1
|
Krama T, Munkevics M, Krams R, Grigorjeva T, Trakimas G, Jõers P, Popovs S, Zants K, Elferts D, Rantala MJ, Sledevskis E, Contreras-Garduño J, de Bivort BL, Krams IA. Development under predation risk increases serotonin-signaling, variability of turning behavior and survival in adult fruit flies Drosophila melanogaster. Front Behav Neurosci 2023; 17:1189301. [PMID: 37304760 PMCID: PMC10248140 DOI: 10.3389/fnbeh.2023.1189301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
The development of high-throughput behavioral assays, where numerous individual animals can be analyzed in various experimental conditions, has facilitated the study of animal personality. Previous research showed that isogenic Drosophila melanogaster flies exhibit striking individual non-heritable locomotor handedness. The variability of this trait, i.e., the predictability of left-right turn biases, varies across genotypes and under the influence of neural activity in specific circuits. This suggests that the brain can dynamically regulate the extent of animal personality. It has been recently shown that predators can induce changes in prey phenotypes via lethal or non-lethal effects affecting the serotonergic signaling system. In this study, we tested whether fruit flies grown with predators exhibit higher variability/lower predictability in their turning behavior and higher survival than those grown with no predators in their environment. We confirmed these predictions and found that both effects were blocked when flies were fed an inhibitor (αMW) of serotonin synthesis. The results of this study demonstrate a negative association between the unpredictability of turning behavior of fruit flies and the hunting success of their predators. We also show that the neurotransmitter serotonin controls predator-induced changes in the turning variability of fruit flies, regulating the dynamic control of behavioral predictability.
Collapse
Affiliation(s)
- Tatjana Krama
- Department of Biotechnology, Institute of Life Sciences and Technologies, Daugavpils University, Daugavpils, Latvia
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Māris Munkevics
- Department of Biotechnology, Institute of Life Sciences and Technologies, Daugavpils University, Daugavpils, Latvia
- Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Ronalds Krams
- Department of Biotechnology, Institute of Life Sciences and Technologies, Daugavpils University, Daugavpils, Latvia
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Tatjana Grigorjeva
- Department of Biotechnology, Institute of Life Sciences and Technologies, Daugavpils University, Daugavpils, Latvia
| | - Giedrius Trakimas
- Department of Biotechnology, Institute of Life Sciences and Technologies, Daugavpils University, Daugavpils, Latvia
- Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Priit Jõers
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Sergejs Popovs
- Department of Biotechnology, Institute of Life Sciences and Technologies, Daugavpils University, Daugavpils, Latvia
| | - Krists Zants
- Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Didzis Elferts
- Department of Botany and Ecology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Markus J. Rantala
- Department of Biology, Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - Eriks Sledevskis
- Department of Technology, Institute of Life Sciences and Technologies, Daugavpils University, Daugavpils, Latvia
| | - Jorge Contreras-Garduño
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Morelia, Mexico
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Benjamin L. de Bivort
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Indrikis A. Krams
- Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Riga, Latvia
- Latvian Biomedical Research and Study Centre, Riga, Latvia
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Department of Psychology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
2
|
Krama T, Krams R, Munkevics M, Willow J, Popovs S, Elferts D, Dobkeviča L, Raibarte P, Rantala M, Contreras-Garduño J, Krams IA. Physiological stress and higher reproductive success in bumblebees are both associated with intensive agriculture. PeerJ 2022; 10:e12953. [PMID: 35256917 PMCID: PMC8898004 DOI: 10.7717/peerj.12953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/26/2022] [Indexed: 01/11/2023] Open
Abstract
Free-living organisms face multiple stressors in their habitats, and habitat quality often affects development and life history traits. Increasing pressures of agricultural intensification have been shown to influence diversity and abundance of insect pollinators, and it may affect their elemental composition as well. We compared reproductive success, body concentration of carbon (C) and nitrogen (N), and C/N ratio, each considered as indicators of stress, in the buff-tailed bumblebee (Bombus terrestris). Bumblebee hives were placed in oilseed rape fields and semi-natural old apple orchards. Flowering season in oilseed rape fields was longer than that in apple orchards. Reproductive output was significantly higher in oilseed rape fields than in apple orchards, while the C/N ratio of queens and workers, an indicator of physiological stress, was lower in apple orchards, where bumblebees had significantly higher body N concentration. We concluded that a more productive habitat, oilseed rape fields, offers bumblebees more opportunities to increase their fitness than a more natural habitat, old apple orchards, which was achieved at the expense of physiological stress, evidenced as a significantly higher C/N ratio observed in bumblebees inhabiting oilseed rape fields.
Collapse
Affiliation(s)
| | - Ronalds Krams
- Daugavpils University, Daugavpils, Latvia,Estonian University of Life Sciences, Tartu, Estonia
| | | | | | | | | | | | | | | | | | - Indrikis A. Krams
- Daugavpils University, Daugavpils, Latvia,University of Latvia, Riga, Latvia,University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Krams R, Munkevics M, Popovs S, Dobkeviča L, Willow J, Contreras Garduño J, Krama T, Krams IA. Ecological Stoichiometry of Bumblebee Castes, Sexes, and Age Groups. Front Physiol 2021; 12:696689. [PMID: 34721052 PMCID: PMC8548625 DOI: 10.3389/fphys.2021.696689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Ecological stoichiometry is important for revealing how the composition of chemical elements of organisms is influenced by their physiological functions and ecology. In this study, we investigated the elemental body composition of queens, workers, and males of the bumblebee Bombus terrestris, an important pollinator throughout Eurasia, North America, and northern Africa. Our results showed that body elemental content differs among B. terrestris castes. Young queens and workers had higher body nitrogen concentration than ovipositing queens and males, while castes did not differ significantly in their body carbon concentration. Furthermore, the carbon-to-nitrogen ratio was higher in ovipositing queens and males. We suggest that high body nitrogen concentration and low carbon-to-nitrogen ratio in young queens and workers may be related to their greater amount of flight muscles and flight activities than to their lower stress levels. To disentangle possible effects of stress in the agricultural landscape, further studies are needed to compare the elemental content of bumblebee bodies between natural habitats and areas of high-intensity agriculture.
Collapse
Affiliation(s)
- Ronalds Krams
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia.,Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
| | - Māris Munkevics
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia.,Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Sergejs Popovs
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
| | - Linda Dobkeviča
- Department of Environmental Science, Faculty of Geography and Earth Sciences, University of Latvia, Riga, Latvia
| | - Jonathan Willow
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Jorge Contreras Garduño
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Tatjana Krama
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia.,Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
| | - Indrikis A Krams
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia.,Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Riga, Latvia.,Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|