1
|
Sluimer JC. Metabolic and Shear Stress Regulate Endothelial Epas1 in Atherosclerosis. Circ Res 2024; 135:838-840. [PMID: 39325850 DOI: 10.1161/circresaha.124.325131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Affiliation(s)
- Judith C Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, the Netherlands. Department of Medical Clinic II for Kidney and Hypertension Diseases, Rheumatological and Immunological Diseases, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Germany. British Heart Foundation (BHF) Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom
| |
Collapse
|
2
|
Jucht AE, Scholz CC. PHD1-3 oxygen sensors in vivo-lessons learned from gene deletions. Pflugers Arch 2024; 476:1307-1337. [PMID: 38509356 PMCID: PMC11310289 DOI: 10.1007/s00424-024-02944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. Prolyl-4-hydroxylase domain 1-3 (PHD1-3; also called Egln1-3, HIF-P4H 1-3, HIF-PH 1-3) proteins belong to the Fe2+- and 2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O2) alongside 2-oxoglutarate as co-substrate to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-3-mediated hydroxylation of HIF-α leads to its degradation and inactivation. Recently, various PHD inhibitors (PHI) have entered the clinics for treatment of renal anaemia. Pre-clinical analyses indicate that PHI treatment may also be beneficial in numerous other hypoxia-associated diseases. Nonetheless, the underlying molecular mechanisms of the observed protective effects of PHIs are only partly understood, currently hindering their translation into the clinics. Moreover, the PHI-mediated increase of Epo levels is not beneficial in all hypoxia-associated diseases and PHD-selective inhibition may be advantageous. Here, we summarise the current knowledge about the relevance and function of each of the three PHD isoforms in vivo, based on the deletion or RNA interference-mediated knockdown of each single corresponding gene in rodents. This information is crucial for our understanding of the physiological relevance and function of the PHDs as well as for elucidating their individual impact on hypoxia-associated diseases. Furthermore, this knowledge highlights which diseases may best be targeted by PHD isoform-selective inhibitors in case such pharmacologic substances become available.
Collapse
Affiliation(s)
- Agnieszka E Jucht
- Institute of Physiology, University of Zurich, Zurich, 8057, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475, Greifswald, Germany.
| |
Collapse
|
3
|
Dai Y, Junho CVC, Schieren L, Wollenhaupt J, Sluimer JC, van der Vorst EPC, Noels H. Cellular metabolism changes in atherosclerosis and the impact of comorbidities. Front Cell Dev Biol 2024; 12:1446964. [PMID: 39188527 PMCID: PMC11345199 DOI: 10.3389/fcell.2024.1446964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Cell activation and nutrient dysregulation are common consequences of atherosclerosis and its preceding risk factors, such as hypertension, dyslipidemia, and diabetes. These diseases may also impact cellular metabolism and consequently cell function, and the other way around, altered cellular metabolism can impact disease development and progression through altered cell function. Understanding the contribution of altered cellular metabolism to atherosclerosis and how cellular metabolism may be altered by co-morbidities and atherosclerosis risk factors could support the development of novel strategies to lower the risk of CVD. Therefore, we briefly review disease pathogenesis and the principles of cell metabolic pathways, before detailing changes in cellular metabolism in the context of atherosclerosis and comorbidities. In the hypoxic, inflammatory and hyperlipidemic milieu of the atherosclerotic plaque riddled with oxidative stress, metabolism shifts to increase anaerobic glycolysis, the pentose-phosphate pathway and amino acid use. We elaborate on metabolic changes for macrophages, neutrophils, vascular endothelial cells, vascular smooth muscle cells and lymphocytes in the context of atherosclerosis and its co-morbidities hypertension, dyslipidemia, and diabetes. Since causal relationships of specific key genes in a metabolic pathway can be cell type-specific and comorbidity-dependent, the impact of cell-specific metabolic changes must be thoroughly explored in vivo, with a focus on also systemic effects. When cell-specific treatments become feasible, this information will be crucial for determining the best metabolic intervention to improve atherosclerosis and its interplay with co-morbidities.
Collapse
Affiliation(s)
- Yusang Dai
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Physical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Carolina Victoria Cruz Junho
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Luisa Schieren
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Judith C. Sluimer
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
4
|
Sluiter TJ, Tillie RJHA, de Jong A, de Bruijn JBG, Peters HAB, van de Leijgraaf R, Halawani R, Westmaas M, Starink LIW, Quax PHA, Sluimer JC, de Vries MR. Myeloid PHD2 Conditional Knockout Improves Intraplaque Angiogenesis and Vascular Remodeling in a Murine Model of Venous Bypass Grafting. J Am Heart Assoc 2024; 13:e033109. [PMID: 38258662 PMCID: PMC11056143 DOI: 10.1161/jaha.123.033109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Intraplaque angiogenesis occurs in response to atherosclerotic plaque hypoxia, which is driven mainly by highly metabolically active macrophages. Improving plaque oxygenation by increasing macrophage hypoxic signaling, thus stimulating intraplaque angiogenesis, could restore cellular function and neovessel maturation, and decrease plaque formation. Prolyl hydroxylases (PHDs) regulate cellular responses to hypoxia. We therefore aimed to elucidate the role of myeloid PHD2, the dominant PHD isoform, on intraplaque angiogenesis in a murine model for venous bypass grafting. METHODS AND RESULTS Myeloid PHD2 conditional knockout (PHD2cko) and PHD2 wild type mice on an Ldlr-/- background underwent vein graft surgery (n=11-15/group) by interpositioning donor caval veins into the carotid artery of genotype-matched mice. At postoperative day 28, vein grafts were harvested for morphometric and compositional analysis, and blood was collected for flow cytometry. Myeloid PHD2cko induced and improved intraplaque angiogenesis by improving neovessel maturation, which reduced intraplaque hemorrhage. Intima/media ratio was decreased in myeloid PHD2cko vein grafts. In addition, PHD2 deficiency prevented dissection of vein grafts and resulted in an increase in vessel wall collagen content. Moreover, the macrophage proinflammatory phenotype in the vein graft wall was attenuated in myeloid PHD2cko mice. In vitro cultured PHD2cko bone marrow-derived macrophages exhibited an increased proangiogenic phenotype compared with control. CONCLUSIONS Myeloid PHD2cko reduces vein graft disease and ameliorates vein graft lesion stability by improving intraplaque angiogenesis.
Collapse
Affiliation(s)
- Thijs J. Sluiter
- Department of SurgeryLeiden University Medical CentreLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CentreLeidenThe Netherlands
| | - Renée J. H. A. Tillie
- Department of Pathology, CARIM School for Cardiovascular SciencesMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Alwin de Jong
- Department of SurgeryLeiden University Medical CentreLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CentreLeidenThe Netherlands
| | - Jenny B. G. de Bruijn
- Department of Pathology, CARIM School for Cardiovascular SciencesMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Hendrika A. B. Peters
- Department of SurgeryLeiden University Medical CentreLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CentreLeidenThe Netherlands
| | | | - Raghed Halawani
- Department of SurgeryLeiden University Medical CentreLeidenThe Netherlands
| | - Michelle Westmaas
- Department of SurgeryLeiden University Medical CentreLeidenThe Netherlands
| | | | - Paul H. A. Quax
- Department of SurgeryLeiden University Medical CentreLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CentreLeidenThe Netherlands
| | - Judith C. Sluimer
- Department of Pathology, CARIM School for Cardiovascular SciencesMaastricht University Medical CentreMaastrichtThe Netherlands
- Centre for Cardiovascular SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Margreet R. de Vries
- Department of SurgeryLeiden University Medical CentreLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CentreLeidenThe Netherlands
- Department of SurgeryBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| |
Collapse
|
5
|
Fu M, Hua X, Shu S, Xu X, Zhang H, Peng Z, Mo H, Liu Y, Chen X, Yang Y, Zhang N, Wang X, Liu Z, Yue G, Hu S, Song J. Single-cell RNA sequencing in donor and end-stage heart failure patients identifies NLRP3 as a therapeutic target for arrhythmogenic right ventricular cardiomyopathy. BMC Med 2024; 22:11. [PMID: 38185631 PMCID: PMC10773142 DOI: 10.1186/s12916-023-03232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Dilation may be the first right ventricular change and accelerates the progression of threatening ventricular tachyarrhythmias and heart failure for patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), but the treatment for right ventricular dilation remains limited. METHODS Single-cell RNA sequencing (scRNA-seq) of blood and biventricular myocardium from 8 study participants was performed, including 6 end-stage heart failure patients with ARVC and 2 normal controls. ScRNA-seq data was then deeply analyzed, including cluster annotation, cellular proportion calculation, and characterization of cellular developmental trajectories and interactions. An integrative analysis of our single-cell data and published genome-wide association study-based data provided insights into the cell-specific contributions to the cardiac arrhythmia phenotype of ARVC. Desmoglein 2 (Dsg2)mut/mut mice were used as the ARVC model to verify the therapeutic effects of pharmacological intervention on identified cellular cluster. RESULTS Right ventricle of ARVC was enriched of CCL3+ proinflammatory macrophages and TNMD+ fibroblasts. Fibroblasts were preferentially affected in ARVC and perturbations associated with ARVC overlap with those reside in genetic variants associated with cardiac arrhythmia. Proinflammatory macrophages strongly interact with fibroblast. Pharmacological inhibition of Nod-like receptor protein 3 (NLRP3), a transcriptional factor predominantly expressed by the CCL3+ proinflammatory macrophages and several other myeloid subclusters, could significantly alleviate right ventricular dilation and dysfunction in Dsg2mut/mut mice (an ARVC mouse model). CONCLUSIONS This study provided a comprehensive analysis of the lineage-specific changes in the blood and myocardium from ARVC patients at a single-cell resolution. Pharmacological inhibition of NLRP3 could prevent right ventricular dilation and dysfunction of mice with ARVC.
Collapse
Affiliation(s)
- Mengxia Fu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Galactophore Department, Galactophore Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Songren Shu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Xinjie Xu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Hang Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Zhiming Peng
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Mo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Yanyun Liu
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Shaanxi, 710126, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Yicheng Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Ningning Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Xiaohu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Zirui Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Guangxin Yue
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Shengshou Hu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China.
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China.
- The Cardiomyopathy Research Group, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China.
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China.
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China.
- The Cardiomyopathy Research Group, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China.
| |
Collapse
|
6
|
Scipione CA, Hyduk SJ, Polenz CK, Cybulsky MI. Unveiling the Hidden Landscape of Arterial Diseases at Single-Cell Resolution. Can J Cardiol 2023; 39:1781-1794. [PMID: 37716639 DOI: 10.1016/j.cjca.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023] Open
Abstract
High-resolution single-cell technologies have shed light on the pathogenesis of cardiovascular diseases by enabling the discovery of novel cellular and transcriptomic signatures associated with various conditions, and uncovering new contributions of inflammatory processes, immunity, metabolic stress, and risk factors. We review the information obtained from studies using single-cell technologies in tissues with atherosclerosis and aortic aneurysms. Insights are provided on the biology of endothelial, smooth muscle, and immune cells in the arterial intima and media. In addition to cellular diversity, numerous examples of plasticity and phenotype switching are highlighted and presented in the context of normal cell functions.
Collapse
Affiliation(s)
- Corey A Scipione
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada.
| | - Sharon J Hyduk
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Chanele K Polenz
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Zhang G, Cui X, Qin Z, Wang Z, Lu Y, Xu Y, Xu S, Tang L, Zhang L, Liu G, Wang X, Zhang J, Tang J. Atherosclerotic plaque vulnerability quantification system for clinical and biological interpretability. iScience 2023; 26:107587. [PMID: 37664595 PMCID: PMC10470306 DOI: 10.1016/j.isci.2023.107587] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/02/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Acute myocardial infarction dominates coronary artery disease mortality. Identifying bio-signatures for plaque destabilization and rupture is important for preventing the transition from coronary stability to instability and the occurrence of thrombosis events. This computational systems biology study enrolled 2,235 samples from 22 independent bulks cohorts and 14 samples from two single-cell cohorts. A machine-learning integrative program containing nine learners was developed to generate a warning classifier linked to atherosclerotic plaque vulnerability signature (APVS). The classifier displays the reliable performance and robustness for distinguishing ST-elevation myocardial infarction from chronic coronary syndrome at presentation, and revealed higher accuracy to 33 pathogenic biomarkers. We also developed an APVS-based quantification system (APVSLevel) for comprehensively quantifying atherosclerotic plaque vulnerability, empowering early-warning capabilities, and accurate assessment of atherosclerosis severity. It unraveled the multidimensional dysregulated mechanisms at high resolution. This study provides a potential tool for macro-level differential diagnosis and evaluation of subtle genetic pathological changes in atherosclerosis.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Xiaolin Cui
- School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Zhen Qin
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Zeyu Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Yongzheng Lu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Yanyan Xu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Shuai Xu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Laiyi Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Gangqiong Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Xiaofang Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Jinying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| |
Collapse
|
8
|
Zhang Y, Weng J, Huan L, Sheng S, Xu F. Mitophagy in atherosclerosis: from mechanism to therapy. Front Immunol 2023; 14:1165507. [PMID: 37261351 PMCID: PMC10228545 DOI: 10.3389/fimmu.2023.1165507] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 06/02/2023] Open
Abstract
Mitophagy is a type of autophagy that can selectively eliminate damaged and depolarized mitochondria to maintain mitochondrial activity and cellular homeostasis. Several pathways have been found to participate in different steps of mitophagy. Mitophagy plays a significant role in the homeostasis and physiological function of vascular endothelial cells, vascular smooth muscle cells, and macrophages, and is involved in the development of atherosclerosis (AS). At present, many medications and natural chemicals have been shown to alter mitophagy and slow the progression of AS. This review serves as an introduction to the field of mitophagy for researchers interested in targeting this pathway as part of a potential AS management strategy.
Collapse
Affiliation(s)
- Yanhong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiajun Weng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Luyao Huan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Song Sheng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
9
|
Yu L, Zhang Y, Liu C, Wu X, Wang S, Sui W, Zhang Y, Zhang C, Zhang M. Heterogeneity of macrophages in atherosclerosis revealed by single-cell RNA sequencing. FASEB J 2023; 37:e22810. [PMID: 36786718 DOI: 10.1096/fj.202201932rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Technology at the single-cell level has advanced dramatically in characterizing molecular heterogeneity. These technologies have enabled cell subtype diversity to be seen in all tissues, including atherosclerotic plaques. Critical in atherosclerosis pathogenesis and progression are macrophages. Previous studies have only determined macrophage phenotypes within the plaque, mainly by bulk analysis. However, recent progress in single-cell technologies now enables the comprehensive mapping of macrophage subsets and phenotypes present in plaques. In this review, we have updated and discussed the definition and classification of macrophage subsets in mice and humans using single-cell RNA sequencing. We summarized the different classification methods and perspectives: traditional classification with an updated scoring system, inflammatory macrophages, foamy macrophages, and atherosclerotic-resident macrophages. In addition, some special types of macrophages were identified by specific markers, including IFN-inducible and cavity macrophages. Furthermore, we discussed macrophage subset-specific markers and their functions. In the future, these novel insights into the characteristics and phenotypes of these macrophage subsets within atherosclerotic plaques can provide additional therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Liwen Yu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yujie Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changhao Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Wu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shasha Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenhai Sui
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
10
|
Li YJ, Jin X, Li D, Lu J, Zhang XN, Yang SJ, Zhao YX, Wu M. New insights into vascular aging: Emerging role of mitochondria function. Biomed Pharmacother 2022; 156:113954. [DOI: 10.1016/j.biopha.2022.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
11
|
Evans PC, Davidson SM, Wojta J, Bäck M, Bollini S, Brittan M, Catapano AL, Chaudhry B, Cluitmans M, Gnecchi M, Guzik TJ, Hoefer I, Madonna R, Monteiro JP, Morawietz H, Osto E, Padró T, Sluimer JC, Tocchetti CG, Van der Heiden K, Vilahur G, Waltenberger J, Weber C. From novel discovery tools and biomarkers to precision medicine-basic cardiovascular science highlights of 2021/22. Cardiovasc Res 2022; 118:2754-2767. [PMID: 35899362 PMCID: PMC9384606 DOI: 10.1093/cvr/cvac114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Here, we review the highlights of cardiovascular basic science published in 2021 and early 2022 on behalf of the European Society of Cardiology Council for Basic Cardiovascular Science. We begin with non-coding RNAs which have emerged as central regulators cardiovascular biology, and then discuss how technological developments in single-cell 'omics are providing new insights into cardiovascular development, inflammation, and disease. We also review recent discoveries on the biology of extracellular vesicles in driving either protective or pathogenic responses. The Nobel Prize in Physiology or Medicine 2021 recognized the importance of the molecular basis of mechanosensing and here we review breakthroughs in cardiovascular sensing of mechanical force. We also summarize discoveries in the field of atherosclerosis including the role of clonal haematopoiesis of indeterminate potential, and new mechanisms of crosstalk between hyperglycaemia, lipid mediators, and inflammation. The past 12 months also witnessed major advances in the field of cardiac arrhythmia including new mechanisms of fibrillation. We also focus on inducible pluripotent stem cell technology which has demonstrated disease causality for several genetic polymorphisms in long-QT syndrome and aortic valve disease, paving the way for personalized medicine approaches. Finally, the cardiovascular community has continued to better understand COVID-19 with significant advancement in our knowledge of cardiovascular tropism, molecular markers, the mechanism of vaccine-induced thrombotic complications and new anti-viral therapies that protect the cardiovascular system.
Collapse
Affiliation(s)
| | | | | | | | - Sveva Bollini
- Department of Experimental Medicine (DIMES), University of Genova, L.go R. Benzi 10, 16132 Genova, Italy
| | - Mairi Brittan
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, Scotland
| | | | - Bill Chaudhry
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Matthijs Cluitmans
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
- Philips Research, Eindhoven, Netherlands
| | - Massimiliano Gnecchi
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia Division of Cardiology, Unit of Translational Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Medicine, University of Cape Town, South Africa
| | - Tomasz J Guzik
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Imo Hoefer
- Central Diagnostic Laboratory, UMC Utrecht, the Netherlands
| | - Rosalinda Madonna
- Institute of Cardiology, Department of Surgical, Medical, Molecular and Critical Care Area, University of Pisa, Pisa, 56124 Italy
- Department of Internal Medicine, Cardiology Division, University of Texas Medical School, Houston, TX, USA
| | - João P Monteiro
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, Scotland
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Elena Osto
- Institute of Clinical Chemistry and Department of Cardiology, Heart Center, University Hospital & University of Zurich, Switzerland
| | - Teresa Padró
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, and CIBERCV-Instituto de Salud Carlos III, Barcelona, Spain
| | - Judith C Sluimer
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, Netherland
- University/BHF Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Carlo Gabriele Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, 80131 Napoli, Italy
| | - Kim Van der Heiden
- Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, and CIBERCV-Instituto de Salud Carlos III, Barcelona, Spain
| | - Johannes Waltenberger
- Cardiovascular Medicine, Medical Faculty, University of Muenster, Muenster, Germany
- Diagnostic and Therapeutic Heart Center, Zurich, Switzerland
| | | |
Collapse
|
12
|
Christoph M, Pflücke C, Mensch M, Augstein A, Jellinghaus S, Ende G, Mierke J, Franke K, Wielockx B, Ibrahim K, Poitz DM. Myeloid PHD2 deficiency accelerates neointima formation via Hif-1α. Mol Immunol 2022; 149:48-58. [PMID: 35724581 DOI: 10.1016/j.molimm.2022.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
The key players of the hypoxic response are the hypoxia-inducible factors (Hif), whose α-subunits are tightly regulated by Prolyl-4-hydroxylases (PHD), predominantly by PHD2. Monocytes/Macrophages are involved in atherosclerosis but also restenosis and were found at hypoxic and sites of the lesion. Little is known about the role of the myeloid PHD2 in atherosclerosis and neointima formation. The study aimed to investigate the consequences of a myeloid deficiency of PHD2 in the process of neointima formation using an arterial denudation model. LysM-cre mice were crossed with PHD2fl/fl, PHD2fl/fl/Hif1αfl/fl and PHD2fl/fl/Hif2αfl/fl to get myeloid specific knockout of PHD2 and the Hif-α subunits. Denudation of the femoral artery was performed and animals were fed a western type diet afterwards with analysis of neointima formation 5 and 35 days after denudation. Increased neointima formation in myeloid PHD2 knockouts was observed, which was blunted by double-knockout of PHD2 and Hif1α whereas double knockout of PHD2 and Hif-2α showed comparable lesions to the PHD2 knockouts. Macrophage infiltration was comparable to the neointima formation, suggesting a more inflammatory reaction, and was accompanied by increased intimal VEGF-A expression. Collagen-content inversely correlated to the extent of neointima formation suggesting a destabilization of the plaque. This effect might be triggered by macrophage polarization. Therefore, in vitro results showed a distinct expression pattern in differentially polarized macrophages with high expression of Hif-1α, VEGF and MMP-1 in proinflammatory M1 macrophages. In conclusion, the results show that myeloid Hif-1α is involved in neointima hyperplasia. Our in vivo and in vitro data reveal a central role for this transcription factor in driving plaque-vascularization accompanied by matrix-degradation leading to plaque destabilization.
Collapse
Affiliation(s)
- Marian Christoph
- Internal Medicine and Cardiology, Heart Center Dresden, University Hospital at the Technische Universität, Dresden, Germany; Technische Universität, Dresden Campus, Chemnitz, Germany
| | - Christian Pflücke
- Internal Medicine and Cardiology, Heart Center Dresden, University Hospital at the Technische Universität, Dresden, Germany
| | - Matthias Mensch
- Internal Medicine and Cardiology, Heart Center Dresden, University Hospital at the Technische Universität, Dresden, Germany
| | - Antje Augstein
- Internal Medicine and Cardiology, Heart Center Dresden, University Hospital at the Technische Universität, Dresden, Germany
| | - Stefanie Jellinghaus
- Internal Medicine and Cardiology, Heart Center Dresden, University Hospital at the Technische Universität, Dresden, Germany
| | - Georg Ende
- Internal Medicine and Cardiology, Heart Center Dresden, University Hospital at the Technische Universität, Dresden, Germany
| | - Johannes Mierke
- Internal Medicine and Cardiology, Heart Center Dresden, University Hospital at the Technische Universität, Dresden, Germany
| | - Kristin Franke
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Karim Ibrahim
- Internal Medicine and Cardiology, Heart Center Dresden, University Hospital at the Technische Universität, Dresden, Germany; Technische Universität, Dresden Campus, Chemnitz, Germany
| | - David M Poitz
- Internal Medicine and Cardiology, Heart Center Dresden, University Hospital at the Technische Universität, Dresden, Germany; Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
13
|
Tillie RJHA, De Bruijn J, Perales-Patón J, Temmerman L, Ghosheh Y, Van Kuijk K, Gijbels MJ, Carmeliet P, Ley K, Saez-Rodriguez J, Sluimer JC. Partial Inhibition of the 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase-3 (PFKFB3) Enzyme in Myeloid Cells Does Not Affect Atherosclerosis. Front Cell Dev Biol 2021; 9:695684. [PMID: 34458258 PMCID: PMC8387953 DOI: 10.3389/fcell.2021.695684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background The protein 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a key stimulator of glycolytic flux. Systemic, partial PFKFB3 inhibition previously decreased total plaque burden and increased plaque stability. However, it is unclear which cell type conferred these positive effects. Myeloid cells play an important role in atherogenesis, and mainly rely on glycolysis for energy supply. Thus, we studied whether myeloid inhibition of PFKFB3-mediated glycolysis in Ldlr–/–LysMCre+/–Pfkfb3fl/fl (Pfkfb3fl/fl) mice confers beneficial effects on plaque stability and alleviates cardiovascular disease burden compared to Ldlr–/–LysMCre+/–Pfkfb3wt/wt control mice (Pfkfb3wt/wt). Methods and Results Analysis of atherosclerotic human and murine single-cell populations confirmed PFKFB3/Pfkfb3 expression in myeloid cells, but also in lymphocytes, endothelial cells, fibroblasts and smooth muscle cells. Pfkfb3wt/wt and Pfkfb3fl/fl mice were fed a 0.25% cholesterol diet for 12 weeks. Pfkfb3fl/fl bone marrow-derived macrophages (BMDMs) showed 50% knockdown of Pfkfb3 mRNA. As expected based on partial glycolysis inhibition, extracellular acidification rate as a measure of glycolysis was partially reduced in Pfkfb3fl/fl compared to Pfkfb3wt/wt BMDMs. Unexpectedly, plaque and necrotic core size, as well as macrophage (MAC3), neutrophil (Ly6G) and collagen (Sirius Red) content were unchanged in advanced Pfkfb3fl/fl lesions. Similarly, early lesion plaque and necrotic core size and total plaque burden were unaffected. Conclusion Partial myeloid knockdown of PFKFB3 did not affect atherosclerosis development in advanced or early lesions. Previously reported positive effects of systemic, partial PFKFB3 inhibition on lesion stabilization, do not seem conferred by monocytes, macrophages or neutrophils. Instead, other Pfkfb3-expressing cells in atherosclerosis might be responsible, such as DCs, smooth muscle cells or fibroblasts.
Collapse
Affiliation(s)
- Renée J H A Tillie
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| | - Jenny De Bruijn
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| | - Javier Perales-Patón
- Faculty of Medicine, Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany.,Institute of Experimental Medicine and Systems Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Lieve Temmerman
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| | - Yanal Ghosheh
- La Jolla Institute for Immunology, San Diego, CA, United States
| | - Kim Van Kuijk
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| | - Marion J Gijbels
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands.,Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands.,Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven Cancer Institute, KU Leuven, Leuven, Belgium.,State Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, Guangzhou, China.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Klaus Ley
- La Jolla Institute for Immunology, San Diego, CA, United States.,Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany.,Institute of Experimental Medicine and Systems Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Judith C Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands.,British Heart Foundation (BHF) Centre for Cardiovascular Sciences (CVS), University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|