1
|
Cabello-Vergel J, Gutiérrez JS, González-Medina E, Sánchez-Guzmán JM, Masero JA, Villegas A. Seasonal and between-population variation in heat tolerance and cooling efficiency in a Mediterranean songbird. J Therm Biol 2024; 125:103977. [PMID: 39353365 DOI: 10.1016/j.jtherbio.2024.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Discrete populations of widely distributed species may inhabit areas with marked differences in climatic conditions across geographic and seasonal scales, which could result in intraspecific variation in thermal physiology reflecting genetic adaptation, phenotypic plasticity, or both. However, few studies have evaluated inter-population variation in physiological responses to heat. We evaluated within- and inter-population seasonal variation in heat tolerance, cooling efficiency and other key thermoregulatory traits in two Mediterranean populations of Great tit Parus major experiencing contrasting thermal environments: a lowland population subject to hotter summers and a higher annual thermal amplitude than a montane population. Specifically, we measured heat tolerance limits (HTL), body temperature, resting metabolic rate, evaporative water loss, and evaporative cooling efficiency (the ratio between evaporative heat loss to metabolic heat production) within and above the thermoneutral zone during winter and summer. Heat tolerance during summer was greater in lowland than in montane birds; indeed, lowland birds seasonally increased this trait to a significant level, while montane ones did to a lesser extent. Besides, lowland birds showed greater evaporative cooling efficiency during summer (possibly due in part to reductions in total endogenous heat load), while surprisingly montane ones showed the opposite trend. Thus, lowland birds displayed greater seasonal flexibility in HTL, body temperature and resting metabolic rate above thermoneutrality, thus giving some support to the climatic variability hypothesis - that flexibility in thermoregulatory traits should increase with climatic variability. Our results partially support the idea that songbirds' adaptive thermoregulation in the heat is flexible, highlighting the importance of considering intraspecific variation in thermoregulatory traits when modelling the future distribution and persistence of species under different climate change scenarios.
Collapse
Affiliation(s)
- Julián Cabello-Vergel
- Conservation Biology Research Group, Faculty of Sciences, Universidad de Extremadura, Badajoz, Spain.
| | - Jorge S Gutiérrez
- Conservation Biology Research Group, Faculty of Sciences, Universidad de Extremadura, Badajoz, Spain; Ecology in the Anthropocene, Associated Unit CSIC-UEx, Faculty of Sciences, Universidad de Extremadura, Badajoz, Spain
| | - Erick González-Medina
- Conservation Biology Research Group, Faculty of Sciences, Universidad de Extremadura, Badajoz, Spain
| | - Juan M Sánchez-Guzmán
- Conservation Biology Research Group, Faculty of Sciences, Universidad de Extremadura, Badajoz, Spain; Ecology in the Anthropocene, Associated Unit CSIC-UEx, Faculty of Sciences, Universidad de Extremadura, Badajoz, Spain
| | - José A Masero
- Ecology in the Anthropocene, Associated Unit CSIC-UEx, Faculty of Sciences, Universidad de Extremadura, Badajoz, Spain
| | - Auxiliadora Villegas
- Conservation Biology Research Group, Faculty of Sciences, Universidad de Extremadura, Badajoz, Spain; Ecology in the Anthropocene, Associated Unit CSIC-UEx, Faculty of Sciences, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
2
|
Pollock HS, Rutt CL, Cooper WJ, Brawn JD, Cheviron ZA, Luther DA. Equivocal support for the climate variability hypothesis within a Neotropical bird assemblage. Ecology 2024; 105:e4206. [PMID: 37950619 DOI: 10.1002/ecy.4206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/03/2023] [Accepted: 10/05/2023] [Indexed: 11/13/2023]
Abstract
The climate variability hypothesis posits that an organism's exposure to temperature variability determines the breadth of its thermal tolerance and has become an important framework for understanding variation in species' susceptibilities to climate change. For example, ectotherms from more thermally stable environments tend to have narrower thermal tolerances and greater sensitivity to projected climate warming. Among endotherms, however, the relationship between climate variability and thermal physiology is less clear, particularly with regard to microclimate variation-small-scale differences within or between habitats. To address this gap, we explored associations between two sources of temperature variation (habitat type and vertical forest stratum) and (1) thermal physiological traits and (2) temperature sensitivity metrics within a diverse assemblage of Neotropical birds (n = 89 species). We used long-term temperature data to establish that daily temperature regimes in open habitats and forest canopy were both hotter and more variable than those in the forest interior and forest understory, respectively. Despite these differences in temperature regime, however, we found little evidence that species' thermal physiological traits or temperature sensitivity varied in association with either habitat type or vertical stratum. Our findings provide two novel and important insights. First, and in contrast to the supporting empirical evidence from ectotherms, the thermal physiology of birds at our study site appears to be largely decoupled from local temperature variation, providing equivocal support for the climate variability hypothesis in endotherms. Second, we found no evidence that the thermal physiology of understory forest birds differed from that of canopy or open-habitat species-an oft-invoked, yet previously untested, mechanism for why these species are so vulnerable to environmental change.
Collapse
Affiliation(s)
- Henry S Pollock
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Cameron L Rutt
- Department of Biology, George Mason University, Fairfax, Virginia, USA
- American Bird Conservancy, The Plains, Virginia, USA
| | | | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - David A Luther
- Department of Biology, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
3
|
González-Medina E, Playà-Montmany N, Cabello-Vergel J, Parejo M, Abad-Gómez JM, Sánchez-Guzmán JM, Villegas A, Gutiérrez JS, Masero JA. Mediterranean songbirds show pronounced seasonal variation in thermoregulatory traits. Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111408. [PMID: 36812978 DOI: 10.1016/j.cbpa.2023.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Addressing the patterns of variation in thermal traits is crucial to better predict the potential effects of climate change on organisms. Here, we assessed seasonal (winter vs summer) adjustments in key thermoregulatory traits in eight Mediterranean-resident songbirds. Overall, songbirds increased whole-animal (by 8%) and mass-adjusted (by 9%) basal metabolic rate and decreased (by 56%) thermal conductance below the thermoneutral zone during winter. The magnitude of these changes was within the lower values found in songbirds from northern temperate areas. Moreover, songbirds increased (by 11%) evaporative water loss within the thermoneutral zone during summer, while its rate of increase above the inflection point of evaporative water loss (i.e., the slope of evaporative water loss versus temperature) decreased by 35% during summer - a value well above that reported for other temperate and tropical songbirds. Finally, body mass increased by 5% during winter, a pattern similar to that found in many northern temperate species. Our findings support the idea that physiological adjustments might enhance the resilience of Mediterranean songbirds to environmental changes, with short-term benefits by saving energy and water under thermally stressful conditions. Nevertheless, not all species showed the same patterns, suggesting different strategies in their thermoregulatory adaptations to seasonal environments.
Collapse
Affiliation(s)
- Erick González-Medina
- Conservation Biology Research Group, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain.
| | - Núria Playà-Montmany
- Conservation Biology Research Group, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain. https://twitter.com/NuriaPlayaM
| | - Julián Cabello-Vergel
- Conservation Biology Research Group, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Manuel Parejo
- Conservation Biology Research Group, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - José M Abad-Gómez
- Conservation Biology Research Group, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Juan M Sánchez-Guzmán
- Conservation Biology Research Group, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Ecology in the Anthropocene, Associated Unit CSIC-UEX, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Auxiliadora Villegas
- Conservation Biology Research Group, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Ecology in the Anthropocene, Associated Unit CSIC-UEX, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain. https://twitter.com/AuxVil
| | - Jorge S Gutiérrez
- Conservation Biology Research Group, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Ecology in the Anthropocene, Associated Unit CSIC-UEX, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain. https://twitter.com/JSGutierrez
| | - José A Masero
- Ecology in the Anthropocene, Associated Unit CSIC-UEX, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain. https://twitter.com/jamasero
| |
Collapse
|