1
|
Vaissi S. Historic range dynamics in Kaiser's mountain newt ( Neurergus kaiseri): Insights from phylogeographic analyses and species distribution modeling. Ecol Evol 2021; 11:7622-7633. [PMID: 34188839 PMCID: PMC8216884 DOI: 10.1002/ece3.7595] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/20/2022] Open
Abstract
Vulnerable Kaiser's mountain newt, Neurergus kaiseri, is endemic to highland streams, springs, and pools of the southwestern Zagros mountain, Iran. The present study aimed to use an integration of phylogeographical and species distribution modeling (SDM) approaches to provide new insights into the evolutionary history of the species throughout Quaternary climate oscillations. The phylogeographical analysis was followed by analyzing two mitochondrial DNA (mt-DNA) markers including 127 control region (D-loop) and 72 NADH dehydrogenase 2 (ND2) sequences from 15 populations in the entire species range that were obtained from GenBank. Potential recent and past distribution (the Last Glacial Maximum, LGM, 21 Kya and the Mid-Holocene, 6 Kya) reconstructed by ensemble SDM using nine algorithms with CCSM4, MIROC-ESM, and MPI-ESM-P models. N. kaiseri displayed two distinct lineages in the northern and southern regions that diverged in the Early-Pleistocene. The demographics analysis showed signs of a slight increase in effective population size for both northern and southern populations in the Mid-Pleistocene. Biogeography analysis showed that both vicariance and dispersal events played an important role in the formation of recent species distribution of N. kaiseri. Based on SDM projection onto paleoclimatic data, N. kaiseri displayed a scenario of past range expansion that followed by postglacial contraction. The models showed that the distribution range of the species may have shifted to a lower altitude during LGM while with amelioration of climatic during Mid-Holocene to recent conditions caused the species to shift to the higher altitude. The findings of the current study support the hypothesis that the Zagros mountains may be acting as climatic refugia and play an important role in the protection of isolated populations during climate oscillations.
Collapse
Affiliation(s)
- Somaye Vaissi
- Department of BiologyFaculty of ScienceRazi UniversityKermanshahIran
| |
Collapse
|
2
|
Design of Protected Area by Tracking and Excluding the Effects of Climate and Landscape Change: A Case Study Using Neurergus derjugini. SUSTAINABILITY 2021. [DOI: 10.3390/su13105645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study aimed to use the applications of Ensemble Species Distribution Modelling (eSDM), Geographical Information Systems (GISs), and Multi-Criteria Decision Analysis (MCDA) for the design of a protected area (PA) for the critically endangered yellow-spotted mountain newt, Neurergus derjugini, by tracking and excluding the effects of climate and landscape changes in western Iran and northeastern Iraq. Potential recent and future distributions (2050 and 2070) were reconstructed by eSDM using eight algorithms with MRI-CGCM3 and CCSM4 models. The GIS-based MCDA siting procedure was followed inside habitats with high eSDM suitability by eliminating the main roads, cities, high village density, dams, poor vegetation, low stream density, agricultural lands and high ridge density. Then, within the remaining relevant areas, 10 polygons were created as “nominations” for PAs (NPAs). Finally, for 10 different NPAs, the suitability score was ranked based on ratings and weights (analytical hierarchy process) of the number of newt localities, NPA connectivity, NPA shape, NPA habitat suitability in 2070, NPA size, genetic diversity, village density and distance to nearest PAs, cities, and main roads. This research could serve as a modern realistic approach for environmental management to plan conservation areas using a cost-effective and affordable technique.
Collapse
|
3
|
Zheng Y, Dai Q, Guo X, Zeng X. Dynamics behind disjunct distribution, hotspot-edge refugia, and discordant RADseq/mtDNA variability: insights from the Emei mustache toad. BMC Evol Biol 2020; 20:111. [PMID: 32859147 PMCID: PMC7456009 DOI: 10.1186/s12862-020-01675-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/20/2020] [Indexed: 12/01/2022] Open
Abstract
Background The distribution of genetic diversity and the underlying processes are important for conservation planning but are unknown for most species and have not been well studied in many regions. In East Asia, the Sichuan Basin and surrounding mountains constitute an understudied region that exhibits a “ring” of high species richness overlapping the eastern edge of the global biodiversity hotspot Mountains of Southwest China. We examine the distributional history and genetic diversification of the Emei mustache toad Leptobrachium boringii, a typical “ring” element characterized by disjunct ranges in the mountains, by integrating time-calibrated gene tree, genetic variability, individual-level clustering, inference of population splitting and mixing from allele frequencies, and paleoclimatic suitability modeling. Results The results reveal extensive range dynamics, including secondary contact after long-term isolation via westward dispersal accompanied by variability loss. They allow the proposal of a model that combines recurrent contractions caused by Quaternary climatic changes and some failed expansions under suitable conditions for explaining the shared disjunct distribution pattern. Providing exceptional low-elevation habitats in the hotspot area, the eastern edge harbors both long-term refugial and young immigrant populations. This finding and a synthesis of evidence from other taxa demonstrate that a certain contributor to biodiversity, one that preserves and receives low-elevation elements of the east in this case, can be significant for only a particular part of a hotspot. By clarifying the low variability of these refugial populations, we show that discordant mitochondrial estimates of diversity can be obtained for populations that experienced admixture, which would have unlikely left proportional immigrant alleles for each locus. Conclusions Dispersal after long-term isolation can explain much of the spatial distribution of genetic diversity in this species, while secondary contact and long-term persistence do not guarantee a large variation. The model for the formation of disjunct ranges may apply to many other taxa isolated in the mountains surrounding the Sichuan Basin. Furthermore, this study provides insights into the heterogeneous nature of hotspots and discordant variability obtained from genome-wide and mitochondrial data.
Collapse
Affiliation(s)
- Yuchi Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, #9 of Section 4, Ren-Min-Nan Road, Wuhou District, Chengdu, 610041, Sichuan Province, China. .,Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan Province, China.
| | - Qiang Dai
- Chengdu Institute of Biology, Chinese Academy of Sciences, #9 of Section 4, Ren-Min-Nan Road, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Xianguang Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, #9 of Section 4, Ren-Min-Nan Road, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Xiaomao Zeng
- Chengdu Institute of Biology, Chinese Academy of Sciences, #9 of Section 4, Ren-Min-Nan Road, Wuhou District, Chengdu, 610041, Sichuan Province, China
| |
Collapse
|
4
|
Rosas-Ramos N, Mas-Peinado P, Gil-Tapetado D, Recuero E, Ruiz JL, García-París M. Catalogue, distribution, taxonomic notes, and conservation of the Western Palearctic endemic hunchback beetles (Tenebrionidae, Misolampus). Zookeys 2020; 963:81-129. [PMID: 32922132 PMCID: PMC7458947 DOI: 10.3897/zookeys.963.53500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/10/2020] [Indexed: 11/12/2022] Open
Abstract
Hunchback darkling beetles of the Ibero-Maghrebian genus Misolampus Latreille, 1807 (Tenebrionidae, Stenochiinae) encompass six species: M. gibbulus (Herbst, 1799), M. goudotii Guérin-Méneville, 1834, M. lusitanicus Brême, 1842, M. ramburii Brême, 1842, M. scabricollis Graells, 1849, and M. subglaber Rosenhauer, 1856. Previously known distribution ranges of the species were delineated using many old records, the persistence of such populations being questionable under the current situation of global biodiversity loss. Additionally, the status of geographically isolated populations of the genus have been the subject of taxonomic controversy. An exhaustive bibliographical revision and field search was undertaken, and the Misolampus collection of the Museo Nacional de Ciencias Naturales (MNCN-CSIC) was revised. The aims are to (i) provide an updated geographic distribution range for the species of Misolampus; (ii) to determine the taxonomic status of controversial populations; (iii) to provide a catalogue for Misolampus; and (iv) to discuss the conservation status of these saproxylic beetles. As a result, a catalogue including synonymies and type localities, geographical records, diagnoses, and information on natural history for all species of Misolampus is presented. The results reveal that the distribution ranges of the species of Misolampus have not undergone a reduction in the last century, and indicate the presence of the genus in areas where it had never been recorded before. The morphological variability of M. goudotii drove the proposal of different taxa that are here formally synonymised as follows: M. goudotii Guérin-Méneville, 1834 = M. erichsoni Vauloger de Beaupré, 1900, syn. nov. = M. peyerimhoffi Antoine, 1926, syn. nov.
Collapse
Affiliation(s)
- Natalia Rosas-Ramos
- Departamento de Biología Animal (Área de Zoología), Facultad de Biología (Edificio de Farmacia, planta 5), Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, SpainMuseo Nacional de Ciencias NaturalesMadridSpain
- Departamento de Biodiversidad y Biología Evolutiva. Museo Nacional de Ciencias Naturales, MNCN-CSIC. c/ José Gutiérrez Abascal, 2. 28006, Madrid, SpainUniversidad de SalamancaSalamancaSpain
| | - Paloma Mas-Peinado
- Departamento de Biodiversidad y Biología Evolutiva. Museo Nacional de Ciencias Naturales, MNCN-CSIC. c/ José Gutiérrez Abascal, 2. 28006, Madrid, SpainUniversidad de SalamancaSalamancaSpain
- Centro de Investigación en Biodiversidad y Cambio Global CIBC-UAM, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049-Madrid, SpainUniversidad Autónoma de MadridMadridSpain
| | - Diego Gil-Tapetado
- Departamento de Biodiversidad y Biología Evolutiva. Museo Nacional de Ciencias Naturales, MNCN-CSIC. c/ José Gutiérrez Abascal, 2. 28006, Madrid, SpainUniversidad de SalamancaSalamancaSpain
- Departamento de Biología, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, c/ José Antonio Novais, 12, 28040-Madrid, SpainUniversidad Complutense de MadridMadridSpain
| | - Ernesto Recuero
- Departamento de Biodiversidad y Biología Evolutiva. Museo Nacional de Ciencias Naturales, MNCN-CSIC. c/ José Gutiérrez Abascal, 2. 28006, Madrid, SpainUniversidad de SalamancaSalamancaSpain
| | - José L. Ruiz
- Instituto de Estudios Ceutíes. Paseo del Revellín, 30. 51001 Ceuta, SpainInstituto de Estudios CeutíesCeutaSpain
| | - Mario García-París
- Departamento de Biodiversidad y Biología Evolutiva. Museo Nacional de Ciencias Naturales, MNCN-CSIC. c/ José Gutiérrez Abascal, 2. 28006, Madrid, SpainUniversidad de SalamancaSalamancaSpain
| |
Collapse
|
5
|
Rodríguez-Flores PC, Recuero E, Jiménez-Ruiz Y, García-París M. Limited long-distance dispersal success in a Western European fairy shrimp evidenced by nuclear and mitochondrial lineage structuring. Curr Zool 2020; 66:227-237. [PMID: 32440283 PMCID: PMC7234018 DOI: 10.1093/cz/zoz054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 11/12/2022] Open
Abstract
Anostraca are known by their ability for long-distance dispersal, but the existence in several species of deep, geographically structured mtDNA lineages suggests their populations are subjected to allopatric differentiation, isolation, and prevalence of local scale dispersion. Tanymastix stagnalis is one of the most widespread species of Anostraca and previous studies revealed an unclear geographical pattern of mtDNA genetic diversity. Here, we analyze populations from the Iberian and Italian Peninsulas, Central Europe, and Scandinavia, with the aim to characterize the patterns of genetic diversity in a spatio-temporal framework using mtDNA and nuclear markers to test gene flow among close populations. For these aims we built a time-calibrated phylogeny and carried out Bayesian phylogeographic analyses using a continuous diffusion model. Our results indicated that T. stagnalis presents a deeply structured genetic diversity, including 7 ancient lineages, some of them even predating the Pleistocene. The Iberian Peninsula harbors high diversity of lineages, with strong isolation and recent absence of gene flow between populations. Dispersal at local scale seems to be the prevailing dispersal mode of T. stagnalis, which exhibits a pattern of isolation-by-distance in the Iberian Peninsula. We remark the vulnerability of most of these lineages, given the limited known geographic distribution of some of them, and the high risk of losing important evolutionary potential for the species.
Collapse
Affiliation(s)
- Paula C Rodríguez-Flores
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, Madrid 28006, Spain
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), C. d’Accés Cala Sant Francesc 14, Blanes 17300, Spain
| | - Ernesto Recuero
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, Madrid 28006, Spain
| | - Yolanda Jiménez-Ruiz
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, Madrid 28006, Spain
| | - Mario García-París
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, Madrid 28006, Spain
| |
Collapse
|
6
|
Veith M, Göçmen B, Sotiropoulos K, Eleftherakos K, Lötters S, Godmann O, Karış M, Oğuz A, Ehl S. Phylogeographic analyses point to long-term survival on the spot in micro-endemic Lycian salamanders. PLoS One 2020; 15:e0226326. [PMID: 31929551 PMCID: PMC6957296 DOI: 10.1371/journal.pone.0226326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 11/25/2019] [Indexed: 11/18/2022] Open
Abstract
Lycian salamanders (genus Lyciasalamandra) constitute an exceptional case of micro-endemism of an amphibian species on the Asian Minor mainland. These viviparous salamanders are confined to karstic limestone formations along the southern Anatolian coast and some islands. We here study the genetic differentiation within and among 118 populations of all seven Lyciasalamandra species across the entire genus’ distribution. Based on circa 900 base pairs of fragments of the mitochondrial 16SrDNA and ATPase genes, we analysed the spatial haplotype distribution as well as the genetic structure and demographic history of populations. We used 253 geo-referenced populations and CHELSA climate data to infer species distribution models which we projected on climatic conditions of the Last Glacial Maximum (LGM). Within all but one species, distinct phyloclades were identified, which only in parts matched current taxonomy. Most haplotypes (78%) were private to single populations. Sometimes population genetic parameters showed contradicting results, although in several cases they indicated recent population expansion of phyloclades. Climatic suitability of localities currently inhabited by salamanders was significantly lower during the LGM compared to recent climate. All data indicated a strong degree of isolation among Lyciasalamandra populations, even within phyloclades. Given the sometimes high degree of haplotype differentiation between adjacent populations, they must have survived periods of deteriorated climates during the Quaternary on the spot. However, the alternative explanation of male biased dispersal combined with a pronounced female philopatry can only be excluded if independent nuclear data confirm this result.
Collapse
Affiliation(s)
- Michael Veith
- Department of Biogeography, Trier University, Universitätsring, Trier, Germany
- * E-mail:
| | - Bayram Göçmen
- Ege University, Faculty of Science, Department of Biology, Zoology Section, Bornova, İzmir, Turkey
| | | | - Karolos Eleftherakos
- Section of Zoology-Marine Biology, Department of Biology, University of Athens, Athens, Greece
| | - Stefan Lötters
- Department of Biogeography, Trier University, Universitätsring, Trier, Germany
| | | | - Mert Karış
- Ege University, Faculty of Science, Department of Biology, Zoology Section, Bornova, İzmir, Turkey
| | - Anil Oğuz
- Ege University, Faculty of Science, Department of Biology, Zoology Section, Bornova, İzmir, Turkey
| | - Sarah Ehl
- Department of Biogeography, Trier University, Universitätsring, Trier, Germany
| |
Collapse
|
7
|
Qiao L, Wen G, Qi Y, Lu B, Hu J, Song Z, Fu J. Evolutionary melting pots and reproductive isolation: A ring-shaped diversification of an odorous frog (Odorrana margaratea
) around the Sichuan Basin. Mol Ecol 2018; 27:4888-4900. [DOI: 10.1111/mec.14899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/04/2018] [Accepted: 10/03/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Liang Qiao
- Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu Sichuan China
| | - Guannan Wen
- Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu Sichuan China
| | - Yin Qi
- Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu Sichuan China
| | - Bin Lu
- Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu Sichuan China
| | - Junhua Hu
- Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu Sichuan China
| | - Zhaobin Song
- College of Life Sciences; Sichuan University; Chengdu Sichuan China
| | - Jinzhong Fu
- Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu Sichuan China
- Department of Integrative Biology; University of Guelph; Guelph Ontario Canada
| |
Collapse
|