1
|
Wu N, Meng S, Li Z, Fang J, Qi C, Kong T, Liu Z. Tailoring the Heterogeneous Structure of Macro-Fibers Assembled by Bacterial Cellulose Nanofibrils for Tissue Engineering Scaffolds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307603. [PMID: 38213024 DOI: 10.1002/smll.202307603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/09/2023] [Indexed: 01/13/2024]
Abstract
Bacterial cellulose/oxidized bacterial cellulose nanofibrils (BC/oxBCNFs) macro-fibers are developed as a novel scaffold for vascular tissue engineering. Utilizing a low-speed rotary coagulation spinning technique and precise solvent control, macro-fibers with a unique heterogeneous structure with dense surface and porous core are created. Enhanced by a polydopamine (PDA) coating, these macro-fibers offer robust mechanical integrity, high biocompatibility, and excellent cell adhesion. When cultured with endothelial cells (ECs) and smooth muscle cells (SMCs), the macro-fibers support healthy cell proliferation and exhibit a unique spiral SMC alignment, demonstrating their vascular suitability. This innovative strategy opens new avenues for advances in tissue engineering.
Collapse
Affiliation(s)
- Nihuan Wu
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Si Meng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Zhen Li
- Department of Gastroenterology, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 510006, China
| | - Jie Fang
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, 518037, China
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
2
|
Li L, Duan X, Wang H, Sun Y, Zhao W, Lu Y, Xu H, You Y, Wang Q. Is cell regeneration and infiltration a double edged sword for porcine aortic valve deterioration? A large cohort of histopathological analysis. BMC Cardiovasc Disord 2022; 22:336. [PMID: 35902792 PMCID: PMC9335994 DOI: 10.1186/s12872-022-02776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Bioprostheses are the most common prostheses used for valve replacement in the Western medicine. The major flaw of bioprostheses is the occurrence of structural valve deterioration (SVD). This study aimed to assess the pathological features of porcine aortic valve (PAV)-SVD based on histomorphological and immunopathological characteristics of a large cohort of patients. METHODS Histopathological data of 109 cases with resected PAV were collected. The type and amount of infiltrated cells were evaluated in the different types of bioprosthetic SVD by immunohistochemical staining. RESULTS The most common cause of SVD was calcification, leaflet tear, and dehiscence (23.9%, 19.3%, and 18.3%, respectively). Immunohistochemical staining demonstrated that macrophages were infiltrated in the calcified, lacerated and dehiscence PAV, in which both M1 and M2 macrophages were existed in the calcified PAV. Importantly, the higher content of M1 macrophages and less content of M2 macrophages were found in the lacerated and dehiscence PAV, and MMP-1 expression was mainly found in the lacerated PAV. The endothelialization rate of leaflet dehiscence was higher than that of calcified and lacerated leaflets. A large number of CD31+/CD11b+ cells was aggregated in the spongy layer in the lacerated and dehiscence PAV. CONCLUSION Cell regeneration and infiltration is a double edged sword for the PAV deterioration. Macrophage infiltration is involved in the different types of SVD, while only MMP-1 expression is involved in lacerated leaflets. The macrophage subtype of circulating angiogenic cells in dehiscence and tear PAV could be identified, which could reserve macrophages in the PAV-SVD.
Collapse
Affiliation(s)
- Li Li
- Department of Pathology, Fuwai Hospital, Peking UnionMedical College, Chinese Academy of Medical Science, Beilishi Road No. 167, Xicheng District, Beijing, 100037, China.
| | - Xuejing Duan
- Department of Pathology, Fuwai Hospital, Peking UnionMedical College, Chinese Academy of Medical Science, Beilishi Road No. 167, Xicheng District, Beijing, 100037, China
| | - Hongyue Wang
- Department of Pathology, Fuwai Hospital, Peking UnionMedical College, Chinese Academy of Medical Science, Beilishi Road No. 167, Xicheng District, Beijing, 100037, China
| | - Yang Sun
- Department of Pathology, Fuwai Hospital, Peking UnionMedical College, Chinese Academy of Medical Science, Beilishi Road No. 167, Xicheng District, Beijing, 100037, China
| | - Wei Zhao
- Center for Adult Surgery, Fuwai Hospital, Peking UnionMedical College, Chinese Academy of Medical Science, Beilishi Road No. 167, Xicheng District, Beijing, 100037, China
| | - Yang Lu
- Department of Pathology, Fuwai Hospital, Peking UnionMedical College, Chinese Academy of Medical Science, Beilishi Road No. 167, Xicheng District, Beijing, 100037, China
| | - Hongyu Xu
- Department of Pathology, Fuwai Hospital, Peking UnionMedical College, Chinese Academy of Medical Science, Beilishi Road No. 167, Xicheng District, Beijing, 100037, China
| | - Yiwei You
- Department of Pathology, Fuwai Hospital, Peking UnionMedical College, Chinese Academy of Medical Science, Beilishi Road No. 167, Xicheng District, Beijing, 100037, China
| | - Qingzhi Wang
- Department of Pathology, Fuwai Hospital, Peking UnionMedical College, Chinese Academy of Medical Science, Beilishi Road No. 167, Xicheng District, Beijing, 100037, China
| |
Collapse
|
3
|
Dierick F, Solinc J, Bignard J, Soubrier F, Nadaud S. Progenitor/Stem Cells in Vascular Remodeling during Pulmonary Arterial Hypertension. Cells 2021; 10:cells10061338. [PMID: 34071347 PMCID: PMC8226806 DOI: 10.3390/cells10061338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by an important occlusive vascular remodeling with the production of new endothelial cells, smooth muscle cells, myofibroblasts, and fibroblasts. Identifying the cellular processes leading to vascular proliferation and dysfunction is a major goal in order to decipher the mechanisms leading to PAH development. In addition to in situ proliferation of vascular cells, studies from the past 20 years have unveiled the role of circulating and resident vascular in pulmonary vascular remodeling. This review aims at summarizing the current knowledge on the different progenitor and stem cells that have been shown to participate in pulmonary vascular lesions and on the pathways regulating their recruitment during PAH. Finally, this review also addresses the therapeutic potential of circulating endothelial progenitor cells and mesenchymal stem cells.
Collapse
Affiliation(s)
- France Dierick
- Lady Davis Institute for Medical Research, McGill University, Montréal, QC H3T 1E2, Canada;
| | - Julien Solinc
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
| | - Juliette Bignard
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
| | - Florent Soubrier
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
| | - Sophie Nadaud
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
- Correspondence:
| |
Collapse
|
4
|
Abstract
Supplemental Digital Content is available in the text. Background: The authors developed a noncontact low-frequency ultrasound device that delivers high-intensity mechanical force based on phased-array technology. It may aid wound healing because it is likely to be associated with lower risks of infection and heat-induced pain compared with conventional ultrasound methods. The authors hypothesized that the microdeformation it induces accelerates wound epithelialization. Its effects on key wound-healing processes (angiogenesis, collagen accumulation, and angiogenesis-related gene transcription) were also examined. Methods: Immediately after wounding, bilateral acute wounds in C57BL/6J mice were noncontact low-frequency ultrasound– and sham-stimulated for 1 hour/day for 3 consecutive days (10 Hz/90.6 Pa). Wound closure (epithelialization) was recorded every 2 days as the percentage change in wound area relative to baseline. Wound tissue was procured on days 2, 5, 7, and 14 (five to six per time point) and subjected to histopathology with hematoxylin and eosin and Masson trichrome staining, CD31 immunohistochemistry, and quantitative polymerase-chain reaction analysis. Results: Compared to sham-treated wounds, ultrasound/phased-array–treated wounds exhibited significantly accelerated epithelialization (65 ± 27 percent versus 30 ± 33 percent closure), angiogenesis (4.6 ± 1.7 percent versus 2.2 ± 1.0 percent CD31+ area), and collagen deposition (44 ± 14 percent versus 28 ± 13 percent collagen density) on days 5, 2, and 5, respectively (all p < 0.05). The expression of Notch ligand delta-like 1 protein (Dll1) and Notch1, which participate in angiogenesis, was transiently enhanced by treatment on days 2 and 5, respectively. Conclusions: The authors’ noncontact low-frequency ultrasound phased-array device improved the wound-healing rate. It was associated with increased early neovascularization that was followed by high levels of collagen-matrix production and epithelialization. The device may expand the mechanotherapeutic proangiogenesis field, thereby helping stimulate a revolution in infected wound care.
Collapse
|
5
|
Jones EA, Lehoux S. Shear stress, arterial identity and atherosclerosis. Thromb Haemost 2018; 115:467-73. [DOI: 10.1160/th15-10-0791] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 12/01/2015] [Indexed: 01/23/2023]
Abstract
SummaryIn the developing embryo, the vasculature first takes the form of a web-like network called the vascular plexus. Arterial and venous differentiation is subsequently guided by the specific expression of genes in the endothelial cells that provide spatial and temporal cues for development. Notch1/4, Notch ligand delta-like 4 (Dll4), and Notch downstream effectors are typically expressed in arterial cells along with EphrinB2, whereas chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) and EphB4 characterise vein endothelial cells. Haemodynamic forces (blood pressure and blood flow) also contribute importantly to vascular remodelling. Early arteriovenous differentiation and local blood flow may hold the key to future inflammatory diseases. Indeed, despite the fact that atherosclerosis risk factors such as smoking, hypertension, hypercholesterolaemia, and diabetes all induce endothelial cell dysfunction throughout the vasculature, plaques develop only in arteries, and they localise essentially in vessel branch points, curvatures and bifurcations, where blood flow (and consequently shear stress) is low or oscillatory. Arterial segments exposed to high blood flow (and high laminar shear stress) tend to remain plaque-free. These observations have led many to investigate what particular properties of arterial or venous endothelial cells confer susceptibility or protection from plaque formation, and how that might interact with a particular shear stress environment.
Collapse
|
6
|
Zhang R, Han Z, Degos V, Shen F, Choi EJ, Sun Z, Kang S, Wong M, Zhu W, Zhan L, Arthur HM, Oh SP, Faughnan ME, Su H. Persistent infiltration and pro-inflammatory differentiation of monocytes cause unresolved inflammation in brain arteriovenous malformation. Angiogenesis 2016; 19:451-461. [PMID: 27325285 DOI: 10.1007/s10456-016-9519-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/08/2016] [Indexed: 01/12/2023]
Abstract
An abnormally high number of macrophages are present in human brain arteriovenous malformations (bAVM) with or without evidence of prior hemorrhage, causing unresolved inflammation that may enhance abnormal vascular remodeling and exacerbate the bAVM phenotype. The reasons for macrophage accumulation at the bAVM sites are not known. We tested the hypothesis that persistent infiltration and pro-inflammatory differentiation of monocytes in angiogenic tissues increase the macrophage burden in bAVM using two mouse models and human monocytes. Mouse bAVM was induced through deletion of AVM causative genes, Endoglin (Eng) globally or Alk1 focally, plus brain focal angiogenic stimulation. An endothelial cell and vascular smooth muscle cell co-culture system was used to analyze monocyte differentiation in the angiogenic niche. After angiogenic stimulation, the Eng-deleted mice had fewer CD68(+) cells at 2 weeks (P = 0.02), similar numbers at 4 weeks (P = 0.97), and more at 8 weeks (P = 0.01) in the brain angiogenic region compared with wild-type (WT) mice. Alk1-deficient mice also had a trend toward more macrophages/microglia 8 weeks (P = 0.064) after angiogenic stimulation and more RFP(+) bone marrow-derived macrophages than WT mice (P = 0.01). More CD34(+) cells isolated from peripheral blood of patients with ENG or ALK1 gene mutation differentiated into macrophages than those from healthy controls (P < 0.001). These data indicate that persistent infiltration and pro-inflammatory differentiation of monocytes might contribute to macrophage accumulation in bAVM. Blocking macrophage homing to bAVM lesions should be tested as a strategy to reduce the severity of bAVM.
Collapse
Affiliation(s)
- Rui Zhang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Zhenying Han
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Degos
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA.,INSERM, U676, Hôpital Robert Debré, Paris, France
| | - Fanxia Shen
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Eun-Jung Choi
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Zhengda Sun
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | - Shuai Kang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Wong
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Wan Zhu
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Lei Zhan
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Helen M Arthur
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle, United Kingdom
| | - S Paul Oh
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Marie E Faughnan
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|