1
|
Furukawa N, Kobayashi M, Ito M, Matsui H, Ohashi K, Murohara T, Takeda JI, Ueyama J, Hirayama M, Ohno K. Soy protein β-conglycinin ameliorates pressure overload-induced heart failure by increasing short-chain fatty acid (SCFA)-producing gut microbiota and intestinal SCFAs. Clin Nutr 2024; 43:124-137. [PMID: 39447394 DOI: 10.1016/j.clnu.2024.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND AND AIMS Soybeans and their ingredients have antioxidant and anti-inflammatory effects on cardiovascular diseases. β-Conglycinin (β-CG), a major constituent of soy proteins, is protective against obesity, hypertension, and chronic kidney disease, but its effects on heart failure remain to be elucidated. We tested the effects of β-CG on left ventricular (LV) remodeling in pressure overload-induced heart failure. METHODS A transverse aortic constriction (TAC)-induced pressure overload was applied to the heart in 7-week-old C57BL6 male mice that were treated with β-CG, GlcNAc, or sodium propionate. Gut microbiota was analyzed by 16S rRNA sequencing. Fecal short-chain fatty acids (SCFAs) were quantified by GC-MS. The effects of oral antibiotics were examined in β-CG-fed mice. RESULTS β-CG ameliorated impaired cardiac contractions, cardiac hypertrophy, and myocardial fibrosis in TAC-operated mice. As β-CG is a highly glycosylated protein, we examined the effects of GlcNAc. GlcNAc had similar but less efficient effects on LV remodeling compared to β-CG. β-CG increased three major SCFA-producing intestinal bacteria, as well as fecal concentrations of SCFAs, in sham- and TAC-operated mice. Oral administration of antibiotics nullified the effects of β-CG in TAC-operated mice by markedly reducing SCFA-producing intestinal bacteria and fecal SCFAs. In contrast, oral administration of sodium propionate, one of SCFAs, ameliorated LV remodeling in TAC-operated mice to a similar extent as β-CG. CONCLUSIONS β-CG was protective against TAC-induced LV remodeling, which was likely to be mediated by increased SCFA-producing gut microbiota and increased intestinal SCFAs. Modified β-CG and/or derivatives arising from β-CG are expected to be developed as prophylactic and/or therapeutic agents to ameliorate devastating symptoms in heart failure.
Collapse
Affiliation(s)
- Nozomi Furukawa
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Miku Kobayashi
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Koji Ohashi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, Gifu, Japan
| | - Jun Ueyama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Occupational Therapy, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Japan
| |
Collapse
|
2
|
Sena CM. Omentin: A Key Player in Glucose Homeostasis, Atheroprotection, and Anti-Inflammatory Potential for Cardiovascular Health in Obesity and Diabetes. Biomedicines 2024; 12:284. [PMID: 38397886 PMCID: PMC10887037 DOI: 10.3390/biomedicines12020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Omentin is an adipokine mainly produced by visceral fat tissue. It has two isoforms, omentin-1 and omentin-2. Omentin-1 is predominantly secreted by visceral adipose tissue, derived specifically from the stromal vascular fraction cells of white adipose tissue (WAT). Levels of omentin-1 are also expressed in other WAT depots, such as epicardial adipose tissue. Omentin-1 exerts several beneficial effects in glucose homeostasis in obesity and diabetes. In addition, research has suggested that omentin-1 may have atheroprotective (protective against the development of atherosclerosis) and anti-inflammatory effects, potentially contributing to cardiovascular health. This review highlights the potential therapeutic targets of omentin-1 in metabolic disorders.
Collapse
Affiliation(s)
- Cristina M Sena
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
3
|
Shen X, Xie X, Wu Q, Shi F, Chen Y, Yuan S, Xing K, Li X, Zhu Q, Li B, Wang Z. S-adenosylmethionine attenuates angiotensin II-induced aortic dissection formation by inhibiting vascular smooth muscle cell phenotypic switch and autophagy. Biochem Pharmacol 2024; 219:115967. [PMID: 38065291 DOI: 10.1016/j.bcp.2023.115967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
It is well known that aortic dissection (AD) is a very aggressive class of vascular diseases. S-adenosylmethionine (SAM) is an autophagy inhibitor with anti-inflammatory and anti-oxidative stress effects; however, the role of SAM in AD is unknown. In this study, we constructed an animal model of AD using subcutaneous minipump continuous infusion of AngII-induced ApoE-/-mice and a cytopathic model using AngII-induced primary vascular smooth muscle cells (VSMCs) to investigate the possible role of SAM in AD. The results showed that mice in the AngII + SAM group had significantly lower AD incidence, significantly prolonged survival, and reduced vascular elastic fiber disruption compared with mice in the AngII group. In addition, SAM significantly inhibited autophagy in vivo and in vitro. Meanwhile, SAM also inhibited the cellular phenotypic switch, mainly by up regulating the expression levels of contractile marker proteins [α-smooth muscle actin (α-SMA) and smooth muscle 22α (SM22α)] and down regulating the expression levels of synthetic marker proteins [osteoblast protein (OPN), matrix metalloproteinase-2 (MMP2), and matrix metalloproteinase-9 (MMP9)]. Molecularly, SAM inhibited AD formation mainly by activating the PI3K/AKT/mTOR signaling pathway. Using a PI3K inhibitor (LY294002) significantly reversed the protective effect of SAM in AngII-induced mice and VSMCs.Our study demonstrates the protective effect of SAM on mice under AngII-induced AD for the first time. SAM prevented AD formation mainly by inhibiting cellular phenotypic switch and autophagy, and activation of the PI3K/AKT/mTOR signaling pathway is a possible molecular mechanism. Thus, SAM may be a novel strategy for the treatment of AD.
Collapse
Affiliation(s)
- Xiaoyan Shen
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Xiaoping Xie
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Qi Wu
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Feng Shi
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Yuanyang Chen
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Shun Yuan
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Kai Xing
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Xu Li
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Qingyi Zhu
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Bowen Li
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China.
| | - Zhiwei Wang
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China.
| |
Collapse
|
4
|
Zhao Y, Shen QR, Chen YX, Shi Y, Wu WB, Li Q, Li DJ, Shen FM, Fu H. Colchicine protects against the development of experimental abdominal aortic aneurysm. Clin Sci (Lond) 2023; 137:1533-1545. [PMID: 37748024 PMCID: PMC10550771 DOI: 10.1042/cs20230499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Abdominal aortic aneurysm (AAA) is characterized by at least 1.5-fold enlargement of the infrarenal aorta, a ruptured AAA is life-threatening. Colchicine is a medicine used to treat gout and familial Mediterranean fever, and recently, it was approved to reduce the risk of cardiovascular events in adult patients with established atherosclerotic disease. With an AAA mice model created by treatment with porcine pancreatic elastase (PPE) and β-aminopropionitrile (BAPN), this work was designed to explore whether colchicine could protect against the development of AAA. Here, we showed that colchicine could limit AAA formation, as evidenced by the decreased total aortic weight per body weight, AAA incidence, maximal abdominal aortic diameter and collagen deposition. We also found that colchicine could prevent the phenotypic switching of vascular smooth muscle cells from a contractile to synthetic state during AAA. In addition, it was demonstrated that colchicine was able to reduce vascular inflammation, oxidative stress, cell pyroptosis and immune cells infiltration to the aortic wall in the AAA mice model. Finally, it was proved that the protective action of colchicine against AAA formation was mainly mediated by preventing immune cells infiltration to the aortic wall. In summary, our findings demonstrated that colchicine could protect against the development of experimental AAA, providing a potential therapeutic strategy for AAA intervention in the clinic.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi-Rui Shen
- Department of Pharmacy, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Xin Chen
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Shi
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Bing Wu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/ Naval Medical University, Shanghai, China
| | - Qiao Li
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Fu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Li Y, Tao L, Xu Y, Guo R. Taxifolin ameliorates abdominal aortic aneurysm by preventing inflammation and apoptosis and extracellular matrix degradation via inactivating TLR4/NF-κB axis. Int Immunopharmacol 2023; 119:110197. [PMID: 37098322 DOI: 10.1016/j.intimp.2023.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a serious aortic disease with high mortality. Vascular smooth muscle cells (VSMCs) loss is a prominent feature of AAA. Taxifolin (TXL) is a natural antioxidant polyphenol and possesses therapeutic functions in numerous human diseases. This study aimed to investigate TXL's impact on VSMC phenotype in AAA. METHODS In vitro and in vivo of VSMC injury model was induced by angiotensin II (Ang II). The potential function of TXL on AAA was determined using Cell Counting Kit-8, flow cytometry, Western blot, quantitative reverse transcription-PCR, and enzyme-linked immunosorbent assay. Meanwhile, TXL mechanism on AAA was checked by a series of molecular experiments. Also, TXL function on AAA in vivo was further evaluated using hematoxylin-eosin staining, TUNEL assay, Picric acid-Sirius red staining and immunofluorescence assay in C57BL/6 mice. RESULTS TXL alleviated Ang II-induced VSMC injury mainly by enhancing VSMC proliferation and weakening cell apoptosis, alleviating VSMC inflammation, and reducing extracellular matrix (ECM) degradation of VSMCs. Furthermore, mechanistic studies corroborated that TXL reversed the high levels of Toll-like receptor 4 (TLR4) and p-p65/p65 induced by Ang II. Also, TXL facilitated VSMC proliferation and reduced cell apoptosis, repressed inflammation, and ECM degradation of VSMCs, while these effects were reversed by TLR4 overexpression. In vivo studies further confirmed that TXL owned the function of alleviating AAA, such as alleviating collagen fiber hyperplasia and inflammatory cell infiltration in AAA mice, and repressing inflammation and ECM degradation. CONCLUSION TXL protected VSMCs against Ang II-induced injury through activating TLR4/noncanonical nuclear factor-kappaB(NF-κB).
Collapse
Affiliation(s)
- Yuanmin Li
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China
| | - Lingyun Tao
- Shanghai Laboratory Animal Research Center, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China
| | - Rong Guo
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China.
| |
Collapse
|
6
|
Ito M, Shibata R, Ohashi K, Otaka N, Yamaguchi S, Ogawa H, Enomoto T, Masutomi T, Murohara T, Ouchi N. Omentin Modulates Chronic Cardiac Remodeling After Myocardial Infarction. Circ Rep 2023; 5:46-54. [PMID: 36818520 PMCID: PMC9908527 DOI: 10.1253/circrep.cr-22-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 01/19/2023] Open
Abstract
Background: Omentin, a circulating adipokine, is downregulated in complications of obesity, including heart disease. Here, we investigated whether omentin modulates adverse cardiac remodeling in mice after myocardial infarction (MI). Methods and Results: Transgenic mice expressing the human omentin gene in fat tissue (OMT-Tg) and wild-type (WT) mice were subjected to permanent ligation of the left anterior descending coronary artery (LAD) to induce MI. OMT-Tg mice had a higher survival rate after permanent LAD ligation than WT mice. Moreover, OMT-Tg mice had lower heart weight/body weight (HW/BW) and lung weight/body weight (LW/BW) ratios at 4 weeks after coronary artery ligation compared with WT mice. OMT-Tg mice also showed decreased left ventricular diastolic diameter (LVDd) and increased fractional shortening (%FS) following MI. Moreover, an increase in capillary density in the infarct border zone and a decrease in myocardial apoptosis, myocyte hypertrophy, and interstitial fibrosis in the remote zone following MI, were more prevalent in OMT-Tg than WT mice. Finally, intravenous administration of adenoviral vectors expressing human omentin to WT mice after MI resulted in decreases in HW/BW, LW/BW, and LVDd, and an increase in %FS. Conclusions: Our findings document that human omentin prevents pathological cardiac remodeling after chronic ischemia, suggesting that omentin represents a potential therapeutic molecule for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Masanori Ito
- Department of Cardiology, Nagoya University Graduate School of MedicineNagoyaJapan
| | - Rei Shibata
- Department of Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of MedicineNagoyaJapan
| | - Koji Ohashi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of MedicineNagoyaJapan
| | - Naoya Otaka
- Department of Cardiology, Nagoya University Graduate School of MedicineNagoyaJapan
| | - Shukuro Yamaguchi
- Department of Cardiology, Nagoya University Graduate School of MedicineNagoyaJapan
| | - Hayato Ogawa
- Department of Cardiology, Nagoya University Graduate School of MedicineNagoyaJapan
| | - Takashi Enomoto
- Department of Cardiology, Nagoya University Graduate School of MedicineNagoyaJapan
| | - Tomohiro Masutomi
- Department of Cardiology, Nagoya University Graduate School of MedicineNagoyaJapan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of MedicineNagoyaJapan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
7
|
Wu Y, Jiang D, Zhang H, Yin F, Guo P, Zhang X, Bian C, Chen C, Li S, Yin Y, Böckler D, Zhang J, Han Y. N1-Methyladenosine (m1A) Regulation Associated With the Pathogenesis of Abdominal Aortic Aneurysm Through YTHDF3 Modulating Macrophage Polarization. Front Cardiovasc Med 2022; 9:883155. [PMID: 35620523 PMCID: PMC9127271 DOI: 10.3389/fcvm.2022.883155] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives This study aimed to identify key AAA-related m1A RNA methylation regulators and their association with immune infiltration in AAA. Furthermore, we aimed to explore the mechanism that m1A regulators modulate the functions of certain immune cells as well as the downstream target genes, participating in the progression of AAA. Methods Based on the gene expression profiles of the GSE47472 and GSE98278 datasets, differential expression analysis focusing on m1A regulators was performed on the combined dataset to identify differentially expressed m1A regulatory genes (DEMRGs). Additionally, CIBERSORT tool was utilized in the analysis of the immune infiltration landscape and its correlation with DEMRGs. Moreover, we validated the expression levels of DEMRGs in human AAA tissues by real-time quantitative PCR (RT-qPCR). Immunofluorescence (IF) staining was also applied in the validation of cellular localization of YTHDF3 in AAA tissues. Furthermore, we established LPS/IFN-γ induced M1 macrophages and ythdf3 knockdown macrophages in vitro, to explore the relationship between YTHDF3 and macrophage polarization. At last, RNA immunoprecipitation-sequencing (RIP-Seq) combined with PPI network analysis was used to predict the target genes of YTHDF3 in AAA progression. Results Eight DEMRGs were identified in our study, including YTHDC1, YTHDF1-3, RRP8, TRMT61A as up-regulated genes and FTO, ALKBH1 as down-regulated genes. The immune infiltration analysis showed these DEMRGs were positively correlated with activated mast cells, plasma cells and M1 macrophages in AAA. RT-qPCR analysis also verified the up-regulated expression levels of YTHDC1, YTHDF1, and YTHDF3 in human AAA tissues. Besides, IF staining result in AAA adventitia indicated the localization of YTHDF3 in macrophages. Moreover, our in-vitro experiments found that the knockdown of ythdf3 in M0 macrophages inhibits macrophage M1 polarization but promotes macrophage M2 polarization. Eventually, 30 key AAA-related target genes of YTHDF3 were predicted, including CD44, mTOR, ITGB1, STAT3, etc. Conclusion Our study reveals that m1A regulation is significantly associated with the pathogenesis of human AAA. The m1A “reader,” YTHDF3, may participate in the modulating of macrophage polarization that promotes aortic inflammation, and influence AAA progression by regulating the expression of its target genes.
Collapse
Affiliation(s)
- Yihao Wu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Deying Jiang
- Department of Vascular Surgery, Dalian Municipal Central Hospital, Dalian, China
| | - Hao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Fanxing Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Panpan Guo
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xiaoxu Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Ce Bian
- Department of Cardiovascular Surgery, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Shuixin Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yuhan Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Jian Zhang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Jian Zhang
| | - Yanshuo Han
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
- Yanshuo Han ; orcid.org/0000-0002-4897-2998
| |
Collapse
|