1
|
Xu S, Han X, Wang X, Yu Y, Qu C, Liu X, Yang B. The role of oxidative stress in aortic dissection: a potential therapeutic target. Front Cardiovasc Med 2024; 11:1410477. [PMID: 39070552 PMCID: PMC11272543 DOI: 10.3389/fcvm.2024.1410477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
The incidence of aortic dissection (AD) is steadily increasing, driven by the rising prevalence of chronic conditions such as hypertension and the global aging of the population. Oxidative stress emerges as a pivotal pathophysiological mechanism contributing to the progression of AD. Oxidative stress triggers apoptosis in vascular smooth muscle cells, reshapes the extracellular matrix (ECM), and governs ECM degradation and remodeling, subsequently impacting aortic compliance. Furthermore, oxidative stress not only facilitates the infiltration of macrophages and mononuclear lymphocytes but also disrupts the integral structure and functionality of endothelial cells, thereby inducing endothelial cell dysfunction and furthering the degeneration of the middle layer of the aortic wall. Investigating antioxidants holds promise as a therapeutic avenue for addressing AD.
Collapse
Affiliation(s)
- Shengnan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xueyu Han
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xiukun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Liu Y, Liu Y, Wang X, Xiu C, Hu Y, Wang J, Lei Y, Yang J. Ginseng-Sanqi-Chuanxiong (GSC) extracts attenuate d-galactose-induced vascular aging in mice via inhibition of endothelial progenitor cells senescence. Heliyon 2024; 10:e25253. [PMID: 38404901 PMCID: PMC10884806 DOI: 10.1016/j.heliyon.2024.e25253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Vascular aging is an independent risk factor for age-related diseases and a specific type of organic aging. Endothelial progenitor cells (EPCs), a type of bone marrow stem cell, has been linked to vascular aging. The purpose of this study is to investigate if Ginseng-Sanqi-Chuanxiong (GSC) extract, a traditional Chinese medicine, can delay aortic aging in mice by enhancing the performance and aging of EPCs in vivo and to analyze the potential mechanisms through a d-Galactose (D-gal)-induced vascular aging model in mice. Our study revealed that GSC extracts not only enhanced the aortic structure, endothelial function, oxidative stress levels, and aging in mice, but also enhanced the proliferation, migration, adhesion, and secretion of EPCs in vivo, while reducing the expression of p53, p21, and p16. To conclude, GSC can delay vascular senescence by enhancing the function and aging of EPCs, which could be linked to a decrease in p16 and p53/p21 signaling. Consequently, utilizing GSC extracts to enhance the function and senescence of autologous EPCs may present a novel avenue for enhancing autologous stem cells in alleviating senescence.
Collapse
Affiliation(s)
- Yinan Liu
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiqing Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengkui Xiu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanhong Hu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiali Wang
- Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Yan Lei
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Puspitasari YM, Ministrini S, Liberale L, Vukolic A, Baumann-Zumstein P, Holy EW, Montecucco F, Lüscher TF, Camici GG. Antibody-mediated PCSK9 neutralization worsens outcome after bare-metal stent implantation in mice. Vascul Pharmacol 2023; 153:107170. [PMID: 37659608 DOI: 10.1016/j.vph.2023.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 09/04/2023]
Abstract
AIMS Despite advances in pharmacotherapy and device innovation, in-stent restenosis (ISR) and stent thrombosis (ST) remain serious complications following percutaneous coronary intervention (PCI) procedure with stent implantation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme involved in plasma cholesterol homeostasis and recently emerged as a therapeutic target for hypercholesterolemia. Antibody-based PCSK9 inhibition is increasingly used in different subsets of patients, including those undergoing PCI. However, whether PCSK9 inhibition affects outcome after stent implantation remains unknown. METHODS AND RESULTS 12 to 14 weeks old C57Bl/6 mice underwent carotid artery bare-metal stent implantation. Compared to sham intervention, stent implantation was associated with increased expression of several inflammatory mediators, including PCSK9. The increase in PCSK9 protein expression was confirmed in the stented vascular tissue, but not in plasma. To inhibit PCSK9, alirocumab was administered weekly to mice before stent implantation. After 6 weeks, histological examination revealed increased intimal hyperplasia in the stented segment of alirocumab-treated animals compared to controls. In vitro, alirocumab promoted migration and inhibited the onset of senescence in primary human vascular smooth muscle cells (VSMC). Conversely, it blunted the migration and increased the senescence of endothelial cells (EC). CONCLUSION Antibody-based PCSK9 inhibition promotes in-stent intimal hyperplasia and blunts vascular healing by increasing VSMC migration, while reducing that of EC. This effect is likely mediated, at least in part, by a differential effect on VSMC and EC senescence. The herein-reported data warrant additional investigations concerning the use of PCSK9 inhibitors in patients undergoing PCI with stent implantation.
Collapse
Affiliation(s)
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Ana Vukolic
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Erik W Holy
- Department of Angiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Cardiology, Royal Brompton & Harefield Hospitals and National Heart & Lung Institute, Imperial College, London, United Kingdom
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Research and Education, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Zhao P, Sun T, Lyu C, Liang K, Du Y. Cell mediated ECM-degradation as an emerging tool for anti-fibrotic strategy. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:29. [PMID: 37653282 PMCID: PMC10471565 DOI: 10.1186/s13619-023-00172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023]
Abstract
Investigation into the role of cells with respect to extracellular matrix (ECM) remodeling is still in its infancy. Particularly, ECM degradation is an indispensable process during the recovery from fibrosis. Cells with ECM degradation ability due to the secretion of various matrix metalloproteinases (MMPs) have emerged as novel contributors to the treatment of fibrotic diseases. In this review, we focus on the ECM degradation ability of cells associated with the repertoire of MMPs that facilitate the attenuation of fibrosis through the inhibition of ECM deposition. Besides, innovative approaches to engineering and characterizing cells with degradation ability, as well as elucidating the mechanism of the ECM degradation, are also illustrated. Studies conducted to date on the use of cell-based degradation for therapeutic purposes to combat fibrosis are summarized. Finally, we discuss the therapeutic potential of cells with high degradation ability, hoping to bridge the gap between benchside research and bedside applications in treating fibrotic diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tian Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Puspitasari YM. Sirtuin 2 in vascular ageing: the forsaken child? Eur Heart J 2023:ehad366. [PMID: 37377081 DOI: 10.1093/eurheartj/ehad366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Affiliation(s)
- Yustina M Puspitasari
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| |
Collapse
|
6
|
Choi JY, Chung E. Molecular Dynamics Simulations of Matrix Metalloproteinase 13 and the Analysis of the Specificity Loop and the S1'-Site. Int J Mol Sci 2023; 24:10577. [PMID: 37445757 PMCID: PMC10342107 DOI: 10.3390/ijms241310577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The specificity loop of Matrix Metalloproteinases (MMPs) is known to regulate recognition of their substrates, and the S1'-site surrounded by the loop is a unique place to address the selectivity of ligands toward each MMP. Molecular dynamics (MD) simulations of apo-MMP-13 and its complex forms with various ligands were conducted to identify the role of the specificity loop for the ligand binding to MMP-13. The MD simulations showed the dual role of T247 as a hydrogen bond donor to the ligand, as well as a contributor to the formation of the van der Waal surface area, with T245 and K249 on the S1'-site. The hydrophobic surface area mediated by T247 blocks the access of water molecules to the S1'-site of MMP-13 and stabilizes the ligand in the site. The F252 residue is flexible in order to search for the optimum location in the S1'-site of the apo-MMP-13, but once a ligand binds to the S1'-site, it can form offset π-π or edge-to-π stacking interactions with the ligand. Lastly, H222 and Y244 provide the offset π-π and π-CH(Cβ) interactions on each side of the phenyl ring of the ligand, and this sandwiched interaction could be critical for the ligand binding to MMP-13.
Collapse
Affiliation(s)
- Jun Yong Choi
- Department of Chemistry and Biochemistry, Queens College, Flushing, NY 11367, USA
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Eugene Chung
- Department of Chemistry and Biochemistry, Queens College, Flushing, NY 11367, USA
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Hypertension remains a global health and socioeconomic burden. Immune mechanisms are now recognized as integral part of the multifactorial etiology of hypertension and related organ damage. The present review addresses inflammatory pathways and immune targets in hypertension, which may be important for an immunomodulatory treatment of hypertension aside from lowering arterial pressure. RECENT FINDINGS Anti-inflammatory interventions targeting single interleukins or almost the entire immune system show different beneficial effects. While immunomodulation (targeting specific portion of immune system) shows beneficial outcomes in certain groups of hypertensives, this does not pertain to immunosuppression (targeting entire immune system). Immunomodulatory interventions improve outcomes of hypertension independent of arterial pressure. The studies reveal interleukins, such as interleukin (IL)-1β and IL-17 as targets of immunomodulation. Besides interleukins, targeting αvβ-3 integrin and matrix metalloproteinase-2 or using experimental cell-therapy demonstrate beneficial effects in hypertensive organ damage. The NLR family pyrin domain containing 3 (NLRP3) inflammasome/IL-1β/endothelial cell/T-cell axis seems to be an important mediator in sustained inflammation during hypertension. SUMMARY Although immunomodulation may be advantageous as a causal therapy in hypertension, targeting immune networks rather than single interleukins appears of major importance. Further research is required to better identify these networks and their links to human hypertension.
Collapse
Affiliation(s)
- Andreas Deussen
- Department of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
8
|
Bordeianu G, Mitu I, Stanescu RS, Ciobanu CP, Petrescu-Danila E, Marculescu AD, Dimitriu DC. Circulating Biomarkers for Laboratory Diagnostics of Atherosclerosis-Literature Review. Diagnostics (Basel) 2022; 12:diagnostics12123141. [PMID: 36553147 PMCID: PMC9777004 DOI: 10.3390/diagnostics12123141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is still considered a disease burden with long-term damaging processes towards the cardiovascular system. Evaluation of atherosclerotic stages requires the use of independent markers such as those already considered traditional, that remain the main therapeutic target for patients with atherosclerosis, together with emerging biomarkers. The challenge is finding models of predictive markers that are particularly tailored to detect and evaluate the evolution of incipient vascular lesions. Important advances have been made in this field, resulting in a more comprehensible and stronger linkage between the lipidic profile and the continuous inflammatory process. In this paper, we analysed the most recent data from the literature studying the molecular mechanisms of biomarkers and their involvement in the cascade of events that occur in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
| | - Ivona Mitu
- Correspondence: (I.M.); (R.S.S.); Tel.: +40-75206-1747 (I.M.)
| | | | | | | | | | | |
Collapse
|
9
|
Zhao M, Zheng Z, Li C, Wan J, Wang M. Developmental endothelial locus-1 in cardiovascular and metabolic diseases: A promising biomarker and therapeutic target. Front Immunol 2022; 13:1053175. [PMID: 36518760 PMCID: PMC9742254 DOI: 10.3389/fimmu.2022.1053175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular and metabolic diseases (CVMDs) are a leading cause of death worldwide and impose a major socioeconomic burden on individuals and healthcare systems, underscoring the urgent need to develop new drug therapies. Developmental endothelial locus-1 (DEL-1) is a secreted multifunctional domain protein that can bind to integrins and play an important role in the occurrence and development of various diseases. Recently, DEL-1 has attracted increased interest for its pharmacological role in the treatment and/or management of CVMDs. In this review, we present the current knowledge on the predictive and therapeutic role of DEL-1 in a variety of CVMDs, such as atherosclerosis, hypertension, cardiac remodeling, ischemic heart disease, obesity, and insulin resistance. Collectively, DEL-1 is a promising biomarker and therapeutic target for CVMDs.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Chenfei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China,*Correspondence: Menglong Wang, ; Jun Wan,
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China,*Correspondence: Menglong Wang, ; Jun Wan,
| |
Collapse
|
10
|
Kumar L, Bisen M, Khan A, Kumar P, Patel SKS. Role of Matrix Metalloproteinases in Musculoskeletal Diseases. Biomedicines 2022; 10:biomedicines10102477. [PMID: 36289739 PMCID: PMC9598837 DOI: 10.3390/biomedicines10102477] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Musculoskeletal disorders include rheumatoid arthritis, osteoarthritis, sarcopenia, injury, stiffness, and bone loss. The prevalence of these conditions is frequent among elderly populations with significant mobility and mortality rates. This may lead to extreme discomfort and detrimental effect on the patient’s health and socioeconomic situation. Muscles, ligaments, tendons, and soft tissue are vital for body function and movement. Matrix metalloproteinases (MMPs) are regulatory proteases involved in synthesizing, degrading, and remodeling extracellular matrix (ECM) components. By modulating ECM reconstruction, cellular migration, and differentiation, MMPs preserve myofiber integrity and homeostasis. In this review, the role of MMPs in skeletal muscle function, muscle injury and repair, skeletal muscle inflammation, and muscular dystrophy and future approaches for MMP-based therapies in musculoskeletal disorders are discussed at the cellular and molecule level.
Collapse
Affiliation(s)
- Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, India
- Correspondence: (L.K.); (S.K.S.P.); Tel.: +91-017-9235-0000 (L.K.)
| | - Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, India
| | - Azhar Khan
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, India
| | - Pradeep Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, India
| | - Sanjay Kumar Singh Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea
- Correspondence: (L.K.); (S.K.S.P.); Tel.: +91-017-9235-0000 (L.K.)
| |
Collapse
|
11
|
El Assar M, Álvarez-Bustos A, Sosa P, Angulo J, Rodríguez-Mañas L. Effect of Physical Activity/Exercise on Oxidative Stress and Inflammation in Muscle and Vascular Aging. Int J Mol Sci 2022; 23:ijms23158713. [PMID: 35955849 PMCID: PMC9369066 DOI: 10.3390/ijms23158713] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Functional status is considered the main determinant of healthy aging. Impairment in skeletal muscle and the cardiovascular system, two interrelated systems, results in compromised functional status in aging. Increased oxidative stress and inflammation in older subjects constitute the background for skeletal muscle and cardiovascular system alterations. Aged skeletal muscle mass and strength impairment is related to anabolic resistance, mitochondrial dysfunction, increased oxidative stress and inflammation as well as a reduced antioxidant response and myokine profile. Arterial stiffness and endothelial function stand out as the main cardiovascular alterations related to aging, where increased systemic and vascular oxidative stress and inflammation play a key role. Physical activity and exercise training arise as modifiable determinants of functional outcomes in older persons. Exercise enhances antioxidant response, decreases age-related oxidative stress and pro-inflammatory signals, and promotes the activation of anabolic and mitochondrial biogenesis pathways in skeletal muscle. Additionally, exercise improves endothelial function and arterial stiffness by reducing inflammatory and oxidative damage signaling in vascular tissue together with an increase in antioxidant enzymes and nitric oxide availability, globally promoting functional performance and healthy aging. This review focuses on the role of oxidative stress and inflammation in aged musculoskeletal and vascular systems and how physical activity/exercise influences functional status in the elderly.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, 28905 Getafe, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alejandro Álvarez-Bustos
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Patricia Sosa
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, 28905 Getafe, Spain
| | - Javier Angulo
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Geriatría, Hospital Universitario de Getafe, 28905 Getafe, Spain
- Correspondence: ; Tel.: +34-91-683-93-60 (ext. 6411)
| |
Collapse
|
12
|
Sun D, Zhan Z, Zeng R, Liu X, Wang B, Yang F, Huang S, Li Y, Yang Z, Su Y, Lan Y. Long-term and potent IOP-lowering effect of IκBα-siRNA in a nonhuman primate model of chronic ocular hypertension. iScience 2022; 25:104149. [PMID: 35445186 PMCID: PMC9014385 DOI: 10.1016/j.isci.2022.104149] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 11/26/2022] Open
Abstract
Glaucoma is one of the most common causes of irreversible blindness. It is acknowledged that lowering intraocular pressure (IOP) is the effective treatment to slow glaucoma disease progression. The main obstacle of existing drugs is that the effect of reducing IOP does not last long. Degradation of IκB stimulates the transcription of NF-κB, which could upregulate the expression of matrix metalloproteinases (MMPs). Whether a IκB-targeted gene therapy works in glaucoma is unclear. Here, we established a chronic ocular hypertension (COHT) model in rhesus monkey by laser photocoagulation and verified that intracameral delivery of IκBα-siRNA showed long-lasting and potent effects of reducing IOP without obvious inflammation in monkeys with COHT. We also verified that IκBα-siRNA could increase the expressions of MMP2 and MMP9 by knocking down IκBα in vitro and in vivo. Our results in nonhuman primates indicated that IκBα-siRNA may become a promising therapeutic approach for the treatment of glaucoma. Knocking down IκBα could upregulate the expression of MMP2 and MMP9 in MCM and MTM LP could induce COHT model in rhesus monkeys successfully IκBα-siRNA has a long-term and potent IOP-lowering effect in LP-induced monkeys with COHT
Collapse
Affiliation(s)
- Difang Sun
- Department of Ophthalmology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zongyi Zhan
- Department of Ophthalmology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rui Zeng
- Department of Ophthalmology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolin Liu
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Bin Wang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fan Yang
- Department of Ophthalmology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sa Huang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yunfeng Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Zhenlan Yang
- Department of Ophthalmology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuanyuan Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuqing Lan
- Department of Ophthalmology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
13
|
Qi F, Liu Y, Zhang K, Zhang Y, Xu K, Zhou M, Zhao H, Zhu S, Chen J, Li P, Du J. Artificial Intelligence Uncovers Natural MMP Inhibitor Crocin as a Potential Treatment of Thoracic Aortic Aneurysm and Dissection. Front Cardiovasc Med 2022; 9:871486. [PMID: 35463768 PMCID: PMC9019136 DOI: 10.3389/fcvm.2022.871486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is a lethal cardiovascular condition without effective pharmaceutical therapy. Identifying novel drugs that target the key pathogenetic components is an urgent need. Bioinformatics analysis of pathological studies indicated “extracellular matrix organization” as the most significant functional pathway related to TAAD, in which matrix metallopeptidase (MMP) 2 and MMP9 ranked above other proteases. MMP1-14 were designated as the prototype molecules for docking against PubChem Compound Database using Surflex-Dock, and nine natural compounds were identified. Using a generic MMP activity assay and an aminopropionitrile (BAPN)-induced TAAD mouse model, we identified crocin as an effective MMP inhibitor, suppressing the occurrence and rupture of TAAD. Biolayer interferometry and AI/bioinformatics analyses indicated that crocin may inhibit MMP2 activity by direct binding. Possible binding sites were investigated. Overall, the integration of artificial intelligence and functional experiments identified crocin as an MMP inhibitor with strong therapeutic potential.
Collapse
Affiliation(s)
- Feiran Qi
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Kunlin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhenzi Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Ke Xu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Mei Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huinan Zhao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Shuolin Zhu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Jianxin Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Jianxin Chen
| | - Ping Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- Ping Li
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- Jie Du
| |
Collapse
|