1
|
Zhang Y, Chen H, Ma Q, Jia H, Ma H, Du Z, Liu Y, Zhang X, Zhang Y, Guan Y, Ma H. Electrophysiological Mechanism of Catestatin Antiarrhythmia: Enhancement of Ito, IK, and IK1 and Inhibition of ICa-L in Rat Ventricular Myocytes. J Am Heart Assoc 2024; 13:e035415. [PMID: 39158577 DOI: 10.1161/jaha.124.035415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Cardiovascular disease remains one of the leading causes of death globally. Myocardial ischemia and infarction, in particular, frequently cause disturbances in cardiac electrical activity that can trigger ventricular arrhythmias. We aimed to investigate whether catestatin, an endogenous catecholamine-inhibiting peptide, ameliorates myocardial ischemia-induced ventricular arrhythmias in rats and the underlying ionic mechanisms. METHODS AND RESULTS Adult male Sprague-Dawley rats were randomly divided into control and catestatin groups. Ventricular arrhythmias were induced by ligation of the left anterior descending coronary artery and electrical stimulation. Action potential, transient outward potassium current, delayed rectifier potassium current, inward rectifying potassium current, and L-type calcium current (ICa-L) of rat ventricular myocytes were recorded using a patch-clamp technique. Catestatin notably reduced ventricular arrhythmia caused by myocardial ischemia/reperfusion and electrical stimulation of rats. In ventricular myocytes, catestatin markedly shortened the action potential duration of ventricular myocytes, which was counteracted by potassium channel antagonists TEACl and 4-AP, and ICa-L current channel agonist Bay K8644. In addition, catestatin significantly increased transient outward potassium current, delayed rectifier potassium current, and inward rectifying potassium current density in a concentration-dependent manner. Catestatin accelerated the activation and decelerated the inactivation of the transient outward potassium current channel. Furthermore, catestatin decreased ICa-L current density in a concentration-dependent manner. Catestatin also accelerated the inactivation of the ICa-L channel and slowed down the recovery of ICa-L from inactivation. CONCLUSIONS Catestatin enhances the activity of transient outward potassium current, delayed rectifier potassium current, and inward rectifying potassium current, while suppressing the ICa-L in ventricular myocytes, leading to shortened action potential duration and ultimately reducing the ventricular arrhythmia in rats.
Collapse
MESH Headings
- Animals
- Male
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Rats, Sprague-Dawley
- Chromogranin A/pharmacology
- Chromogranin A/metabolism
- Action Potentials/drug effects
- Peptide Fragments/pharmacology
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/drug effects
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Arrhythmias, Cardiac/metabolism
- Anti-Arrhythmia Agents/pharmacology
- Heart Ventricles/drug effects
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Potassium Channels, Inwardly Rectifying/metabolism
- Potassium Channels, Inwardly Rectifying/drug effects
- Disease Models, Animal
- Potassium Channel Blockers/pharmacology
- Rats
- Patch-Clamp Techniques
- Delayed Rectifier Potassium Channels/metabolism
- Delayed Rectifier Potassium Channels/drug effects
- Potassium Channels/metabolism
- Potassium Channels/drug effects
Collapse
Affiliation(s)
- Ying Zhang
- Department of Physiology Hebei Medical University Shijiazhuang Hebei China
| | - Hua Chen
- Department of Cardiovascular Care Unit Hebei General Hospital Shijiazhuang Hebei China
| | - Qingmin Ma
- Department of Ophthalmology Hebei General Hospital Shijiazhuang Hebei China
| | - Hui Jia
- Department of Physiology Hebei Medical University Shijiazhuang Hebei China
| | - Hongyu Ma
- Department of Physiology Hebei Medical University Shijiazhuang Hebei China
| | - Zishuo Du
- Department of Physiology Hebei Medical University Shijiazhuang Hebei China
| | - Yan Liu
- Department of Endocrinology The Third Hospital of Hebei Medical University Shijiazhuang Hebei China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease Shijiazhuang Hebei China
| | - Yi Zhang
- Department of Physiology Hebei Medical University Shijiazhuang Hebei China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease Shijiazhuang Hebei China
| | - Yue Guan
- Department of Physiology Hebei Medical University Shijiazhuang Hebei China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease Shijiazhuang Hebei China
| | - Huijie Ma
- Department of Physiology Hebei Medical University Shijiazhuang Hebei China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education Hebei Medical University Shijiazhuang Hebei China
- Key Laboratory of Neurophysiology of Hebei Province Shijiazhuang Hebei China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease Shijiazhuang Hebei China
| |
Collapse
|
2
|
Bralewska M, Pietrucha T, Sakowicz A. The Role of Catestatin in Preeclampsia. Int J Mol Sci 2024; 25:2461. [PMID: 38473713 DOI: 10.3390/ijms25052461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Preeclampsia (PE) is a unique pregnancy disorder affecting women across the world. It is characterized by the new onset of hypertension with coexisting end-organ damage. Although the disease has been known for centuries, its exact pathophysiology and, most importantly, its prevention remain elusive. The basis of its associated molecular changes has been attributed to the placenta and the hormones regulating its function. One such hormone is chromogranin A (CgA). In the placenta, CgA is cleaved to form a variety of biologically active peptides, including catestatin (CST), known inter alia for its vasodilatory effects. Recent studies indicate that the CST protein level is diminished both in patients with hypertension and those with PE. Therefore, the aim of the present paper is to review the most recent and most relevant in vitro, in vivo, and clinical studies to provide an overview of the proposed impact of CST on the molecular processes of PE and to consider the possibilities for future experiments in this area.
Collapse
Affiliation(s)
- Michalina Bralewska
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Tadeusz Pietrucha
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
3
|
Singh G, Venkataramaraju Y, Meher G, Sahu BS, Saleem M, Akhter Y. Distinct membrane perturbation effects of Catestatin and its CST-364 S variant: Insights from molecular simulations and anisotropy measurements. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184238. [PMID: 37844772 DOI: 10.1016/j.bbamem.2023.184238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Catestatin (CST), a versatile 21 amino acid long cationic peptide, is stored in chromaffin granules and exocytosed upon fusion with the plasma membrane. CST, produced by chromaffin cells and neutrophils, is derived from the processing of chromogranin A and induced in the skin after injury. It involves catecholamine inhibition, blood pressure control, inflammation, and innate immunity. It is thought that calcium influx is triggered by CST permeating within neutrophils. It is unknown whether CST can disturb the immediate environment enough to penetrate the cell membrane passively. We used molecular dynamics simulations to examine the behaviour of human CST in its wild-type state (CST WT) and one of its naturally occurring variants, CST-364 S, which has a high allelic frequency in the human population. Both peptides were incorporated into the model eukaryotic cell membrane known as the POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine) lipid bilayer. The molecular modelling and simulations results show that CST WT and CST-364 S have different propensities for membrane disruption. It was shown that CST-364 S has higher membrane permeability than CST WT. In addition, we have used fluorescence anisotropy and leakage assay to study the interaction of peptides with PC membranes. Both peptides interacted with POPC and DOPC membranes, while CST-364 S penetrated the membrane more deeply via disorganizing the membrane interface, which supports our previous findings. According to this study, there is a good possibility that the peptides will passively permeate the cell membrane, distort, and pass through it.
Collapse
Affiliation(s)
- Garima Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | | | - Geetanjali Meher
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneshwar, India
| | - Bhavani Shankar Sahu
- National Brain Research Centre, NH-8, Manesar, Gurugram, Haryana 122 052, India.
| | - Mohammed Saleem
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneshwar, India.
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India.
| |
Collapse
|
4
|
Manolis AA, Manolis TA, Manolis AS. Neurohumoral Activation in Heart Failure. Int J Mol Sci 2023; 24:15472. [PMID: 37895150 PMCID: PMC10607846 DOI: 10.3390/ijms242015472] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
In patients with heart failure (HF), the neuroendocrine systems of the sympathetic nervous system (SNS), the renin-angiotensin-aldosterone system (RAAS) and the arginine vasopressin (AVP) system, are activated to various degrees producing often-observed tachycardia and concomitant increased systemic vascular resistance. Furthermore, sustained neurohormonal activation plays a key role in the progression of HF and may be responsible for the pathogenetic mechanisms leading to the perpetuation of the pathophysiology and worsening of the HF signs and symptoms. There are biomarkers of activation of these neurohormonal pathways, such as the natriuretic peptides, catecholamine levels and neprilysin and various newer ones, which may be employed to better understand the mechanisms of HF drugs and also aid in defining the subgroups of patients who might benefit from specific therapies, irrespective of the degree of left ventricular dysfunction. These therapies are directed against these neurohumoral systems (neurohumoral antagonists) and classically comprise beta blockers, angiotensin-converting enzyme (ACE) inhibitors/angiotensin receptor blockers and vaptans. Recently, the RAAS blockade has been refined by the introduction of the angiotensin receptor-neprilysin inhibitor (ARNI) sacubitril/valsartan, which combines the RAAS inhibition and neprilysin blocking, enhancing the actions of natriuretic peptides. All these issues relating to the neurohumoral activation in HF are herein reviewed, and the underlying mechanisms are pictorially illustrated.
Collapse
Affiliation(s)
- Antonis A. Manolis
- First Department of Cardiology, Evagelismos Hospital, 106 76 Athens, Greece;
| | - Theodora A. Manolis
- Department of Psychiatry, Aiginiteio University Hospital, 115 28 Athens, Greece;
| | - Antonis S. Manolis
- First Department of Cardiology, Ippokrateio University Hospital, 115 27 Athens, Greece
| |
Collapse
|
5
|
Iyer DR, Venkatraman J, Tanguy E, Vitale N, Mahapatra NR. Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis. Cell Mol Life Sci 2023; 80:271. [PMID: 37642733 PMCID: PMC11072126 DOI: 10.1007/s00018-023-04908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Chromogranin A (CHGA), a member of the granin family of proteins, has been an attractive therapeutic target and candidate biomarker for several cardiovascular, neurological, and inflammatory disorders. The prominence of CHGA stems from the pleiotropic roles of several bioactive peptides (e.g., catestatin, pancreastatin, vasostatins) generated by its proteolytic cleavage and by their wide anatomical distribution. These peptides are emerging as novel modulators of cardiometabolic diseases that are often linked to high blood cholesterol levels. However, their impact on cholesterol homeostasis is poorly understood. The dynamic nature of cholesterol and its multitudinous roles in almost every aspect of normal body function makes it an integral component of metabolic physiology. A tightly regulated coordination of cholesterol homeostasis is imperative for proper functioning of cellular and metabolic processes. The deregulation of cholesterol levels can result in several pathophysiological states. Although studies till date suggest regulatory roles for CHGA and its derived peptides on cholesterol levels, the mechanisms by which this is achieved still remain unclear. This review aims to aggregate and consolidate the available evidence linking CHGA with cholesterol homeostasis in health and disease. In addition, we also look at common molecular regulatory factors (viz., transcription factors and microRNAs) which could govern the expression of CHGA and genes involved in cholesterol homeostasis under basal and pathological conditions. In order to gain further insights into the pathways mediating cholesterol regulation by CHGA/its derived peptides, a few prospective signaling pathways are explored, which could act as primers for future studies.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Janani Venkatraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France.
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
6
|
Bralewska M, Pietrucha T, Sakowicz A. Reduction in CgA-Derived CST Protein Level in HTR-8/SVneo and BeWo Trophoblastic Cell Lines Caused by the Preeclamptic Environment. Int J Mol Sci 2023; 24:ijms24087124. [PMID: 37108287 PMCID: PMC10138478 DOI: 10.3390/ijms24087124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
One of the most dangerous complications of pregnancy is preeclampsia (PE), a disease associated with a high risk of maternal and fetal mortality and morbidity. Although its etiology remains unknown, the placenta is believed to be at the center of ongoing changes. One of the hormones produced by the placenta is chromogranin A (CgA). Thus far, its role in pregnancy and pregnancy-related disorders is enigmatic, yet it is known that both CgA and its derived peptide catestatin (CST) are involved in the majority of the processes that are disturbed in PE, such as blood pressure regulation or apoptosis. Therefore, in this study, the influence of the preeclamptic environment on the production of CgA using two cell lines, HTR-8/SVneo and BeWo, was investigated. Furthermore, the capacity of trophoblastic cells to secrete CST to the environment was tested, as well as the correlation between CST and apoptosis. This study provided the first evidence that CgA and CST proteins are produced by trophoblastic cell lines and that the PE environment has an impact on CST protein production. Furthermore, a strong negative correlation between CST protein level and apoptosis induction was found. Hence, both CgA and its derived peptide CST may play roles in the complex process of PE pathogenesis.
Collapse
Affiliation(s)
- Michalina Bralewska
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Tadeusz Pietrucha
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
7
|
Garg R, Agarwal A, Katekar R, Dadge S, Yadav S, Gayen JR. Chromogranin A-derived peptides pancreastatin and catestatin: emerging therapeutic target for diabetes. Amino Acids 2023:10.1007/s00726-023-03252-x. [PMID: 36914766 DOI: 10.1007/s00726-023-03252-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/16/2023] [Indexed: 03/16/2023]
Abstract
Chromogranin A (ChgA) is an acidic pro-protein found in neuroendocrine organs, pheochromocytoma chromaffin granules, and tumor cells. Proteolytic processing of ChgA gives rise to an array of biologically active peptides such as pancreastatin (PST), vasostatin, WE14, catestatin (CST), and serpinin, which have diverse roles in regulating cardiovascular functions and metabolism, as well as inflammation. Intricate tissue-specific role of ChgA-derived peptide activity in preclinical rodent models of metabolic syndrome reveals complex effects on carbohydrate and lipid metabolism. Indeed, ChgA-derived peptides, PST and CST, play a pivotal role in metabolic syndrome such as obesity, insulin resistance, and diabetes mellitus. Additionally, supplementation of specific peptide in ChgA-KO mice have an opposing effect on physiological functions, such as PST supplementation reduces insulin sensitivity and enhances inflammatory response. In contrast, CST supplementation enhances insulin sensitivity and reduces inflammatory response. In this review, we focus on the tissue-specific role of PST and CST as therapeutic targets in regulating carbohydrate and lipid metabolism, along with the associated risk factors.
Collapse
Affiliation(s)
- Richa Garg
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arun Agarwal
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Roshan Katekar
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shailesh Dadge
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shubhi Yadav
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Jiaur R Gayen
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Pharmacology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Serum Catestatin Concentrations Are Increased in Patients with Atrial Fibrillation. J Cardiovasc Dev Dis 2023; 10:jcdd10020085. [PMID: 36826581 PMCID: PMC9965955 DOI: 10.3390/jcdd10020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The autonomic nervous system is crucial in initiating and maintaining atrial fibrillation (AF). Catestatin is a multipurpose peptide that regulates cardiovascular systems and reduces harmful, excessive activity of the sympathetic nervous system by blocking the release of catecholamines. We aimed to determine whether serum catestatin concentrations are associated with AF severity, duration indices, and various clinical and laboratory indicators in these individuals to better define the clinical value of catestatin in patients with AF. The present single center study enrolled 73 participants with AF and 72 healthy age-matched controls. Serum catestatin concentrations were markedly higher in AF patients than controls (14.11 (10.21-26.02) ng/mL vs. 10.93 (5.70-20.01) ng/mL, p = 0.013). Furthermore, patients with a more severe form of AF had significantly higher serum catestatin (17.56 (12.80-40.35) vs. 10.98 (8.38-20.91) ng/mL, p = 0.001). Patients with higher CHA2DS2-VASc scores (17.58 (11.89-37.87) vs. 13.02 (8.47-22.75) ng/mL, p = 0.034) and higher NT-proBNP levels (17.58 (IQR 13.91-34.62) vs. 13.23 (IQR 9.04-22.61), p = 0.036) had significantly higher serum catestatin concentrations. Finally, AF duration correlated negatively with serum catestatin levels (r = -0.348, p = 0.003). The results of the present study implicate the promising role of catestatin in the intricate pathophysiology of AF, which should be explored in future research.
Collapse
|
9
|
Burneikaitė G, Shkolnik E, Puronaitė R, Zuozienė G, Petrauskienė B, Misonis N, Kazėnaitė E, Laucevičius A, Smih F, Rouet P, Čelutkienė J. The association of catestatin and endocan with the effects of cardiac shock wave therapy: Biomarker sub-study of the randomized, sham procedure-controlled trial. Front Cardiovasc Med 2023; 10:1004574. [PMID: 36910537 PMCID: PMC9996196 DOI: 10.3389/fcvm.2023.1004574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Cardiac shock-wave therapy (CSWT) is a non-invasive regenerative treatment method based on low-frequency ultrasound waves, which stimulate angiogenesis. Current data about the effects of revascularization procedures on angiogenesis biomarkers is limited. Recently, an association of catestatin and endocan with coronary collateral development was shown in several trials. In this study, we aimed to evaluate the impact of CSWT on the dynamics of catestatin and endocan levels and to assess their correlation with parameters of myocardial perfusion and function. Methods Prospective, randomized, triple-blind, sham procedure-controlled study enrolled 72 adult subjects who complied with defined inclusion criteria (NCT02339454). We measured biomarkers in 48 patients with stable angina (24 patients of CSWT group, 24 patients of sham-procedure group). Additionally, patients were divided into responders and non-responders according to improvement in myocardial perfusion and/or contractility assessed by myocardial scintigraphy and dobutamine echocardiography (30 and 13 patients, respectively). The blood samples were collected at baseline, after the last treatment procedure (9th treatment week) and at 6-month follow-up to evaluate biomarkers concentration and stored at -80° until analysis. Serum catestatin and endocan levels were determined by commercially available ELISA kits. Results Serum catestatin concentration significantly increased in all patients. While endocan levels significantly decreased in the responders sub-group. The increase in catestatin levels at 9th week and 6 months was positively associated with improvement in summed difference score (rho = 0.356, p = 0.028) and wall motion score, WMS (rho = 0.397, p = 0.009) at 6 months in the whole study population. Meanwhile, the decrease in endocan levels over 6 months was positively correlated with improvement in WMS at 3- and 6- months (r = 0.378, p = 0.015 and r = 0.311, p = 0.045, respectively). ROC analysis revealed that a change at 6 months in catestatin and endocan levels significantly predicted improvement in myocardial perfusion and contractile function with 68.9% sensitivity and 75.0% specificity (p = 0.039) and 51.7% sensitivity, and 91.7% specificity (p = 0.017), respectively. Baseline endocan concentration and its change at 6 months predicted response to CSWT with 68.8% sensitivity and 83.3% specificity (p = 0.039) and 81.3% sensitivity and 100% specificity (p < 0.0001), respectively. Conclusion This study demonstrates the association of increase in catestatin and decrease in endocan levels with the improvement of myocardial perfusion and contractile function. The potential predictive value of catestatin and endocan dynamics for the response to regenerative therapy is shown.
Collapse
Affiliation(s)
- Greta Burneikaitė
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- LA Maison de la Mitochondrie (LAMMI), Obesity and Heart Failure: Molecular and Clinical Investigations, INSERM Occitanie, Toulouse, France
- *Correspondence: Greta Burneikaitė ✉
| | - Evgeny Shkolnik
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Roma Puronaitė
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Faculty of Mathematics and Informatics, Institute of Data Science and Digital Technologies, Vilnius University, Vilnius, Lithuania
| | - Gitana Zuozienė
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Birutė Petrauskienė
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Nerijus Misonis
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Edita Kazėnaitė
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Aleksandras Laucevičius
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Fatima Smih
- INI-CRCT-FCRIN, GREAT Networks, Toulouse, France
- Spartacus-Biomed, Auterive, France
| | - Philippe Rouet
- LA Maison de la Mitochondrie (LAMMI), Obesity and Heart Failure: Molecular and Clinical Investigations, INSERM Occitanie, Toulouse, France
- INI-CRCT-FCRIN, GREAT Networks, Toulouse, France
| | - Jelena Čelutkienė
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Centre of Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
10
|
Serum Catestatin Levels Correlate with Ambulatory Blood Pressure and Indices of Arterial Stiffness in Patients with Primary Hypertension. Biomolecules 2022; 12:biom12091204. [PMID: 36139043 PMCID: PMC9496451 DOI: 10.3390/biom12091204] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/25/2022] Open
Abstract
Accumulating data suggests that catestatin, an eclectic neuroendocrine peptide, is involved in the pathophysiology of primary hypertension (PH). Nevertheless, clinical studies concerning its role in PH are still scarce. Therefore, in the present study, we aimed to explore an association between serum catestatin levels, ambulatory blood pressure (BP) and arterial stiffness in patients with PH and healthy controls. In this single-center study, 72 patients aged 40−70 diagnosed with PH, and 72 healthy controls were included. In patients with PH, serum catestatin concentrations were significantly higher in comparison to the healthy controls (29.70 (19.33−49.48) ng/mL vs. 5.83 (4.21−8.29) ng/mL, p < 0.001). Untreated patients had significantly higher serum catestatin than patients treated with antihypertensive drugs (41.61 (22.85−63.83) ng/mL vs. 24.77 (16.41−40.21) ng/mL, p = 0.005). Multiple linear regression analysis showed that serum catestatin levels retained a significant association with mean arterial pressure (β ± standard error, 0.8123 ± 0.3037, p < 0.009) after model adjustments for age, sex and body mass index. Finally, catestatin levels positively correlated with pulse wave velocity (r = 0.496, p < 0.001) and central augmentation index (r = 0.441, p < 0.001), but not with peripheral resistance. In summary, increased serum catestatin concentration in PH, predominantly in the untreated subgroup, and its association with ambulatory BP and arterial stiffness address the role of this peptide in PH.
Collapse
|
11
|
Simac P, Perkovic D, Bozic I, Matijas M, Gugo K, Martinovic D, Bozic J. Serum catestatin levels in patients with rheumatoid arthritis. Sci Rep 2022; 12:3812. [PMID: 35264632 PMCID: PMC8907353 DOI: 10.1038/s41598-022-07735-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Catestatin (CST) is an important peptide that influences various inflammatory diseases. Our goal was to investigate CST concentrations in patients with RA compared to healthy subjects. This cross-sectional observational study included 80 patients with RA and 80 healthy control subjects. Demographic characteristics and laboratory parameters were recorded. Serum CST levels were determined by an enzyme-linked immunosorbent assay (ELISA). Serum CST levels were significantly higher in RA patients than in the control group (10.53 ± 3.90 vs 5.24 ± 2.37 ng/mL, p < 0.001). In RA patients, there was a statistically significant correlation between CST and patient age (r = 0.418, p < 0.001) and both DAS28 (r = 0.469, p < 0.001) and HAQ scores (r = 0.483, p < 0.001). There was a statistically significant correlation between serum CST levels and RA duration (r = 0.583, p < 0.001). Multiple linear regression analysis showed that serum CST levels retained a significant association with RA duration (β ± SE, 0.13 ± 0.04, p = 0.002) and DAS28 score (0.94 ± 0.45, p = 0.039) after model adjustment for age, body mass index (BMI) and HAQ score, with serum CST levels as a dependent variable. These findings imply that CST is possibly associated with RA complex pathophysiology and disease activity. However, future larger multicentric longitudinal studies are necessary to define the role of CST in RA.
Collapse
Affiliation(s)
- Petra Simac
- Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital of Split, Split, Croatia.
| | - Dijana Perkovic
- Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital of Split, Split, Croatia
| | - Ivona Bozic
- Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital of Split, Split, Croatia
| | - Marijana Matijas
- Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital of Split, Split, Croatia
| | - Katarina Gugo
- Department of Medical Laboratory Diagnostics, University Hospital of Split, 21000, Split, Croatia
| | - Dinko Martinovic
- Department of Pathophysiology, School of Medicine, University of Split, 21000, Split, Croatia
| | - Josko Bozic
- Department of Pathophysiology, School of Medicine, University of Split, 21000, Split, Croatia
| |
Collapse
|
12
|
Bralewska M, Biesiada L, Grzesiak M, Rybak-Krzyszkowska M, Huras H, Gach A, Pietrucha T, Sakowicz A. Chromogranin A demonstrates higher expression in preeclamptic placentas than in normal pregnancy. BMC Pregnancy Childbirth 2021; 21:680. [PMID: 34620125 PMCID: PMC8496087 DOI: 10.1186/s12884-021-04139-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Although preeclampsia has long been recognized as a condition affecting late pregnancy, little is known of its pathogenesis or treatment. The placenta releases a number of hormones and molecules that influence the course of pregnancy, one of which is chromogranin A, a soluble protein secreted mainly from the chromaffin cells of the adrenal medulla. Its role in pregnancy and pregnancy-related disorders remains unclear. Therefore, the main aim of the proposed study is to determine whether chromogranin A is related with the occurrence of preeclampsia. METHODS Placental samples were collected from 102 preeclamptic patients and 103 healthy controls, and Chromogranin A gene (CHGA) expression was measured using real-time RT-PCR, The RT-PCR results were verified on the protein level using ELISA. The normal distribution of the data was tested using the Shapiro-Wilk test. The clinical and personal characteristics of the groups were compared using the Student's t-test for normally-distributed data, and the χ2 test for categorical variables. The Mann-Whitney U test was used for non-normally distributed data. As the log- transformation was not suitable for the given outcomes, the Box- Cox Transformation was used to normalize data from ELISA tests and CHGA expression. Values of P < .05 were considered statistically significant. RESULTS Chromogranin A gene expression was found to be significantly higher in the study group than in controls. Protein analyses showed that although the CgA concentration in placental samples did not differ significantly, the catestatin (CST) level was significantly lower in samples obtained from women with preeclampsia, according to the controls. CONCLUSIONS FOR PRACTICE This study for the first time reveals that chromogranin A gene expression level is associated with preeclampsia. Moreover, the depletion in catestatin level, which plays a protective role in hypertension development, might be a marker of developing preeclampsia. Further studies may unravel role of Chromogranin A in the discussed disease.
Collapse
Affiliation(s)
- Michalina Bralewska
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, Lodz, Poland.
| | - Lidia Biesiada
- Department of Obstetrics, Perinatology and Gynecology, Polish Mother's Memorial Hospital-Research Institute in Lodz, Rzgowska 281/289, Lodz, Poland
| | - Mariusz Grzesiak
- Department of Obstetrics, Perinatology and Gynecology, Polish Mother's Memorial Hospital-Research Institute in Lodz, Rzgowska 281/289, Lodz, Poland
| | - Magda Rybak-Krzyszkowska
- Department of Obstetrics and Perinatology, University Hospital in Krakow, Kopernika 36, Krakow, Poland
| | - Hubert Huras
- Department of Obstetrics and Perinatology, University Hospital in Krakow, Kopernika 36, Krakow, Poland
| | - Agnieszka Gach
- Department of Genetics, Polish Mother's Memorial Hospital-Research Institute in Lodz, Rzgowska 281/289, Lodz, Poland
| | - Tadeusz Pietrucha
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, Lodz, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, Lodz, Poland
| |
Collapse
|
13
|
Bsat S, Halaoui A, Kobeissy F, Moussalem C, El Houshiemy MN, Kawtharani S, Omeis I. Acute ischemic stroke biomarkers: a new era with diagnostic promise? Acute Med Surg 2021; 8:e696. [PMID: 34745637 PMCID: PMC8552525 DOI: 10.1002/ams2.696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 01/14/2023] Open
Abstract
Stroke is considered as the first cause of neurological dysfunction and second cause of death worldwide. Recombinant tissue plasminogen activator is the only chemical treatment for ischemic stroke approved by the US Food and Drug Administration. It was the only standard of care for a long time with a very narrow therapeutic window, which usually ranges from 3 to 4.5 h of stroke onset; until 2015, when multiple trials demonstrated the benefit of mechanical thrombectomy during the first 6 h. In addition, recent trials showed that mechanical thrombectomy can be beneficial up to 24 h if the patients meet certain criteria including the presence of magnetic resonance imaging/computed tomography perfusion mismatch, which allows better selectivity and higher recruitment of eligible stroke patients. However, magnetic resonance imaging/computed tomography perfusion is not available in all stroke centers. Hence, physicians need other easy and available diagnostic tools to select stroke patients eligible for mechanical thrombectomy. Moreover, stroke management is still challenging for physicians, particularly those dealing with patients with "wake-up" stroke. The resulting brain tissue damage of ischemic stroke and the subsequent pathological processes are mediated by multiple molecular pathways that are modulated by inflammatory markers and post-transcriptional activity. A considerable number of published works suggest the role of inflammatory and cardiac brain-derived biomarkers (serum matrix metalloproteinase, thioredoxin, neuronal and glial markers, and troponin proteins) as well as different biomarkers including the emerging roles of microRNAs. In this review, we assess the accumulating evidence regarding the current status of acute ischemic stroke diagnostic biomarkers that could guide physicians for better management of stroke patients. Our review could give an insight into the roles of the different emerging markers and microRNAs that can be of high diagnostic value in patients with stroke. In fact, the field of stroke research, similar to the field of traumatic brain injury, is in immense need for novel biomarkers that can stratify diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Shadi Bsat
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | - Adham Halaoui
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular GeneticsFaculty of MedicineAmerican University of BeirutBeirutLebanon
| | - Charbel Moussalem
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | | | - Sarah Kawtharani
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | - Ibrahim Omeis
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
- Department of NeurosurgeryBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
14
|
Catestatin peptide of chromogranin A as a potential new target for several risk factors management in the course of metabolic syndrome. Biomed Pharmacother 2020; 134:111113. [PMID: 33341043 DOI: 10.1016/j.biopha.2020.111113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity, lipodystrophy, diabetes, and hypertension collectively constitute the main features of Metabolic Syndrome (MetS), together with insulin resistance (IR), which is considered as a defining element. MetS generally leads to the development of cardiovascular disease (CVD), which is a determinant cause of mortality and morbidity in humans and animals. Therefore, it is essential to implement and put in place adequate management strategies for the treatment of this disease. Catestatin is a bioactive peptide with 21 amino acids, which is derived through cleaving of the prohormone chromogranin A (CHGA/CgA) that is co-released with catecholamines from secretory vesicles and, which is responsible for hepatic/plasma lipids and insulin levels regulation, improves insulin sensitivity, reduces hypertension and attenuates obesity in murine models. In humans, there were few published studies, which showed that low levels of catestatin are significant risk factors for hypertension in adult patients. These accumulating evidence documents clearly that catestatin peptide (CST) is linked to inflammatory and metabolic syndrome diseases and can be a novel regulator of insulin and lipid levels, blood pressure, and cardiac function. The goal of this review is to provide an overview of the CST effects in metabolic syndrome given its role in metabolic regulation and thus, provide new insights into the use of CST as a diagnostic marker and therapeutic target.
Collapse
|
15
|
Borovac JA, Glavas D, Susilovic Grabovac Z, Supe Domic D, Stanisic L, D'Amario D, Kwok CS, Bozic J. Circulating sST2 and catestatin levels in patients with acute worsening of heart failure: a report from the CATSTAT-HF study. ESC Heart Fail 2020; 7:2818-2828. [PMID: 32681700 PMCID: PMC7524138 DOI: 10.1002/ehf2.12882] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/07/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
AIMS Soluble suppression of tumourigenicity 2 (sST2) and catestatin (CST) reflect myocardial fibrosis and sympathetic overactivity during the acute worsening of heart failure (AWHF). We aimed to determine serum levels and associations of sST2 and CST with in-hospital death as well as the association between sST2 and CST among AWHF patients. METHODS AND RESULTS A total of 96 AWHF patients were consecutively enrolled, while levels of sST2 and CST were determined and compared between non-survivors and survivors. Predictive values of sST2 and CST for in-hospital death were determined by the penalized multivariable Firth logistic regression. The diagnostic ability of sST2 and CST for in-hospital death was assessed by the receiver operating characteristic analysis and examined with respect to the N-terminal pro-brain natriuretic peptide (NT-proBNP), high-sensitivity cardiac troponin I, and C-reactive protein. The in-hospital death rate was 6.25%. Serum sST2 and CST levels were significantly higher among non-survivors than survivors [146.6 (inter-quartile range, IQR 65.9-156.2) vs. 35.3 (IQR 20.6-64.4) ng/mL, P < 0.001, and 19.8 (IQR 9.9-28.0) vs. 5.6 (IQR 3.4-9.8) ng/mL, P < 0.001, respectively]. Both sST2 and CST were independent predictors of in-hospital death [Firth coefficient (FC) 6.00, 95% confidence interval (CI), 1.48-15.20, P = 0.005, and FC 6.58, 95% CI 1.66-21.78, P = 0.003, respectively], while NT-proBNP was not a significant predictor (FC 1.57, 95% CI 0.51-3.99, P = 0.142). In classifying non-survivors from survivors, sST2 provided area under the curve (AUC) of 0.917 (95% CI 0.819-1.000, P < 0.001) followed by CST (AUC 0.905, 95% CI 0.792-1.000, P < 0.001), while NT-proBNP yielded AUC of 0.735 (95% CI 0.516-0.954, P = 0.036). High-sensitivity cardiac troponin I and C-reactive protein were not found as significant classifiers of in-hospital death (AUC 0.719, 95% CI 0.509-0.930, P = 0.075, and AUC 0.682, 95% CI 0.541-0.822, P = 0.164, respectively). Among survivors, those with sST2 serum levels ≥35 ng/mL had significantly higher CST levels, compared with those with sST2 < 35 ng/mL (9.05 ± 5.17 vs. 5.06 ± 2.76 ng/mL, P < 0.001). Serum sST2 levels positively and independently correlated with CST levels in the whole patient cohort (β = 0.437, P < 0.001). CONCLUSIONS Elevated sST2 and CST levels, reflecting two distinct pathophysiological pathways in heart failure, might indicate impending clinical deterioration among AWHF patients during hospitalization and facilitate prognosis beyond traditional biomarkers regarding the risk of in-hospital death (CATSTAT-HF ClinicalTrials.gov Number NCT03389386).
Collapse
Affiliation(s)
- Josip A Borovac
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2, Split, 21000, Croatia.,Institute of Emergency Medicine of Split-Dalmatia County, Split, Croatia.,Clinic for Cardiovascular Diseases, University Hospital of Split, Split, Croatia
| | - Duska Glavas
- Clinic for Cardiovascular Diseases, University Hospital of Split, Split, Croatia.,Department of Internal Medicine, University of Split School of Medicine, Split, Croatia
| | | | - Daniela Supe Domic
- Department of Medical Laboratory Diagnostics, University Hospital of Split, Split, Croatia.,Department of Health Studies, University of Split, Split, Croatia
| | - Lada Stanisic
- Department of Medical Laboratory Diagnostics, University Hospital of Split, Split, Croatia
| | - Domenico D'Amario
- Department of Cardiovascular and Thoracic Sciences, IRCCS Fondazione Policlinico A. Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chun S Kwok
- University Hospitals of North Midlands Royal Stoke University Hospital, Stoke-on-Trent, UK
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2, Split, 21000, Croatia
| |
Collapse
|
16
|
Plasma catestatin level predicts sPESI score and mortality in acute pulmonary embolism. ARCHIVES OF MEDICAL SCIENCES. ATHEROSCLEROTIC DISEASES 2020; 5:e49-e56. [PMID: 32529106 PMCID: PMC7277442 DOI: 10.5114/amsad.2020.95562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/18/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Acute pulmonary embolism (APE) is an emergent cardiothoracic disorder. The PESI score is used to estimate 30-day mortality in patients diagnosed with non-high-risk APE. Also, there are biomarkers for predicting prognosis and mortality in APE. Catestatin (CST) is accepted as a marker ofsympathetic nervous system activity which has been shown that the sympathetic nervous system activation can contribute pathogenesis in APE. So, we attempt herein to investigate the correlation of PE diagnosis and prognostic determination with plasma CST levels in PE patients. MATERIAL AND METHODS Blood samples were drawn at admission for laboratory assays and CST measurements. Plasma levels of CST were measured by ELISA according to the manufacturer's instruction. Transthoracic echocardiography was performed for the assessment of RV dysfunction using a Toshiba Applio 500 echocardiographic system within 24 h of the admission. RESULTS Plasma CST levels were higher in patients with APE than in the control group (17.5 ±6.1 ng/ml vs. 27.3 ±5.7 ng/ml, p < 0.001). Plasma CST levels were higher in the sPESI ≥ 1 (n = 72) than in the patients with sPESI < 1 (37.3 ±6.1 vs. 24.2 ±5.3 ng/ml, p < 0.001). There was a positive correlation between CST level and sPESI score (±0.581, p < 0.001). Mortality occurred in 20 patients with sPESI ≥ 1 (27.7%) and in 9 patients with sPESI < 1 (10.2%) (p = 0.010). Receiver operating characteristic (ROC) curve analysis using a cut-off level of 31.2 ng/ml, and the CST level predicted mortality with a sensitivity of 100% and specificity of 52.6% (AUC = 0.883, 95% CI: 0.689-0.921). Furthermore, the CST level was correlated with right ventricular dysfunction. CONCLUSIONS CST can predict sPESI score and mortality in patients with APE.
Collapse
|
17
|
May Salivary Chromogranin A Act as a Physiological Index of Stress in Transported Donkeys? A Pilot Study. Animals (Basel) 2020; 10:ani10060972. [PMID: 32503233 PMCID: PMC7341495 DOI: 10.3390/ani10060972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022] Open
Abstract
Road transport is known to be a stressful animal husbandry procedure as it induces the activation of two main physiological stress-related pathways: the hypothalamic-pituitary-adrenal cortex axis and the sympathetic-adrenal medulla axis. This preliminary study aimed to investigate whether salivary chromogranin A (CgA) concentration, known as a biomarker of the sympathetic activity system during psychological stress, may represent a novel physiological index of transportation-induced stress in donkeys. Nineteen Romagnolo donkeys, raised in groups on paddocks, were subject to two transportations, following the farm's routine procedures, for a mean duration of 64 min each on two consecutive days. Salivary samples were gently collected 15 min before and 15 min after each transportation. Salivary CgA was measured by a commercially available enzyme-linked immunosorbent assay test. Results showed that CgA salivary levels significantly decreased after both transportations. The physiological mechanisms underlying this result may be related to catestatin activity, a bioactive product of the proteolytic cleavage of CgA, that acts as an inhibitor of catecholamine release. This hypothesis requires further investigation, particularly considering the limited number of subjects involved in this preliminary study. The identification of a reliable and non-invasive stress-marker would represent a useful tool for improving farm animals' welfare in transport conditions.
Collapse
|
18
|
Zivkovic PM, Matetic A, Tadin Hadjina I, Rusic D, Vilovic M, Supe-Domic D, Borovac JA, Mudnic I, Tonkic A, Bozic J. Serum Catestatin Levels and Arterial Stiffness Parameters Are Increased in Patients with Inflammatory Bowel Disease. J Clin Med 2020; 9:jcm9030628. [PMID: 32110996 PMCID: PMC7141110 DOI: 10.3390/jcm9030628] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Catestatin (CST) is an important peptide in the pathophysiology of chronic inflammatory disorders. However, clinical studies on inflammatory bowel disease (IBD) patients are lacking. Our goal was to investigate CST concentrations in IBD patients compared to healthy subjects. Additionally, we aimed to determine arterial stiffness parameters in relation to CST. This cross-sectional study compared 80 IBD patients (45 Crohn's disease (CD) and 35 ulcerative colitis (UC) patients) with 75 control subjects. Serum CST levels were significantly higher in the IBD group compared to control subjects (11.29 ± 9.14 vs. 7.13 ± 6.08 ng/mL, p = 0.001) and in the UC group compared to CD patients (13.50 ± 9.58 vs. 9.03 ± 6.92 ng/mL, p = 0.021), irrespective of age and BMI. IBD patients exhibited significantly higher values of heart rate adjusted central augmentation index (cAIx-75) (14.88 ± 10.59 vs. 6.87 ± 9.50 %, p < 0.001) and pulse wave velocity (PWV) (8.06 ± 3.23 vs. 6.42 ± 1.47 m/s, p < 0.001) compared to control group. Furthermore, PWV was the only significant independent correlate of CST (B = 1.20, t = 4.15, p < 0.001), while CST, PWV, cAIx-75, high-sensitivity C-reactive protein and BMI were significant predictors of positive IBD status (1.089 (1.022-1.161), 1.515 (1.166-1.968), 1.060 (1.024-1.097), 1.458 (1.116-1.906), 0.793 (0.683-0.920), respectively). Serum CST levels were significantly higher in IBD patients compared to controls and an independent positive correlation of CST with PWV existed. Therefore, it is possible that CST could have a role in the complex pathophysiology of IBD and its cardiovascular complications.
Collapse
Affiliation(s)
- Piero Marin Zivkovic
- Department of Gastroenterology, University Hospital of Split, 21000 Split, Croatia; (P.M.Z.); (I.T.H.); (A.T.)
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (A.M.); (M.V.); (J.A.B.)
| | - Andrija Matetic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (A.M.); (M.V.); (J.A.B.)
- Department of Cardiology, University Hospital of Split, 21000 Split, Croatia
| | - Ivana Tadin Hadjina
- Department of Gastroenterology, University Hospital of Split, 21000 Split, Croatia; (P.M.Z.); (I.T.H.); (A.T.)
| | - Doris Rusic
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia;
| | - Marino Vilovic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (A.M.); (M.V.); (J.A.B.)
| | - Daniela Supe-Domic
- Department of Medical Laboratory Diagnostics, University Hospital of Split, 21000 Split, Croatia;
- Department of Health Studies, University of Split, 21000 Split, Croatia
| | - Josip Andelo Borovac
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (A.M.); (M.V.); (J.A.B.)
| | - Ivana Mudnic
- Department of Pharmacology, University of Split School of Medicine, 21000 Split, Croatia;
| | - Ante Tonkic
- Department of Gastroenterology, University Hospital of Split, 21000 Split, Croatia; (P.M.Z.); (I.T.H.); (A.T.)
- Department of Internal Medicine, University of Split School of Medicine, 21000 Split, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (A.M.); (M.V.); (J.A.B.)
- Correspondence: ; Tel.: +385-21-557-871; Fax: +385-21-557-905
| |
Collapse
|
19
|
Zhao M, Guan L, Wang Y. The Association of Autonomic Nervous System Function With Ischemic Stroke, and Treatment Strategies. Front Neurol 2020; 10:1411. [PMID: 32038467 PMCID: PMC6987371 DOI: 10.3389/fneur.2019.01411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
Acute ischemic stroke, especially minor stroke, and transient ischemic attack have high risks of recurrence and exacerbation into severe ischemic strokes. It remains challenging to perform risk stratification and screen high-risk groups for initiation of early treatment in these patients. Moreover, with the growing population of patients with chronic small vessel disease, the mechanisms and clinical implications require further investigation. Traditional tools such as the ABCD2 score (age, blood pressure, clinical features, duration of symptoms, diabetes) have only moderate predictive value in patients with transient ischemic attack or minor stroke. By contrast, measurement of changes in heart rate variability (HRV) is an important and novel tool for risk stratification and outcome prediction in patients with cardiovascular diseases, as it reflects the overall level of autonomic nervous system dysfunction. Thus, abnormal HRV may be useful for prognosis and improve stratification of stroke patients with diverse risks. HRV may also partially explain autonomic nervous dysfunction and other manifestations during the process of chronic cerebral small vessel disease. In summary, measurement of HRV may contribute to early initiation of interventions in acute or chronic stroke patients using novel treatments involving rebalancing of autonomic nervous system function.
Collapse
Affiliation(s)
- Mengxi Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ling Guan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Mahata SK, Corti A. Chromogranin A and its fragments in cardiovascular, immunometabolic, and cancer regulation. Ann N Y Acad Sci 2019; 1455:34-58. [PMID: 31588572 PMCID: PMC6899468 DOI: 10.1111/nyas.14249] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
Chromogranin A (CgA)-the index member of the chromogranin/secretogranin secretory protein family-is ubiquitously distributed in endocrine, neuroendocrine, and immune cells. Elevated levels of CgA-related polypeptides, consisting of full-length molecules and fragments, are detected in the blood of patients suffering from neuroendocrine tumors, heart failure, renal failure, hypertension, rheumatoid arthritis, and inflammatory bowel disease. Full-length CgA and various CgA-derived peptides, including vasostatin-1, pancreastatin, catestatin, and serpinin, are expressed at different relative levels in normal and pathological conditions and exert diverse, and sometime opposite, biological functions. For example, CgA is overexpressed in genetic hypertension, whereas catestatin is diminished. In rodents, the administration of catestatin decreases hypertension, cardiac contractility, obesity, atherosclerosis, and inflammation, and it improves insulin sensitivity. By contrast, pancreastatin is elevated in diabetic patients, and the administration of this peptide to obese mice decreases insulin sensitivity and increases inflammation. CgA and the N-terminal fragment of vasostatin-1 can enhance the endothelial barrier function, exert antiangiogenic effects, and inhibit tumor growth in animal models, whereas CgA fragments lacking the CgA C-terminal region promote angiogenesis and tumor growth. Overall, the CgA system, consisting of full-length CgA and its fragments, is emerging as an important and complex player in cardiovascular, immunometabolic, and cancer regulation.
Collapse
Affiliation(s)
- Sushil K Mahata
- VA San Diego Healthcare System, San Diego, California.,Metabolic Physiology & Ultrastructural Biology Laboratory, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Angelo Corti
- IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| |
Collapse
|
21
|
Chen Y, Wang X, Yang C, Su X, Yang W, Dai Y, Han H, Jiang J, Lu L, Wang H, Chen Q, Jin W. Decreased circulating catestatin levels are associated with coronary artery disease: The emerging anti-inflammatory role. Atherosclerosis 2018; 281:78-88. [PMID: 30658195 DOI: 10.1016/j.atherosclerosis.2018.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS The neuropeptide catestatin (CST) is an endogenous nicotinic cholinergic antagonist that acts as pleiotropic cardiac protective hormone. This study investigated the association between CST and coronary artery disease (CAD) and the underlying mechanisms. METHODS AND RESULTS The serum concentration of CST among 224 CAD patients and 204 healthy controls was compared, and its association with atherosclerosis severity in 921 CAD patients was further analyzed. Compared to healthy subjects, serum CST concentration was lower in patients with CAD [1.14 (1.05-1.24) ng/mL vs. 2.15 (1.92-2.39) ng/mL, p < 0.001] and was inversely correlated with disease severity (r = -0.208, p < 0.001). In cultured endothelial cells, CST suppressed TNF-α-elicited expression of inflammatory cytokines and adhesion molecules by activating angiotensin-converting enzyme-2 (ACE2). Administration of CST reduced leukocyte-endothelium interactions in vitro and in vivo, and attenuated the development of atherosclerotic in ApoE-/- mice fed a high-fat diet. These protective effects by CST were blocked by an ACE2 inhibitor. CONCLUSIONS Serum CST concentration is lower in CAD patients and is inversely associated with the severity of atherosclerosis. CST acts as a novel anti-atherogenic peptide that inhibits inflammatory response and EC-leukocyte interactions via an ACE2-dependent mechanism.
Collapse
Affiliation(s)
- Yanjia Chen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xiaoqun Wang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Chendie Yang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xiuxiu Su
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Wenbo Yang
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yang Dai
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Hui Han
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Jie Jiang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Lin Lu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Haibo Wang
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Qiujing Chen
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Wei Jin
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
| |
Collapse
|
22
|
Li G, Morris-Blanco KC, Lopez MS, Yang T, Zhao H, Vemuganti R, Luo Y. Impact of microRNAs on ischemic stroke: From pre- to post-disease. Prog Neurobiol 2018; 163-164:59-78. [DOI: 10.1016/j.pneurobio.2017.08.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/12/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
|
23
|
Subramanian L, Khan AA, Allu PKR, Kiranmayi M, Sahu BS, Sharma S, Khullar M, Mullasari AS, Mahapatra NR. A haplotype variant of the human chromogranin A gene ( CHGA) promoter increases CHGA expression and the risk for cardiometabolic disorders. J Biol Chem 2017; 292:13970-13985. [PMID: 28667172 PMCID: PMC5572921 DOI: 10.1074/jbc.m117.778134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/27/2017] [Indexed: 12/13/2022] Open
Abstract
The acidic glycoprotein chromogranin A (CHGA) is co-stored/co-secreted with catecholamines and crucial for secretory vesicle biogenesis in neuronal/neuroendocrine cells. CHGA is dysregulated in several cardiovascular diseases, but the underlying mechanisms are not well established. Here, we sought to identify common polymorphisms in the CHGA promoter and to explore the mechanistic basis of their plausible contribution to regulating CHGA protein levels in circulation. Resequencing of the CHGA promoter in an Indian population (n = 769) yielded nine single-nucleotide polymorphisms (SNPs): G-1106A, A-1018T, T-1014C, T-988G, G-513A, G-462A, T-415C, C-89A, and C-57T. Linkage disequilibrium (LD) analysis indicated strong LD among SNPs at the -1014, -988, -462, and -89 bp positions and between the -1018 and -57 bp positions. Haplotype analysis predicted five major promoter haplotypes that displayed differential promoter activities in neuronal cells; specifically, haplotype 2 (containing variant T alleles at -1018 and -57 bp) exhibited the highest promoter activity. Systematic computational and experimental analyses revealed that transcription factor c-Rel has a role in activating the CHGA promoter haplotype 2 under basal and pathophysiological conditions (viz. inflammation and hypoxia). Consistent with the higher in vitro CHGA promoter activity of haplotype 2, individuals carrying this haplotype had higher plasma CHGA levels, plasma glucose levels, diastolic blood pressure, and body mass index. In conclusion, these results suggest a functional role of the CHGA promoter haplotype 2 (occurring in a large proportion of the world population) in enhancing CHGA expression in haplotype 2 carriers who may be at higher risk for cardiovascular/metabolic disorders.
Collapse
Affiliation(s)
- Lakshmi Subramanian
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Abrar A Khan
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Prasanna K R Allu
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Malapaka Kiranmayi
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Bhavani S Sahu
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Saurabh Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ajit S Mullasari
- Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai 600037
| | - Nitish R Mahapatra
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036.
| |
Collapse
|
24
|
Vasostatin-1 Stops Structural Remodeling and Improves Calcium Handling via the eNOS-NO-PKG Pathway in Rat Hearts Subjected to Chronic β-Adrenergic Receptor Activation. Cardiovasc Drugs Ther 2017; 30:455-464. [PMID: 27595734 DOI: 10.1007/s10557-016-6687-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Chronically elevated catecholamine levels activate cardiac β-adrenergic receptors, which play a vital role in the pathogenesis of heart failure. Evidence suggests that vasostatin-1 (VS-1) exerts anti-adrenergic effects on isolated and perfused hearts in vitro. Whether VS-1 ameliorates hypertrophy/remodeling by inducing the chronic activation of β-adrenergic receptors is unknown. The present study aims to test the efficacy of using VS-1 to treat the advanced hypertrophy/remodeling that result from chronic β-adrenergic receptor activation and to determine the cellular and molecular mechanisms that underlie this response. METHODS AND RESULT Rats were subjected to infusion with either isoprenaline (ISO, 5 mg/kg/d), ISO plus VS-1 (30 mg/kg/d) or placebo for 2 weeks. VS-1 suppressed chamber dilation, myocyte hypertrophy and fibrosis and improved in vivo heart function in the rats subjected to ISO infusion. VS-1 increased phosphorylated nitric oxide synthase levels and induced the activation of protein kinase G. VS-1 also deactivated multiple hypertrophy signaling pathways that were triggered by the chronic activation of β-adrenergic receptors, such as the phosphoinositide-3 kinase (PI3K)/Akt and Ca2+/calmodulin-dependent kinase (CaMK-II) pathways. Myocytes isolated from ISO + VS-1 hearts displayed higher Ca2+ transients, shorter Ca2+ decays, higher sarcoplasmic reticulum Ca2+ levels and higher L-type Ca2+ current densities than the ISO rat hearts. VS-1 treatment restored the protein expression of sarcoplasmic reticulum Ca2+ uptake ATPase, phospholamban and Cav1.2, indicating improved calcium handling. CONCLUSIONS Chronic VS-1 treatment inhibited the progression of hypertrophy, fibrosis, and chamber remodeling, and improved cardiac function in a rat model of ISO infusion. In addition, Ca2+ handling and its molecular modulation were also improved by VS-1. The beneficial effects of VS-1 on cardiac remodeling may be mediated by the enhanced activation of the eNOS-cGMP-PKG pathway.
Collapse
|
25
|
Kiranmayi M, Chirasani VR, Allu PKR, Subramanian L, Martelli EE, Sahu BS, Vishnuprabu D, Kumaragurubaran R, Sharma S, Bodhini D, Dixit M, Munirajan AK, Khullar M, Radha V, Mohan V, Mullasari AS, Naga Prasad SV, Senapati S, Mahapatra NR. Catestatin Gly364Ser Variant Alters Systemic Blood Pressure and the Risk for Hypertension in Human Populations via Endothelial Nitric Oxide Pathway. Hypertension 2016; 68:334-47. [PMID: 27324226 DOI: 10.1161/hypertensionaha.116.06568] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
Catestatin (CST), an endogenous antihypertensive/antiadrenergic peptide, is a novel regulator of cardiovascular physiology. Here, we report case-control studies in 2 geographically/ethnically distinct Indian populations (n≈4000) that showed association of the naturally-occurring human CST-Gly364Ser variant with increased risk for hypertension (age-adjusted odds ratios: 1.483; P=0.009 and 2.951; P=0.005). Consistently, 364Ser allele carriers displayed elevated systolic (up to ≈8 mm Hg; P=0.004) and diastolic (up to ≈6 mm Hg; P=0.001) blood pressure. The variant allele was also found to be in linkage disequilibrium with other functional single-nucleotide polymorphisms in the CHGA promoter and nearby coding region. Functional characterization of the Gly364Ser variant was performed using cellular/molecular biological experiments (viz peptide-receptor binding assays, nitric oxide [NO], phosphorylated extracellular regulated kinase, and phosphorylated endothelial NO synthase estimations) and computational approaches (molecular dynamics simulations for structural analysis of wild-type [CST-WT] and variant [CST-364Ser] peptides and docking of peptide/ligand with β-adrenergic receptors [ADRB1/2]). CST-WT and CST-364Ser peptides differed profoundly in their secondary structures and showed differential interactions with ADRB2; although CST-WT displaced the ligand bound to ADRB2, CST-364Ser failed to do the same. Furthermore, CST-WT significantly inhibited ADRB2-stimulated extracellular regulated kinase activation, suggesting an antagonistic role towards ADRB2 unlike CST-364Ser. Consequently, CST-WT was more potent in NO production in human umbilical vein endothelial cells as compared with CST-364Ser. This NO-producing ability of CST-WT was abrogated by ADRB2 antagonist ICI 118551. In conclusion, CST-364Ser allele enhanced the risk for hypertension in human populations, possibly via diminished endothelial NO production because of altered interactions of CST-364Ser peptide with ADRB2 as compared with CST-WT.
Collapse
Affiliation(s)
- Malapaka Kiranmayi
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Venkat R Chirasani
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Prasanna K R Allu
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Lakshmi Subramanian
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Elizabeth E Martelli
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Bhavani S Sahu
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Durairajpandian Vishnuprabu
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Rathnakumar Kumaragurubaran
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Saurabh Sharma
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Dhanasekaran Bodhini
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Madhulika Dixit
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Arasambattu K Munirajan
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Madhu Khullar
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Venkatesan Radha
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Viswanathan Mohan
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Ajit S Mullasari
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Sathyamangla V Naga Prasad
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Sanjib Senapati
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Nitish R Mahapatra
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.).
| |
Collapse
|
26
|
Genetics meets epigenetics: Genetic variants that modulate noncoding RNA in cardiovascular diseases. J Mol Cell Cardiol 2015; 89:27-34. [DOI: 10.1016/j.yjmcc.2015.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/30/2022]
|
27
|
Catestatin attenuates endoplasmic reticulum induced cell apoptosis by activation type 2 muscarinic acetylcholine receptor in cardiac ischemia/reperfusion. Sci Rep 2015; 5:16590. [PMID: 26567709 PMCID: PMC4645123 DOI: 10.1038/srep16590] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023] Open
Abstract
Catestatin (CST) is a catecholamine secretion inhibiting peptide as non-competitive inhibitor of nicotinic acetylcholine receptor. CST play a protective role in cardiac ischemia/reperfusion (I/R) but the molecular mechanism remains unclear. Cardiomyocytes endogenously produced CST and its expression was reduced after I/R. CST pretreatment decreased apoptosis especially endoplasmic reticulum (ER) stress response during I/R. The protection of CST was confirmed in H9c2 cardiomyoblasts under Anoxia/reoxygenation (A/R). In contrast, siRNA-mediated knockdown of CST exaggerated ER stress induced apoptosis. The protective effects of CST were blocked by extracellular signal-regulated kinases 1/2 (ERK1/2) inhibitor PD90895 and phosphoinositide 3-kinase (PI3 K) inhibitor wortmannin. CST also increased ERK1/2 and protein kinase B (Akt) phosphorylation and which was blocked by atropine and selective type 2 muscarinic acetylcholine (M2) receptor, but not type 1 muscarinic acetylcholine (M1) receptor antagonist. Receptor binding assay revealed that CST competitively bound to the M2 receptor with a 50% inhibitory concentration of 25.7 nM. Accordingly, CST inhibited cellular cAMP stimulated by isoproterenol or forskolin, and which was blocked by selective M2 receptor antagonist. Our findings revealed that CST binds to M2 receptor, then activates ERK1/2 and PI3 K/Akt pathway to inhibit ER stress-induced cell apoptosis resulting in attenuation cardiac I/R injury.
Collapse
|
28
|
Choi Y, Miura M, Nakata Y, Sugasawa T, Nissato S, Otsuki T, Sugawara J, Iemitsu M, Kawakami Y, Shimano H, Iijima Y, Tanaka K, Kuno S, Allu PKR, Mahapatra NR, Maeda S, Takekoshi K. A common genetic variant of the chromogranin A-derived peptide catestatin is associated with atherogenesis and hypertension in a Japanese population. Endocr J 2015. [PMID: 26211667 DOI: 10.1507/endocrj.ej14-0471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chromogranin A (CHGA) is a major protein in the secretory granules of chromaffin cells. CHGA also gives rise to cardiovascular/metabolism regulatory peptides, such as catestatin (CST) and pancreastatin (PST). While CST is a potent inhibitor of catecholamine secretion, PST is a potent physiological inhibitor of glucose-induced insulin secretion. Recently, several SNPs were identified in the CST and PST domains of CHGA locus in different populations. Among the discovered SNPs, CST variant allele Ser-364 was associated with blood pressure alteration and PST variant allele Ser-297 was associated with significantly higher plasma glucose level. In this study, we examined whether these CST and PST variant alleles exist and influence cardiovascular and metabolic phenotypes in Japanese population. Our study comprised of 343 Japanese subjects aged 45-85 years (143 men and 200 women, mean age 66 ± 8 years). We determined the genotypes of CST and PST by PCR-direct sequencing method and carried out genotype-phenotype association analysis. In 343 participants, the minor allele frequency of CST variant Ser-364 was 6.10%. On the other hand, we did not detect the PST variant Ser-297 in this entire study population. The presence of Ser-364 allele was associated with increased in baPWV (an index of systemic arterial stiffness) that suggests an initiation and/or progression atherogenesis and hypertension. The Ser-364 allele was also associated with elevated systolic blood pressure and pulse pressure, consistent with increased baPWV. In conclusion, the CST Ser-364 allele may increase the risk for cardiovascular diseases in Japanese population.
Collapse
Affiliation(s)
- Youngju Choi
- Division of Sports Medicine, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8574, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang K, Mir SA, Hightower CM, Miramontes-Gonzalez JP, Maihofer AX, Chen Y, Mahata SK, Nievergelt CM, Schork NJ, Freedman BI, Vaingankar SM, O'Connor DT. Molecular Mechanism for Hypertensive Renal Disease: Differential Regulation of Chromogranin A Expression at 3'-Untranslated Region Polymorphism C+87T by MicroRNA-107. J Am Soc Nephrol 2014; 26:1816-25. [PMID: 25392232 DOI: 10.1681/asn.2014060537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/16/2014] [Indexed: 11/03/2022] Open
Abstract
Chromogranin A (CHGA) is coreleased with catecholamines from secretory vesicles in adrenal medulla and sympathetic axons. Genetic variation in the CHGA 3'-region has been associated with autonomic control of circulation, hypertension, and hypertensive nephropathy, and the CHGA 3'-untranslated region (3'-UTR) variant C+87T (rs7610) displayed peak associations with these traits in humans. Here, we explored the molecular mechanisms underlying these associations. C+87T occurred in a microRNA-107 (miR-107) motif (match: T>C), and CHGA mRNA expression varied inversely with miR-107 abundance. In cells transfected with chimeric luciferase/CHGA 3'-UTR reporters encoding either the T allele or the C allele, changes in miR-107 expression levels had much greater effects on expression of the T allele. Cotransfection experiments with hsa-miR-107 oligonucleotides and eukaryotic CHGA plasmids produced similar results. Notably, an in vitro CHGA transcription/translation experiment revealed that changes in hsa-miR-107 expression altered expression of the T allele variant only. Mice with targeted ablation of Chga exhibited greater eGFR. Using BAC transgenesis, we created a mouse model with a humanized CHGA locus (T/T genotype at C+87T), in which treatment with a hsa-miR-107 inhibitor yielded prolonged falls in SBP/DBP compared with wild-type mice. We conclude that the CHGA 3'-UTR C+87T disrupts an miR-107 motif, with differential effects on CHGA expression, and that a cis:trans (mRNA:miR) interaction regulates the association of CHGA with BP and hypertensive nephropathy. These results indicate new strategies for probing autonomic circulatory control and ultimately, susceptibility to hypertensive renal sequelae.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sushil K Mahata
- Departments of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
| | | | | | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | | | - Daniel T O'Connor
- Departments of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California Institute for Genomic Medicine, University of California at San Diego, La Jolla, California; Pharmacology and
| |
Collapse
|
30
|
Abstract
Catestatin (CST) was first discovered as a potent non-competitive and reversible inhibitor of catecholamine secretion. Recent reports on plasma CST level in heart diseases suggested a cardioprotective role for this peptide. Given that cardiac remodeling is the dominant pathologic process in cardiac dysfunction, we propose that CST participates in the regulation of concern pathways and contributes to the inhibition of cardiac remodeling. In this minireview, the potential mechanism of cardiac remodeling involving CST will be discussed from three aspects: hypertrophy, fibrosis, and apoptosis.
Collapse
Affiliation(s)
- Zheng Wu
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health and Key Laboratory of Molecular Cardiovascular Sciences, Department of Cardiology, Peking University Third Hospital, Ministry of Education , Beijing , China
| | | |
Collapse
|
31
|
Obligatory role for endothelial heparan sulphate proteoglycans and caveolae internalization in catestatin-dependent eNOS activation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:783623. [PMID: 25136621 PMCID: PMC4127283 DOI: 10.1155/2014/783623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/24/2022]
Abstract
The chromogranin-A peptide catestatin modulates a wide range of processes, such as cardiovascular functions, innate immunity, inflammation, and metabolism. We recently found that the cardiac antiadrenergic action of catestatin requires a PI3K-dependent NO release from endothelial cells, although the receptor involved is yet to be identified. In the present work, based on the cationic properties of catestatin, we tested the hypothesis of its interaction with membrane heparan sulphate proteoglycans, resulting in the activation of a caveolae-dependent endocytosis. Experiments were performed on bovine aortic endothelial cells. Endocytotic vesicles trafficking was quantified by confocal microscopy using a water-soluble membrane dye; catestatin colocalization with heparan sulphate proteoglycans and caveolin 1 internalization were studied by fluorimetric measurements in live cells. Modulation of the catestatin-dependent eNOS activation was assessed by immunofluorescence and immunoblot analysis. Our results demonstrate that catestatin (5 nM) colocalizes with heparan sulphate proteoglycans and induces a remarkable increase in the caveolae-dependent endocytosis and caveolin 1 internalization, which were significantly reduced by both heparinase and wortmannin. Moreover, catestatin was unable to induce Ser1179 eNOS phosphorylation after pretreatments with heparinase and methyl-β-cyclodextrin. Taken together, these results highlight the obligatory role for proteoglycans and caveolae internalization in the catestatin-dependent eNOS activation in endothelial cells.
Collapse
|
32
|
Pei Z, Ma D, Ji L, Zhang J, Su J, Xue W, Chen X, Wang W. Usefulness of catestatin to predict malignant arrhythmia in patients with acute myocardial infarction. Peptides 2014; 55:131-5. [PMID: 24631953 DOI: 10.1016/j.peptides.2014.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/22/2014] [Accepted: 02/23/2014] [Indexed: 12/16/2022]
Abstract
Catestatin (CST) displays potent vasodilatory effect and acts on lowering blood pressure in vivo. The clinical utility of CST in patients with acute myocardial infarction (AMI) has not been clearly delineated. The aim of this study was to investigate the predictive value of CST for the development of in-hospital malignant arrhythmia and other adverse cardiac events in patients with AMI. A total of 125 consecutive patients diagnosed with AMI were included. The clinical characteristics and previous history of the patients were collected. Malignant arrhythmia and other major adverse cardiac events (MACE) such as postinfarction angina pectoris or reinfarction and death were recorded during hospitalization. The levels of plasma CST, norepinephrine (NE) and amino-terminal pro-brain sodium peptides (NT-proBNP) were determined by sandwich ELISA. A multiple logistic regression model was used to predict the influence factors of malignant arrhythmia and other MACE during hospitalization of AMI patients. The results showed that the levels of plasma cystatin-C (CysC), high sensitivity C-reactive protein (hs-CRP), NE and NT-proBNP increased in a CST concentration dependent manner. The incidence of malignant arrhythmia significantly increased as the elevation of CST level (P<0.05). Age, CST and NT-proBNP were independent predictors for the MACE occurred during hospitalization. Increased blood glucose (≥6.1mmol/L) and CST were independent predictors for the complicated malignant arrhythmia of AMI patients. These data demonstrated that CST can be used as a new biological marker for prediction of malignant arrhythmia in patients with AMI.
Collapse
Affiliation(s)
- Zhiqiang Pei
- Intervention Division, Taiyuan City Centre Hospital, Taiyuan 030001, China.
| | - Dengfeng Ma
- Intervention Division, Taiyuan City Centre Hospital, Taiyuan 030001, China
| | - Lei Ji
- Cadre Health Centre, Qinghai People's Hospital, Xining 810000, China
| | - Jing Zhang
- Intervention Division, Taiyuan City Centre Hospital, Taiyuan 030001, China
| | - Jinsheng Su
- Intervention Division, Taiyuan City Centre Hospital, Taiyuan 030001, China
| | - Weizhen Xue
- Intervention Division, Taiyuan City Centre Hospital, Taiyuan 030001, China
| | - Xiaoping Chen
- Intervention Division, Taiyuan City Centre Hospital, Taiyuan 030001, China
| | - Weishu Wang
- Department of Senile Internal Medicine, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
33
|
Liu L, Ding W, Li R, Ye X, Zhao J, Jiang J, Meng L, Wang J, Chu S, Han X, Peng F. Plasma levels and diagnostic value of catestatin in patients with heart failure. Peptides 2013; 46:20-5. [PMID: 23702300 DOI: 10.1016/j.peptides.2013.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/11/2013] [Accepted: 05/13/2013] [Indexed: 02/06/2023]
Abstract
Catestatin (CST) is an endogenous neuropeptide with multiple cardiovascular activities. The study is to investigate circulating CST levels in heart failure (HF) patients and to evaluate the role of CST as a biomarker for HF. Plasma CST concentrations were measured by enzyme-linked immunosorbent assay in 228 HF patients and 172 controls. Plasma CST gradually increased in patients from NYHA class I to class IV. No significant differences in CST were found among NYHA I, NYHA II patients and controls. Plasma CST in NYHA III and IV patients was higher compared to other groups. Plasma CST levels in HF patients after treatment were similar to admission, but still higher than controls. In a subgroup analysis among the patients with NYHA class III or IV, patients with ischemic etiology had significantly higher CST. Plasma CST levels were similar between patients with preserved and reduced ejection fraction. Multivariable analysis showed that NYHA classes, the etiology of HF (ischemic or not) and estimated glomerular filtration rate independently predicted plasma LogCST levels (P<0.05). The area under ROC for CST and BNP in moderate to severe HF diagnosis was 0.626 and 0.831, respectively, combining CST and BNP did not improve the accuracy.
Collapse
Affiliation(s)
- Lin Liu
- Department of Cardiology, Peking University First Hospital, No. 1, Dahongluochang Street, West District, Beijing 100034, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu L, Ding W, Zhao F, Shi L, Pang Y, Tang C. Plasma levels and potential roles of catestatin in patients with coronary heart disease. SCAND CARDIOVASC J 2013; 47:217-24. [DOI: 10.3109/14017431.2013.794951] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Friese RS, Altshuler AE, Zhang K, Miramontes-Gonzalez JP, Hightower CM, Jirout ML, Salem RM, Gayen JR, Mahapatra NR, Biswas N, Cale M, Vaingankar SM, Kim HS, Courel M, Taupenot L, Ziegler MG, Schork NJ, Pravenec M, Mahata SK, Schmid-Schönbein GW, O'Connor DT. MicroRNA-22 and promoter motif polymorphisms at the Chga locus in genetic hypertension: functional and therapeutic implications for gene expression and the pathogenesis of hypertension. Hum Mol Genet 2013; 22:3624-40. [PMID: 23674521 DOI: 10.1093/hmg/ddt213] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hypertension is a common hereditary syndrome with unclear pathogenesis. Chromogranin A (Chga), which catalyzes formation and cargo storage of regulated secretory granules in neuroendocrine cells, contributes to blood pressure homeostasis centrally and peripherally. Elevated Chga occurs in spontaneously hypertensive rat (SHR) adrenal glands and plasma, but central expression is unexplored. In this report, we measured SHR and Wistar-Kyoto rat (control) Chga expression in central and peripheral nervous systems, and found Chga protein to be decreased in the SHR brainstem, yet increased in the adrenal and the plasma. By re-sequencing, we systematically identified five promoter, two coding and one 3'-untranslated region (3'-UTR) polymorphism at the SHR (versus WKY or BN) Chga locus. Using HXB/BXH recombinant inbred (RI) strain linkage and correlations, we demonstrated genetic determination of Chga expression in SHR, including a cis-quantitative trait loci (QTLs) (i.e. at the Chga locus), and such expression influenced biochemical determinants of blood pressure, including a cascade of catecholamine biosynthetic enzymes, catecholamines themselves and steroids. Luciferase reporter assays demonstrated that the 3'-UTR polymorphism (which disrupts a microRNA miR-22 motif) and promoter polymorphisms altered gene expression consistent with the decline in SHR central Chga expression. Coding region polymorphisms did not account for changes in Chga expression or function. Thus, we hypothesized that the 3'-UTR and promoter mutations lead to dysregulation (diminution) of Chga in brainstem cardiovascular control nuclei, ultimately contributing to the pathogenesis of hypertension in SHR. Accordingly, we demonstrated that in vivo administration of miR-22 antagomir to SHR causes substantial (∼18 mmHg) reductions in blood pressure, opening a novel therapeutic avenue for hypertension.
Collapse
Affiliation(s)
- Ryan S Friese
- Department of Bioengineering, VA San Diego Healthcare System, University of California at San Diego, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Catestatin reduces myocardial ischaemia/reperfusion injury: involvement of PI3K/Akt, PKCs, mitochondrial KATP channels and ROS signalling. Pflugers Arch 2013; 465:1031-40. [PMID: 23319164 DOI: 10.1007/s00424-013-1217-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 01/07/2023]
Abstract
Catestatin (CST) limits myocardial ischaemia/reperfusion (I/R) injury with unknown mechanisms. Clearly phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) isoforms, including intra-mitochondrial PKCε, mitochondrial KATP (mitoKATP) channels and subsequent reactive oxygen species (ROS)-signalling play important roles in postconditioning cardioprotection, preventing mitochondrial permeability transition pore (mPTP) opening. Therefore, we studied the role of these extra- and intra-mitochondrial factors in CST-induced protection. Isolated rat hearts and H9c2 cells underwent I/R and oxidative stress, respectively. In isolated hearts CST (75nM, CST-Post) given in early-reperfusion significantly reduced infarct size, limited post-ischaemic contracture, and improved recovery of developed left ventricular pressure. PI3K inhibitor, LY-294002 (LY), large spectrum PKC inhibitor, Chelerythrine (CHE), specific PKCε inhibitor (εV1-2), mitoKATP channel blocker, 5-Hydroxydecanoate (5HD) or ROS scavenger, 2-mercaptopropionylglycine (MPG) abolished the infarct-sparing effect of CST. Notably the CST-induced contracture limitation was maintained during co-infusion of 5HD, MPG or εV1-2, but it was lost during co-infusion of LY or CHE. In H9c2 cells challenged with H2O2, mitochondrial depolarization (an index of mPTP opening studied with JC1-probe) was drastically limited by CST (75nM). Our results suggest that the protective signalling pathway activated by CST includes mitoKATP channels, ROS signalling and prevention of mPTP opening, with a central role for upstream PI3K/Akt and PKCs. In fact, all inhibitors completely abolished CST-infarct-sparing effect. Since CST-anti-contracture effect cannot be explained by intra-mitochondrial mechanisms (PKCε activation and mitoKATP channel opening) or ROS signalling, it is proposed that these downstream signals are part of a reverberant loop which re-activates upstream PKCs, which therefore play a pivotal role in CST-induced protection.
Collapse
|
37
|
Biswas N, Gayen J, Mahata M, Su Y, Mahata SK, O'Connor DT. Novel peptide isomer strategy for stable inhibition of catecholamine release: application to hypertension. Hypertension 2012; 60:1552-9. [PMID: 23129699 DOI: 10.1161/hypertensionaha.112.202127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although hypertension remains the most potent and widespread cardiovascular risk factor, its pharmacological treatment has achieved only limited success. The chromogranin A-derived fragment catestatin inhibits catecholamine release by acting as an endogenous nicotinic cholinergic antagonist and can rescue hypertension in the setting of chromogranin A-targeted ablation. Here, we undertook novel peptide chemistry to synthesize isomers of catestatin: normal/wild-type as well as a retro-inverso (R-I) version, with not only inversion of chirality (L → D amino acids) but also reversal of sequence (carboxyl → amino). The R-I peptide was entirely resistant to proteolytic digestion and displayed enhanced potency as well as preserved specificity of action toward nicotinic cholinergic events: catecholamine secretion, agonist desensitization, secretory protein transcription, and cationic signal transduction. Structural modeling suggested similar side-chain orientations of the wild-type and R-I isomers, whereas circular dichroism spectroscopy documented inversion of chirality. In vivo, the R-I peptide rescued hypertension in 2 mouse models of the human trait: monogenic chromogranin A-targeted ablation, with prolonged efficacy of the R-I version and a polygenic model, with magnified efficacy of the R-I version. These results may have general implications for generation of metabolically stable mimics of biologically active peptides for cardiovascular pathways. The findings also point the way toward a potential new class of drug therapeutics for an important risk trait and, more generally, open the door to broader applications of the R-I strategy in other pathways involved in cardiovascular biology, with the potential for synthesis of diagnostic and therapeutic probes for both physiology and disease.
Collapse
Affiliation(s)
- Nilima Biswas
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
38
|
Sahu BS, Obbineni JM, Sahu G, Allu PKR, Subramanian L, Sonawane PJ, Singh PK, Sasi BK, Senapati S, Maji SK, Bera AK, Gomathi BS, Mullasari AS, Mahapatra NR. Functional genetic variants of the catecholamine-release-inhibitory peptide catestatin in an Indian population: allele-specific effects on metabolic traits. J Biol Chem 2012; 287:43840-52. [PMID: 23105094 DOI: 10.1074/jbc.m112.407916] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catestatin (CST), a chromogranin A (CHGA)-derived peptide, is a potent inhibitor of catecholamine release from adrenal chromaffin cells and postganglionic sympathetic axons. We re-sequenced the CST region of CHGA in an Indian population (n = 1010) and detected two amino acid substitution variants: G364S and G367V. Synthesized CST variant peptides (viz. CST-Ser-364 and CST-Val-367) were significantly less potent than the wild type peptide (CST-WT) to inhibit nicotine-stimulated catecholamine secretion from PC12 cells. Consistently, the rank-order of blockade of nicotinic acetylcholine receptor (nAChR)-stimulated inward current and intracellular Ca(2+) rise by these peptides in PC12 cells was: CST-WT > CST-Ser-364 > CST-Val-367. Structural analysis by CD spectroscopy coupled with molecular dynamics simulations revealed the following order of α-helical content: CST-WT > CST-Ser-364 > CST-Val-367; docking of CST peptides onto a major human nAChR subtype and molecular dynamics simulations also predicted the above rank order for their binding affinity with nAChR and the extent of occlusion of the receptor pore, providing a mechanistic basis for differential potencies. The G364S polymorphism was in strong linkage disequilibrium with several common CHGA genetic variations. Interestingly, the Ser-364 allele (detected in ∼15% subjects) was strongly associated with profound reduction (up to ∼2.1-fold) in plasma norepinephrine/epinephrine levels consistent with the diminished nAChR desensitization-blocking effect of CST-Ser-364 as compared with CST-WT. Additionally, the Ser-364 allele showed strong associations with elevated levels of plasma triglyceride and glucose levels. In conclusion, a common CHGA variant in an Indian population influences several biochemical parameters relevant to cardiovascular/metabolic disorders.
Collapse
Affiliation(s)
- Bhavani S Sahu
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sahu BS, Mohan J, Obbineni JM, Sahu G, Singh PK, Sonawane PJ, Sasi BK, Allu PKR, Maji SK, Bera AK, Senapati S, Mahapatra NR. Molecular interactions of the physiological anti-hypertensive peptide catestatin with the neuronal nicotinic acetylcholine receptor. J Cell Sci 2012; 125:2323-37. [PMID: 22357947 DOI: 10.1242/jcs.103176] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Catestatin (CST), a chromogranin-A-derived peptide, is a potent endogenous inhibitor of the neuronal nicotinic acetylcholine receptor (nAChR). It exerts an anti-hypertensive effect by acting as a 'physiological brake' on transmitter release into the circulation. However, the mechanism of interaction of CST with nAChR is only partially understood. To unravel molecular interactions of the wild-type human CST (CST-WT) as well as its naturally occurring variants (CST-364S and CST-370L, which have Gly→Ser and Pro→Leu substitutions, respectively) with the human α3β4 nAChR, we generated a homology-modeled human α3β4 nAChR structure and solution structures of CST peptides. Docking and molecular dynamics simulations showed that ~90% of interacting residues were within 15 N-terminal residues of CST peptides. The rank order of binding affinity of these peptides with nAChR was: CST-370L>CST-WT>CST-364S; the extent of occlusion of the receptor pore by these peptides was also in the same order. In corroboration with computational predictions, circular dichroism analysis revealed significant differences in global structures of CST peptides (e.g. the order of α-helical content was: CST-370L>CST-WT>CST-364S). Consistently, CST peptides blocked various stages of nAChR signal transduction, such as nicotine- or acetylcholine-evoked inward current, rise in intracellular Ca(2+) and catecholamine secretion in or from neuron-differentiated PC12 cells, in the same rank order. Taken together, this study shows molecular interactions between human CST peptides and human α3β4 nAChR, and demonstrates that alterations in the CST secondary structure lead to the gain of potency for CST-370L and loss of potency for CST-364S. These findings have implications for understanding the nicotinic cholinergic signaling in humans.
Collapse
Affiliation(s)
- Bhavani S Sahu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building, Indian Institute of Technology Madras, Chennai, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Basheer M, Schwalb H, Shefler I, Levdansky L, Mekori YA, Gorodetsky R. Blood pressure modulation following activation of mast cells by cationic cell penetrating peptides. Peptides 2011; 32:2444-51. [PMID: 21971370 DOI: 10.1016/j.peptides.2011.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/20/2011] [Accepted: 09/20/2011] [Indexed: 11/18/2022]
Abstract
Short cell penetrating peptides (CPP) are widely used in vitro to transduce agents into cells. But their systemic effect has not been yet studied in detail. We studied the systemic effect of the cell penetrating peptides, penetratin, transportan and pro-rich, on rat hemodynamic functions. Intra-arterial monitoring of blood pressure showed that injection of the positively charged penetratin and transportan in a wide range of concentrations (2.5-320 μg/kg) caused highly significant transient decrease in the systolic and diastolic blood pressure in a dose dependent manner (p<0.01). Pretreatment with histamine receptors blockers or with cromolyn, a mast cell stabilizing agent, significantly attenuated this effect. Furthermore, in vitro incubation of these both peptides with mast cells line, LAD2, caused a massive mast cell degranulation. In vitro studies showed that these CPP in a wide range of concentrations were not cytotoxic without any effect on the survival of LAD2 mast cell line. In contrast, the less positively charged and proline-rich CPP, pro-rich, had no systemic effects with no effect on mast cell degranulation. Our results indicate that intravenously administrated positively charged CPP may have deleterious consequences due to their induced BP drop, mediated by mast cell activation. Therefore, the major effect of mast cell activation on BP should be considered in developing possible future drug therapies based on the injection of membrane-permeable and positively charged CPP. Nevertheless, lower levels of such CPP may be considered as a treatment of systemic high BP through moderate systemic mast cell activation.
Collapse
Affiliation(s)
- Maamoun Basheer
- Laboratory of Biotechnology and Radiobiology, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
41
|
Meng L, Ye XJ, Ding WH, Yang Y, Di BB, Liu L, Huo Y. Plasma catecholamine release-inhibitory peptide catestatin in patients with essential hypertension. J Cardiovasc Med (Hagerstown) 2011; 12:643-7. [PMID: 21508845 DOI: 10.2459/jcm.0b013e328346c142] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Catestatin plays an important role in the adjustment of blood pressure and cardiac function. We investigated levels of plasma catestatin in essential hypertension and the relationship between catestatin and left ventricular hypertrophy. METHODS Plasma was collected from 136 patients with essential hypertension and 61 healthy controls. Plasma catestatin was measured by enzyme-linked immunosorbent assay (ELISA). Plasma norepinephrine was measured by high-performance liquid chromatography. All patients underwent echocardiography, measurement of fasting blood glucose, body mass index (BMI) and lipid levels. RESULTS Plasma levels of catestatin and norepinephrine were significantly higher in patients with essential hypertension than in normal controls (both P<0.01). The ratio of catestatin to norepinephrine was significantly lower in patients with essential hypertension than in normal controls (P<0.01). In patients with essential hypertension, plasma norepinephrine level was significantly higher in patients with than without left ventricular hypertrophy (P<0.01). Plasma catestatin level was lower, but not significantly, in patients with than without left ventricular hypertrophy. The ratio of catestatin to norepinephrine was significantly lower in patients with than without left ventricular hypertrophy (P<0.01). CONCLUSION Plasma catestatin is elevated in patients with essential hypertension. The ratio of catestatin to norepinephrine was lower in patients with left ventricular hypertrophy. Catestatin might participate in the development of hypertension and left ventricular hypertrophy.
Collapse
Affiliation(s)
- Lei Meng
- Department of Cardiology, Peking University First Hospital, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
42
|
Zhu D, Wang F, Yu H, Mi L, Gao W. Catestatin is useful in detecting patients with stage B heart failure. Biomarkers 2011; 16:691-7. [PMID: 22050388 DOI: 10.3109/1354750x.2011.629058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Screening patients with stage B heart failure(HF) may be one strategy for reducing human morbidity. To describe catestatin levels in different stages of HF and evaluate the diagnostic utility of catestatin for detecting stage B HF, we included 300 patients. Catestatin, BNP testing and echocardiogram were performed. Our studies showed catestatin decreased gradually from stage A to C. There was significant difference between stage A and B. Cutoff value for detecting stage B HF was 19.73 ng/ml for catestatin with 90% sensitivity and 50.9% specificity. These results may have implications in the new method to detect patients with stage B HF.
Collapse
Affiliation(s)
- Dan Zhu
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| | | | | | | | | |
Collapse
|
43
|
Chromogranin A: a novel factor acting at the cross road between the neuroendocrine and the cardiovascular systems. J Hypertens 2011; 29:409-14. [PMID: 21178786 DOI: 10.1097/hjh.0b013e328341a429] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chromogranin A (CHGA) is a secretory protein stored in and released from neurons and cells of the diffuse neuroendocrine system. Cells of the adrenal medulla and adrenergic terminals are a main source of CHGA but also myocardial cells produce it under stress conditions. After secretion, CHGA is cleaved into several biologically active fragments, including vasostatins and catestatin. CHGA and its proteolytic peptides exert a broad spectrum of activities on the cardiovascular system. They act on blood pressure by controlling the vascular tone and the cardiac inotropic and chronotropic function. CHGA revealed to be a sensitive marker of myocardial dysfunction, with a high predictive power of morbidity and mortality in heart failure and ischemic heart disease. In addition, CHGA has been involved in the control of sustained endothelial inflammation and has been shown to be a good marker of persistent vascular inflammation in rheumatologic disorders affecting vessels.
Collapse
|
44
|
Jeong SJ, Koh W, Lee EO, Lee HJ, Lee HJ, Bae H, Lü J, Kim SH. Antiangiogenic phytochemicals and medicinal herbs. Phytother Res 2010; 25:1-10. [DOI: 10.1002/ptr.3224] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
45
|
Helle KB. Regulatory peptides from chromogranin A and secretogranin II. Cell Mol Neurobiol 2010; 30:1145-6. [PMID: 21088887 PMCID: PMC3008932 DOI: 10.1007/s10571-010-9552-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/23/2010] [Indexed: 11/28/2022]
Abstract
This commentary is focusing on novel aspects on the secreted CgA- and SgII-derived peptides, vasostatin-I (bovine and human CgA1–76, VS-I), WE-14 (CgA316–329), catestatin (bovine CgA344–366, human CgA352–372, Cts) and the SgII-derived secretoneurin (SgII180–204) as significant regulators of inflammatory reactions.
Collapse
Affiliation(s)
- Karen B Helle
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
46
|
Fung MM, Salem RM, Mehtani P, Thomas B, Lu CF, Perez B, Rao F, Stridsberg M, Ziegler MG, Mahata SK, O'Connor DT. Direct vasoactive effects of the chromogranin A (CHGA) peptide catestatin in humans in vivo. Clin Exp Hypertens 2010; 32:278-87. [PMID: 20662728 DOI: 10.3109/10641960903265246] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Catestatin is a bioactive peptide of chromogranin A (CHGA) that is co-released with catecholamines from secretory vesicles. Catestatin may function as a vasodilator and is diminished in hypertension. To evaluate this potential vasodilator in vivo without systemic counterregulation, we infused catestatin to target concentrations of approximately 50, approximately 500, approximately 5000 nM into dorsal hand veins of 18 normotensive men and women, after pharmacologic venoconstriction with phenylephrine. Pancreastatin, another CHGA peptide, was infused as a negative control. After preconstriction to approximately 69%, increasing concentrations of catestatin resulted in dose-dependent vasodilation (P = 0.019), in female subjects (to approximately 44%) predominantly. The EC(50) (approximately 30 nM) for vasodilation induced by catestatin was the same order of magnitude to circulating endogenous catestatin (4.4 nM). No vasodilation occurred during the control infusion with pancreastatin. Plasma CHGA, catestatin, and CHGA-to-catestatin processing were then determined in 622 healthy subjects without hypertension. Female subjects had higher plasma catestatin levels than males (P = 0.001), yet lower CHGA precursor concentrations (P = 0.006), reflecting increased processing of CHGA-to-catestatin (P < 0.001). Our results demonstrate that catestatin dilates human blood vessels in vivo, especially in females. Catestatin may contribute to sex differences in endogenous vascular tone, thereby influencing the complex predisposition to hypertension.
Collapse
Affiliation(s)
- Maple M Fung
- Department of Medicine, University of California at San Diego and Veterans Affairs, San Diego Healthcare System, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Brar BK, Helgeland E, Mahata SK, Zhang K, O'Connor DT, Helle KB, Jonassen AK. Human catestatin peptides differentially regulate infarct size in the ischemic-reperfused rat heart. ACTA ACUST UNITED AC 2010; 165:63-70. [PMID: 20655339 DOI: 10.1016/j.regpep.2010.07.153] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 06/29/2010] [Accepted: 07/08/2010] [Indexed: 01/06/2023]
Abstract
In acute myocardial infarction increased plasma levels of chromogranin A are correlated with decreased survival. At the human chromogranin A gene locus there are two naturally occurring amino acid substitution variants within the catestatin region, i.e. Gly³⁶⁴Ser and Pro³⁷⁰Leu, displaying differential potencies towards inhibition of nicotinic cholinergic agonist-evoked catecholamine secretion from sympathochromaffin cells and different degrees of processing from the prohormone. Here, we examine whether two of the variants and the wild type catestatin may affect the development of infarct size during ischemic reperfusion in the Langendorff rat heart model. The hearts were subjected to regional ischemia followed by reperfusion in the presence or absence of synthetic variants of human catestatin. Compared to the Gly³⁶⁴Ser variant both the wild type and Pro³⁷⁰Leu variants increased infarct size while decreasing the cardiac levels of phosphorylated Akt and two of its downstream targets, FoxO1 and BAD. In conclusion, these findings suggest that, in contrast to the Gly³⁶⁴Ser variant, wild type catestatin and the Pro³⁷⁰Leu variant (allele frequency ~0.3%) increased myocardial infarct size via a mechanism involving dephosphorylation of Akt and the two downstream targets during ischemic reperfusion in the isolated rat heart.
Collapse
|
48
|
Kim J, Lee S, Bhattacharjee R, Khalyfa A, Kheirandish-Gozal L, Gozal D. Leukocyte telomere length and plasma catestatin and myeloid-related protein 8/14 concentrations in children with obstructive sleep apnea. Chest 2010; 138:91-9. [PMID: 20299626 PMCID: PMC2897695 DOI: 10.1378/chest.09-2832] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 02/05/2010] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is common in children and leads to multiple end-organ morbidities induced by the cumulative burden of oxidative stress and inflammation. Leukocyte telomere length (LTL) reflects not only chronologic age but also the burden of disease. We hypothesized that LTL would be decreased in children with OSA. METHODS Two hundred thirteen children (mean age, 7.7 +/- 1.4 years) were included after a sleep study and a morning blood sample. LTL was examined by quantitative polymerase chain reaction in a case-control setting involving 111 OSA cases and 102 controls. Myeloid-related protein (MRP) 8/14 and catestatin plasma levels also were assayed using enzyme-linked immunosorbent assay. RESULTS Log LTL was significantly increased and OSA severity dependently increased in children (P = .012), was positively associated with apnea-hypopnea index (AHI) (r = 0.236; P < .01), and was inversely correlated with age (r = -0.145; P < .05). In a multivariate regression model, LTL was independently associated with AHI (beta = 0.28; P = .002) after adjusting for age, sex, BMI z score, and race. Children with OSA exhibited higher BP (P < .05), lower plasma catestatin (P = .009), and higher MRP 8/14 levels (P < .001) than controls. Of note, children with the lowest plasma catestatin levels (< 1.39 ng/mL) had 5.2-fold increased odds of moderate-to-severe OSA (95% CI, 1.19-23.4 ng/mL; P < .05) after adjusting for confounding variables. CONCLUSIONS In pediatric OSA, LTL is longer rather than shorter. Children with OSA have reduced plasma catestatin levels and increased BP along with increased MRP 8/14 levels that exhibit AHI dependencies. Thus, catestatin and MRP 8/14 levels may serve as biomarkers for cardiovascular risk in the context of pediatric OSA. However, the implications of increased LTL in children with OSA remain to be defined.
Collapse
Affiliation(s)
- Jinkwan Kim
- Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, 5721 S Maryland Ave, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
49
|
Sahu BS, Sonawane PJ, Mahapatra NR. Chromogranin A: a novel susceptibility gene for essential hypertension. Cell Mol Life Sci 2010; 67:861-74. [PMID: 19943077 PMCID: PMC11115493 DOI: 10.1007/s00018-009-0208-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/06/2009] [Accepted: 11/06/2009] [Indexed: 12/25/2022]
Abstract
Chromogranin A (CHGA) is ubiquitously expressed in secretory cells of the endocrine, neuroendocrine, and neuronal tissues. Although this protein has long been known as a marker for neuroendocrine tumors, its role in cardiovascular disease states including essential hypertension (EH) has only recently been recognized. It acts as a prohormone giving rise to bioactive peptides such as vasostatin-I (human CHGA(1-76)) and catestatin (human CHGA(352-372)) that exhibit several cardiovascular regulatory functions. CHGA is over-expressed but catestatin is diminished in EH. Moreover, genetic variants in the promoter, catestatin, and 3'-untranslated regions of the human CHGA gene alter autonomic activity and blood pressure. Consistent with these findings, targeted ablation of this gene causes severe arterial hypertension and ventricular hypertrophy in mice. Transgenic expression of the human CHGA gene or exogenous administration of catestatin restores blood pressure in these mice. Thus, the accumulated evidence establishes CHGA as a novel susceptibility gene for EH.
Collapse
Affiliation(s)
- Bhavani S. Sahu
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 India
| | - Parshuram J. Sonawane
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 India
| | - Nitish R. Mahapatra
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 India
| |
Collapse
|
50
|
Helle KB. The chromogranin A-derived peptides vasostatin-I and catestatin as regulatory peptides for cardiovascular functions. Cardiovasc Res 2010; 85:9-16. [PMID: 19640932 DOI: 10.1093/cvr/cvp266] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A range of inflammatory conditions is associated with pathologically high levels of circulating chromogranin A (CgA). This prohormone belongs to the family of uniquely acidic proteins co-stored and co-secreted with other hormones and peptides from the diffuse neuroendocrine system. Two highly conserved, CgA-derived peptides, vasostatin-I and catestatin, have been implicated as modulators of a wide range of cells and tissues, including those of the cardiovascular system. This review focuses on links between elevated circulating CgA and cardiovascular dysfunctions in inflammatory conditions in relation to potential beneficial effects of vasostatin-I and catestatin. Characteristic membrane-penetrating properties have been assigned to both peptides, and pertussis toxin sensitivity is shared by a number of their responses, notably in the vascular and cardiac endothelium. Pertussis toxin-sensitive, receptor-independent activation via heterotrimeric G proteins and Galphai/o subunits will be discussed as possible mechanisms for inhibitory effects of vasostatin-I and catestatin on vascular and cardiac responses. The accumulated evidence provides convincing support for vasostatin-I and catestatin as regulatory peptides for the cardiovascular system, converging on alleviation of significant dysfunctions as part of several inflammatory conditions.
Collapse
Affiliation(s)
- Karen B Helle
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, Norway.
| |
Collapse
|