of PAs defined by the International Union for Conversation of Nature (IUCN), including strict nature reserve (Ia), wilderness area (Ib), national park (II), natural monument or feature (III), habitat/species management area (IV), protected landscape/seascape (V), and protected area with sustainable use of natural resources (VI). We evaluated the NTL digital number (DN) in PAs and their surrounding buffer zones, i.e., 0–1 km, 1–5 km, 5–10 km, 10–25 km, 25–50 km, and 50–100 km. The results revealed the level, growth rate, trend, and distribution pattern of NTL in PAs. Within PAs, areas of types V and Ib had the highest and lowest NTL levels, respectively. In the surrounding 1–100 km buffer zones, type V PAs also had the highest NTL level, but type VI PAs had the lowest NTL level. The NTL level in the areas surrounding PAs was higher than that within PAs. Types Ia and III PAs showed the highest and lowest NTL growth rate from 1992 to 2013, respectively, both inside and outside of PAs. The NTL distributions surrounding the Ib and VI PAs were different from other types. The areas close to Ib and VI boundaries, i.e., in the 0–25 km buffer zones, showed lower NTL levels, for which the highest NTL level was observed within the 25–100 km buffer zone. However, other types of PAs showed the opposite NTL patterns. The NTL level was lower in the distant buffer zones, and the lowest night light was within the 1–25 km buffer zones. Globally, 6.9% of PAs are being affected by NTL. Conditions of wilderness areas, e.g., high latitude regions, Tibetan Plateau, Amazon, and Caribbean, are the least affected by NTL. The PAs in Europe, Asia, and North America are more affected by NTL than South America, Africa, and Oceania.
Collapse
|
15
|
Ulgezen ZN, Käpylä T, Meerlo P, Spoelstra K, Visser ME, Dominoni DM. The preference and costs of sleeping under light at night in forest and urban great tits. Proc Biol Sci 2019; 286:20190872. [PMID: 31213184 PMCID: PMC6599990 DOI: 10.1098/rspb.2019.0872] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022] Open
Abstract
Artificial light at night (ALAN) is an increasing phenomenon associated with worldwide urbanization. In birds, broad-spectrum white ALAN can have disruptive effects on activity patterns, metabolism, stress response and immune function. There has been growing research on whether the use of alternative light spectra can reduce these negative effects, but surprisingly, there has been no study to determine which light spectrum birds prefer. To test such a preference, we gave urban and forest great tits (Parus major) the choice where to roost using pairwise combinations of darkness, white light or green dim light at night (1.5 lux). Birds preferred to sleep under artificial light instead of darkness, and green was preferred over white light. In a subsequent experiment, we investigated the consequence of sleeping under a particular light condition, and measured birds' daily activity levels, daily energy expenditure (DEE), oxalic acid as a biomarker for sleep debt and cognitive abilities. White light affected activity patterns more than green light. Moreover, there was an origin-dependent response to spectral composition: in urban birds, the total daily activity and night activity did not differ between white and green light, while forest birds were more active under white than green light. We also found that individuals who slept under white and green light had higher DEE. However, there were no differences in oxalic acid levels or cognitive abilities between light treatments. Thus, we argue that in naive birds that had never encountered light at night, white light might disrupt circadian rhythms more than green light. However, it is possible that the negative effects of ALAN on sleep and cognition might be observed only under intensities higher than 1.5 lux. These results suggest that reducing the intensity of light pollution as well as tuning the spectrum towards long wavelengths may considerably reduce its impact.
Collapse
Affiliation(s)
- Zeynep N. Ulgezen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Animal Breeding and Genetics, Wageningen University, Wageningen, The Netherlands
| | - Teemu Käpylä
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Marcel E. Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Animal Breeding and Genetics, Wageningen University, Wageningen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Davide M. Dominoni
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Grunst ML, Raap T, Grunst AS, Pinxten R, Eens M. Artificial light at night does not affect telomere shortening in a developing free-living songbird: A field experiment: Artificial light at night and telomere dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:266-275. [PMID: 30690361 DOI: 10.1016/j.scitotenv.2018.12.469] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/18/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
Artificial light at night (ALAN) is an increasingly pervasive anthropogenic disturbance factor. ALAN can seriously disrupt physiological systems that follow circadian rhythms, and may be particularly influential early in life, when developmental trajectories are sensitive to stressful conditions. Using great tits (Parus major) as a model species, we experimentally examined how ALAN affects physiological stress in developing nestlings. We used a repeated-measure design to assess effects of ALAN on telomere shortening, body mass, tarsus length and body condition. Telomeres are repetitive nucleotide sequences that protect chromosomes from damage and malfunction. Early-life telomere shortening can be accelerated by environmental stressors, and has been linked to later-life declines in survival and reproduction. We also assayed nitric oxide, as an additional metric of physiological stress, and determined fledging success. Change in body condition between day 8 and 15 differed according to treatment. Nestlings exposed to ALAN displayed a trend towards a decline in condition, whereas control nestlings displayed a trend towards increased condition. This pattern was driven by a greater increase in tarsus length relative to mass in nestlings exposed to ALAN. Nestlings in poorer condition and nestlings that were smaller than their nest mates had shorter telomeres. However, exposure to ALAN was unrelated to telomere shortening, and also had no effect on nitric oxide concentrations or fledging success. Thus, exposure to ALAN may not have led to sufficient stress to induce telomere shortening. Indeed, plasticity in other physiological systems could allow nestlings to maintain telomere length despite moderate stress. Alternatively, the cascade of physiological and behavioral responses associated with light exposure may have no net effect on telomere dynamics.
Collapse
Affiliation(s)
- Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Thomas Raap
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| | - Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium; Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, 2000 Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
17
|
Raap T, Thys B, Grunst AS, Grunst ML, Pinxten R, Eens M. Personality and artificial light at night in a semi-urban songbird population: No evidence for personality-dependent sampling bias, avoidance or disruptive effects on sleep behaviour. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1317-1324. [PMID: 30268982 DOI: 10.1016/j.envpol.2018.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Light pollution or artificial light at night (ALAN) is an increasing, worldwide challenge that affects many aspects of animal behaviour. Interestingly, the response to ALAN varies widely among individuals within a population and variation in personality (consistent individual differences in behaviour) may be an important factor explaining this variation. Consistent individual differences in exploration behaviour in particular may relate to the response to ALAN, as increasing evidence indicates its relation with how individuals respond to novelty and how they cope with anthropogenic modifications of the environment. Here, we assayed exploration behaviour in a novel environment as a proxy for personality variation in great tits (Parus major). We observed individual sleep behaviour over two consecutive nights, with birds sleeping under natural dark conditions the first night and confronted with ALAN inside the nest box on the second night, representing a modified and novel roosting environment. We examined whether roosting decisions when confronted with a camera (novel object), and subsequently with ALAN, were personality-dependent, as this could potentially create sampling bias. Finally, we assessed whether experimentally challenging individuals with ALAN induced personality-dependent changes in sleep behaviour. Slow and fast explorers were equally likely to roost in a nest box when confronted with either a camera or artificial light inside, indicating the absence of personality-dependent sampling bias or avoidance of exposure to ALAN. Moreover, slow and fast explorers were equally disrupted in their sleep behaviour when challenged with ALAN. Whether other behavioural and physiological effects of ALAN are personality-dependent remains to be determined. Moreover, the sensitivity to disturbance of different behavioural types might depend on the behavioural context and the specific type of challenge in question. In our increasingly urbanized world, determining whether the effects of anthropogenic stressors depend on personality type will be of paramount importance as it may affect population dynamics.
Collapse
Affiliation(s)
- Thomas Raap
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium.
| | - Bert Thys
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
18
|
Aulsebrook AE, Jones TM, Mulder RA, Lesku JA. Impacts of artificial light at night on sleep: A review and prospectus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:409-418. [PMID: 29869374 DOI: 10.1002/jez.2189] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/10/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022]
Abstract
Natural cycles of light and darkness govern the timing of most aspects of animal behavior and physiology. Artificial light at night (ALAN)-a recent and pervasive form of pollution-can mask natural photoperiodic cues and interfere with biological rhythms. One such rhythm vulnerable to perturbation is the sleep-wake cycle. ALAN may greatly influence sleep in humans and wildlife, particularly in animals that sleep predominantly at night. There has been some recent evidence for impacts of ALAN on sleep, but critical questions remain. Some of these can be addressed by adopting approaches already entrenched in sleep research. In this paper, we review the current evidence for impacts of ALAN on sleep, highlight gaps in our understanding, and suggest opportunities for future research.
Collapse
Affiliation(s)
- Anne E Aulsebrook
- The University of Melbourne, School of BioSciences, Melbourne, Victoria, Australia
| | - Therésa M Jones
- The University of Melbourne, School of BioSciences, Melbourne, Victoria, Australia
| | - Raoul A Mulder
- The University of Melbourne, School of BioSciences, Melbourne, Victoria, Australia
| | - John A Lesku
- La Trobe University, School of Life Sciences, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Raap T, Pinxten R, Eens M. Cavities shield birds from effects of artificial light at night on sleep. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:449-456. [DOI: 10.1002/jez.2174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Thomas Raap
- Department of Biology; Behavioural Ecology and Ecophysiology Group; University of Antwerp; Wilrijk Belgium
| | - Rianne Pinxten
- Department of Biology; Behavioural Ecology and Ecophysiology Group; University of Antwerp; Wilrijk Belgium
- Faculty of Social Sciences; Antwerp School of Education; University of Antwerp; Antwerp Belgium
| | - Marcel Eens
- Department of Biology; Behavioural Ecology and Ecophysiology Group; University of Antwerp; Wilrijk Belgium
| |
Collapse
|