1
|
Current Status of Pharmacologic and Nonpharmacologic Therapy in Heart Failure with Preserved Ejection Fraction. Heart Fail Clin 2021; 17:463-482. [PMID: 34051977 DOI: 10.1016/j.hfc.2021.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a significantly symptomatic disease and has a poor prognosis similar to that of heart failure with reduced ejection fraction (HFrEF). Contrary to HFrEF, HFpEF is difficult to diagnose, and the recommended diagnostic algorithm of HFpEF is complicated. Several therapies for HFpEF have failed to reduce mortality or morbidity. HFpEF is thought to be a complex and heterogeneous systemic disorder that has various phenotypes and multiple comorbidities. Therefore, therapeutic strategies of HFpEF need to change depending on the phenotype of the patient. This review highlights the pharmacologic and nonpharmacologic treatment of HFpEF.
Collapse
|
2
|
Rueda P, Merlin J, Chimenti S, Feletou M, Paysant J, White PJ, Christopoulos A, Sexton PM, Summers RJ, Charman WN, May LT, Langmead CJ. Pharmacological Insights Into Safety and Efficacy Determinants for the Development of Adenosine Receptor Biased Agonists in the Treatment of Heart Failure. Front Pharmacol 2021; 12:628060. [PMID: 33776771 PMCID: PMC7991592 DOI: 10.3389/fphar.2021.628060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Adenosine A1 receptors (A1R) are a potential target for cardiac injury treatment due to their cardioprotective/antihypertrophic actions, but drug development has been hampered by on-target side effects such as bradycardia and altered renal hemodynamics. Biased agonism has emerged as an attractive mechanism for A1R-mediated cardioprotection that is haemodynamically safe. Here we investigate the pre-clinical pharmacology, efficacy and side-effect profile of the A1R agonist neladenoson, shown to be safe but ineffective in phase IIb trials for the treatment of heart failure. We compare this agent with the well-characterized, pan-adenosine receptor (AR) agonist NECA, capadenoson, and the A1R biased agonist VCP746, previously shown to be safe and cardioprotective in pre-clinical models of heart failure. We show that like VCP746, neladenoson is biased away from Ca2+ influx relative to NECA and the cAMP pathway at the A1R, a profile predictive of a lack of adenosine-like side effects. Additionally, neladenoson was also biased away from the MAPK pathway at the A1R. In contrast to VCP746, which displays more 'adenosine-like' signaling at the A2BR, neladenoson was a highly selective A1R agonist, with biased, weak agonism at the A2BR. Together these results show that unwanted hemodynamic effects of A1R agonists can be avoided by compounds biased away from Ca2+ influx relative to cAMP, relative to NECA. The failure of neladenoson to reach primary endpoints in clinical trials suggests that A1R-mediated cAMP inhibition may be a poor indicator of effectiveness in chronic heart failure. This study provides additional information that can aid future screening and/or design of improved AR agonists that are safe and efficacious in treating heart failure in patients.
Collapse
Affiliation(s)
- Patricia Rueda
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jon Merlin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Stefano Chimenti
- Cardiovascular Discovery Research Unit, Institut de Recherches Servier, Suresnes, France
| | - Michel Feletou
- Cardiovascular Discovery Research Unit, Institut de Recherches Servier, Suresnes, France
| | - Jerome Paysant
- Cardiovascular Discovery Research Unit, Institut de Recherches Servier, Suresnes, France
| | - Paul J. White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Patrick M. Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Roger J. Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - William N. Charman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Christopher J. Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
3
|
Vincenzi F, Pasquini S, Battistello E, Merighi S, Gessi S, Borea PA, Varani K. A 1 Adenosine Receptor Partial Agonists and Allosteric Modulators: Advancing Toward the Clinic? Front Pharmacol 2020; 11:625134. [PMID: 33362567 PMCID: PMC7756085 DOI: 10.3389/fphar.2020.625134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 11/21/2022] Open
Affiliation(s)
- Fabrizio Vincenzi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Silvia Pasquini
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Enrica Battistello
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Stefania Merighi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Stefania Gessi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | | | - Katia Varani
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| |
Collapse
|