1
|
Coorey G, Figtree GA, Fletcher DF, Snelson VJ, Vernon ST, Winlaw D, Grieve SM, McEwan A, Yang JYH, Qian P, O'Brien K, Orchard J, Kim J, Patel S, Redfern J. The health digital twin to tackle cardiovascular disease-a review of an emerging interdisciplinary field. NPJ Digit Med 2022; 5:126. [PMID: 36028526 PMCID: PMC9418270 DOI: 10.1038/s41746-022-00640-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Potential benefits of precision medicine in cardiovascular disease (CVD) include more accurate phenotyping of individual patients with the same condition or presentation, using multiple clinical, imaging, molecular and other variables to guide diagnosis and treatment. An approach to realising this potential is the digital twin concept, whereby a virtual representation of a patient is constructed and receives real-time updates of a range of data variables in order to predict disease and optimise treatment selection for the real-life patient. We explored the term digital twin, its defining concepts, the challenges as an emerging field, and potentially important applications in CVD. A mapping review was undertaken using a systematic search of peer-reviewed literature. Industry-based participants and patent applications were identified through web-based sources. Searches of Compendex, EMBASE, Medline, ProQuest and Scopus databases yielded 88 papers related to cardiovascular conditions (28%, n = 25), non-cardiovascular conditions (41%, n = 36), and general aspects of the health digital twin (31%, n = 27). Fifteen companies with a commercial interest in health digital twin or simulation modelling had products focused on CVD. The patent search identified 18 applications from 11 applicants, of which 73% were companies and 27% were universities. Three applicants had cardiac-related inventions. For CVD, digital twin research within industry and academia is recent, interdisciplinary, and established globally. Overall, the applications were numerical simulation models, although precursor models exist for the real-time cyber-physical system characteristic of a true digital twin. Implementation challenges include ethical constraints and clinical barriers to the adoption of decision tools derived from artificial intelligence systems.
Collapse
Affiliation(s)
- Genevieve Coorey
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.
- The George Institute for Global Health, Sydney, NSW, Australia.
| | - Gemma A Figtree
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
| | - David F Fletcher
- University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW, Australia
| | - Victoria J Snelson
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia
- University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia
| | - Stephen Thomas Vernon
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
- Department of Cardiology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - David Winlaw
- Cincinnati Children's Hospital Medical Cente, Cincinnati, OH, USA
| | - Stuart M Grieve
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia
- University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia
| | - Alistair McEwan
- The University of Sydney, School of Biomedical Engineering, Sydney, NSW, Australia
| | - Jean Yee Hwa Yang
- University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia
| | - Pierre Qian
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia
- Westmead Applied Research Centre, Westmead Hospital, Sydney, NSW, Australia
| | - Kieran O'Brien
- Siemens Healthcare Pty Ltd; and Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - Jessica Orchard
- University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia
| | - Jinman Kim
- University of Sydney, School of Computer Science, Sydney, NSW, Australia
| | - Sanjay Patel
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Heart Research Institute, Sydney, NSW, Australia
| | - Julie Redfern
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia
| |
Collapse
|
2
|
Maleckar MM, Myklebust L, Uv J, Florvaag PM, Strøm V, Glinge C, Jabbari R, Vejlstrup N, Engstrøm T, Ahtarovski K, Jespersen T, Tfelt-Hansen J, Naumova V, Arevalo H. Combined In-silico and Machine Learning Approaches Toward Predicting Arrhythmic Risk in Post-infarction Patients. Front Physiol 2021; 12:745349. [PMID: 34819872 PMCID: PMC8606551 DOI: 10.3389/fphys.2021.745349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Remodeling due to myocardial infarction (MI) significantly increases patient arrhythmic risk. Simulations using patient-specific models have shown promise in predicting personalized risk for arrhythmia. However, these are computationally- and time- intensive, hindering translation to clinical practice. Classical machine learning (ML) algorithms (such as K-nearest neighbors, Gaussian support vector machines, and decision trees) as well as neural network techniques, shown to increase prediction accuracy, can be used to predict occurrence of arrhythmia as predicted by simulations based solely on infarct and ventricular geometry. We present an initial combined image-based patient-specific in silico and machine learning methodology to assess risk for dangerous arrhythmia in post-infarct patients. Furthermore, we aim to demonstrate that simulation-supported data augmentation improves prediction models, combining patient data, computational simulation, and advanced statistical modeling, improving overall accuracy for arrhythmia risk assessment. Methods: MRI-based computational models were constructed from 30 patients 5 days post-MI (the “baseline” population). In order to assess the utility biophysical model-supported data augmentation for improving arrhythmia prediction, we augmented the virtual baseline patient population. Each patient ventricular and ischemic geometry in the baseline population was used to create a subfamily of geometric models, resulting in an expanded set of patient models (the “augmented” population). Arrhythmia induction was attempted via programmed stimulation at 17 sites for each virtual patient corresponding to AHA LV segments and simulation outcome, “arrhythmia,” or “no-arrhythmia,” were used as ground truth for subsequent statistical prediction (machine learning, ML) models. For each patient geometric model, we measured and used choice data features: the myocardial volume and ischemic volume, as well as the segment-specific myocardial volume and ischemia percentage, as input to ML algorithms. For classical ML techniques (ML), we trained k-nearest neighbors, support vector machine, logistic regression, xgboost, and decision tree models to predict the simulation outcome from these geometric features alone. To explore neural network ML techniques, we trained both a three - and a four-hidden layer multilayer perceptron feed forward neural networks (NN), again predicting simulation outcomes from these geometric features alone. ML and NN models were trained on 70% of randomly selected segments and the remaining 30% was used for validation for both baseline and augmented populations. Results: Stimulation in the baseline population (30 patient models) resulted in reentry in 21.8% of sites tested; in the augmented population (129 total patient models) reentry occurred in 13.0% of sites tested. ML and NN models ranged in mean accuracy from 0.83 to 0.86 for the baseline population, improving to 0.88 to 0.89 in all cases. Conclusion: Machine learning techniques, combined with patient-specific, image-based computational simulations, can provide key clinical insights with high accuracy rapidly and efficiently. In the case of sparse or missing patient data, simulation-supported data augmentation can be employed to further improve predictive results for patient benefit. This work paves the way for using data-driven simulations for prediction of dangerous arrhythmia in MI patients.
Collapse
Affiliation(s)
- Mary M Maleckar
- Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Lena Myklebust
- Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Julie Uv
- Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | | | - Vilde Strøm
- Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Charlotte Glinge
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Reza Jabbari
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niels Vejlstrup
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Engstrøm
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kiril Ahtarovski
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Jespersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Valeriya Naumova
- Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | | |
Collapse
|
3
|
Oikonomou EK, Siddique M, Antoniades C. Artificial intelligence in medical imaging: A radiomic guide to precision phenotyping of cardiovascular disease. Cardiovasc Res 2021; 116:2040-2054. [PMID: 32090243 DOI: 10.1093/cvr/cvaa021] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/29/2019] [Accepted: 01/23/2020] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Rapid technological advances in non-invasive imaging, coupled with the availability of large data sets and the expansion of computational models and power, have revolutionized the role of imaging in medicine. Non-invasive imaging is the pillar of modern cardiovascular diagnostics, with modalities such as cardiac computed tomography (CT) now recognized as first-line options for cardiovascular risk stratification and the assessment of stable or even unstable patients. To date, cardiovascular imaging has lagged behind other fields, such as oncology, in the clinical translational of artificial intelligence (AI)-based approaches. We hereby review the current status of AI in non-invasive cardiovascular imaging, using cardiac CT as a running example of how novel machine learning (ML)-based radiomic approaches can improve clinical care. The integration of ML, deep learning, and radiomic methods has revealed direct links between tissue imaging phenotyping and tissue biology, with important clinical implications. More specifically, we discuss the current evidence, strengths, limitations, and future directions for AI in cardiac imaging and CT, as well as lessons that can be learned from other areas. Finally, we propose a scientific framework in order to ensure the clinical and scientific validity of future studies in this novel, yet highly promising field. Still in its infancy, AI-based cardiovascular imaging has a lot to offer to both the patients and their doctors as it catalyzes the transition towards a more precise phenotyping of cardiovascular disease.
Collapse
Affiliation(s)
- Evangelos K Oikonomou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.,Department of Internal Medicine, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, USA
| | - Musib Siddique
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.,Caristo Diagnostics Ltd., Oxford, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.,Oxford Centre of Research Excellence, British Heart Foundation, Oxford, UK.,Oxford Biomedical Research Centre, National Institute of Health Research, Oxford, UK
| |
Collapse
|
4
|
Zhang ZZ, Guo Y, Hou Y. Artificial intelligence in coronary computed tomography angiography. Artif Intell Med Imaging 2021; 2:73-85. [DOI: 10.35711/aimi.v2.i3.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/20/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
Coronary computed tomography angiography (CCTA) is recommended as a frontline diagnostic tool in the non-invasive assessment of patients with suspected coronary artery disease (CAD) and cardiovascular risk stratification. To date, artificial intelligence (AI) techniques have brought major changes in the way that we make individualized decisions for patients with CAD. Applications of AI in CCTA have produced improvements in many aspects, including assessment of stenosis degree, determination of plaque type, identification of high-risk plaque, quantification of coronary artery calcium score, diagnosis of myocardial infarction, estimation of computed tomography-derived fractional flow reserve, left ventricular myocardium analysis, perivascular adipose tissue analysis, prognosis of CAD, and so on. The purpose of this review is to provide a comprehensive overview of current status of AI in CCTA.
Collapse
Affiliation(s)
- Zhe-Zhe Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yan Guo
- GE Healthcare, Beijing 100176, China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
5
|
Antoniades C, Asselbergs FW, Vardas P. The year in cardiovascular medicine 2020: digital health and innovation. Eur Heart J 2021; 42:732-739. [PMID: 33388767 PMCID: PMC7882364 DOI: 10.1093/eurheartj/ehaa1065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Charalambos Antoniades
- Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX39DU, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, L6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX39DU, UK
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CX , Utrecht, the Netherlands
- Institute of Cardiovascular Science and Institute of Health Informatics, Faculty of Population Health Sciences, University College London, 222 Euston Road, NW1 2DA, London, UK
| | - Panos Vardas
- Heart Sector, Hygeia Hospitals Groups, Erithrou Stavrou 4, Marousi 151 23, Athens, Greece
- Cardiology Department, Medical School, University of Crete, University Campus of Voutes, 700 13, Heraclion, Greece
| |
Collapse
|
6
|
Corral-Acero J, Margara F, Marciniak M, Rodero C, Loncaric F, Feng Y, Gilbert A, Fernandes JF, Bukhari HA, Wajdan A, Martinez MV, Santos MS, Shamohammdi M, Luo H, Westphal P, Leeson P, DiAchille P, Gurev V, Mayr M, Geris L, Pathmanathan P, Morrison T, Cornelussen R, Prinzen F, Delhaas T, Doltra A, Sitges M, Vigmond EJ, Zacur E, Grau V, Rodriguez B, Remme EW, Niederer S, Mortier P, McLeod K, Potse M, Pueyo E, Bueno-Orovio A, Lamata P. The 'Digital Twin' to enable the vision of precision cardiology. Eur Heart J 2020; 41:4556-4564. [PMID: 32128588 PMCID: PMC7774470 DOI: 10.1093/eurheartj/ehaa159] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 12/26/2022] Open
Abstract
Providing therapies tailored to each patient is the vision of precision medicine, enabled by the increasing ability to capture extensive data about individual patients. In this position paper, we argue that the second enabling pillar towards this vision is the increasing power of computers and algorithms to learn, reason, and build the 'digital twin' of a patient. Computational models are boosting the capacity to draw diagnosis and prognosis, and future treatments will be tailored not only to current health status and data, but also to an accurate projection of the pathways to restore health by model predictions. The early steps of the digital twin in the area of cardiovascular medicine are reviewed in this article, together with a discussion of the challenges and opportunities ahead. We emphasize the synergies between mechanistic and statistical models in accelerating cardiovascular research and enabling the vision of precision medicine.
Collapse
Affiliation(s)
| | - Francesca Margara
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Maciej Marciniak
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Cristobal Rodero
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Filip Loncaric
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Yingjing Feng
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux F-33600, France
- IMB, UMR 5251, University of Bordeaux, Talence F-33400, France
| | | | - Joao F Fernandes
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Hassaan A Bukhari
- IMB, UMR 5251, University of Bordeaux, Talence F-33400, France
- Aragón Institute of Engineering Research, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
| | - Ali Wajdan
- The Intervention Centre, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | | | - Mehrdad Shamohammdi
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Hongxing Luo
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Philip Westphal
- Medtronic PLC, Bakken Research Center, Maastricht, the Netherlands
| | - Paul Leeson
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford Cardiovascular Clinical Research Facility, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Paolo DiAchille
- Healthcare and Life Sciences Research, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Viatcheslav Gurev
- Healthcare and Life Sciences Research, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Liesbet Geris
- Virtual Physiological Human Institute, Leuven, Belgium
| | - Pras Pathmanathan
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Tina Morrison
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | - Frits Prinzen
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Tammo Delhaas
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Ada Doltra
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Sitges
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERCV, Instituto de Salud Carlos III, (CB16/11/00354), CERCA Programme/Generalitat de, Catalunya, Spain
| | - Edward J Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux F-33600, France
- IMB, UMR 5251, University of Bordeaux, Talence F-33400, France
| | - Ernesto Zacur
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Vicente Grau
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Espen W Remme
- The Intervention Centre, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Steven Niederer
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | | | | | - Mark Potse
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux F-33600, France
- IMB, UMR 5251, University of Bordeaux, Talence F-33400, France
- Inria Bordeaux Sud-Ouest, CARMEN team, Talence F-33400, France
| | - Esther Pueyo
- Aragón Institute of Engineering Research, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN), Madrid, Spain
| | - Alfonso Bueno-Orovio
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Pablo Lamata
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| |
Collapse
|
7
|
Akoumianakis I. Highlights of AHA Scientific Sessions 2019: novel approaches in cardiovascular risk reduction. Cardiovasc Res 2020; 116:e16-e18. [PMID: 31850503 DOI: 10.1093/cvr/cvz319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Kallenberger SM, Schmidt C. Forecasting the development of acute kidney injury using a recurrent neural network. Cardiovasc Res 2019; 115:e155-e157. [PMID: 31697360 DOI: 10.1093/cvr/cvz279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Stefan M Kallenberger
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin, Germany.,Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany.,HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Im Neuenheimer Feld 410, Germany
| |
Collapse
|
9
|
Abstract
The controversial plan for scientific research publications to be published in compliant Open Access Journals or on compliant Open Access Platforms is discussed. The article has been co-published with permission in European Heart Journal and British Journal of Pharmacology. The articles are identical except for minor stylistic and spelling differences in keeping with each journal's style. Either citation can be used when citing this article.
Collapse
Affiliation(s)
- Tomasz J. Guzik
- Cardiovascular Research Editorial Office, BHF Centre for Cardiovascular ResearchUniversity of GlasgowGlasgowUK
- Department of MedicineJagiellonian University Collegium MedicumKrakowPoland
| | - Amrita Ahluwalia
- British Journal of Pharmacology Editorial OfficeThe Schild Plot, BPS OfficesLondonUK
- The William Harvey Research Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|