1
|
Zhang Y, Jiang Z, Li X. Chronic toxic effects of chloroxylenol exposure on Rana chensinensis: Insights from endochondral ossfication. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107140. [PMID: 39489103 DOI: 10.1016/j.aquatox.2024.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Chloroxylenol (para‑chloro-meta-xylenol, PCMX), is a widely used antimicrobial agent and can remain in the aquatic environment. Although toxicity studies related to PCMX on the aquatic animals like zebrafish and Brachionus koreanus have been reported, there are few reports in the ecological risk of amphibians. In this study, the toxicity of different concentration (143, 14.3, 1.43 μg/L) of PCMX treatments on the endochondral ossification and body condition of Rana chensiensis tadpoles was investigated at environmentally relevant concentrations during metamorphosis. The chronic exposure of PCMX decreased bone length and ossification of limbs, caused changes of thyroid gland structure and ossification related gene expression levels. Besides, we found that R. chensiensis developed rheumatoid arthritis. Therefore, these results provided valuable evidence that the ecological risk of PCMX that will negatively affect the body condition, thyroid hormones homeostasis and skeletal development of R. chensiensis tadpoles.
Collapse
Affiliation(s)
- Yue Zhang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, PR China
| | - Zhaoyang Jiang
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, PR China.
| |
Collapse
|
2
|
Boulinguez-Ambroise G, Boyer DM, Dunham NT, Yapuncich GS, Bradley-Cronkwright M, Zeininger A, Schmitt D, Young JW. Biomechanical and morphological determinants of maximal jumping performance in callitrichine monkeys. J Exp Biol 2024; 227:jeb247413. [PMID: 39210868 DOI: 10.1242/jeb.247413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Jumping is a crucial behavior in fitness-critical activities including locomotion, resource acquisition, courtship displays and predator avoidance. In primates, paleontological evidence suggests selection for enhanced jumping ability during their early evolution. However, our interpretation of the fossil record remains limited, as no studies have explicitly linked levels of jumping performance with interspecific skeletal variation. We used force platform analyses to generate biomechanical data on maximal jumping performance in three genera of callitrichine monkeys falling along a continuum of jumping propensity: Callimico (relatively high propensity jumper), Saguinus (intermediate jumping propensity) and Callithrix (relatively low propensity jumper). Individuals performed vertical jumps to perches of increasing height within a custom-built tower. We coupled performance data with high-resolution micro-CT data quantifying bony features thought to reflect jumping ability. Levels of maximal performance between species - e.g. maximal take-off velocity of the center of mass (CoM) - parallel established gradients of jumping propensity. Both biomechanical analysis of jumping performance determinants (e.g. CoM displacement, maximal force production and peak mechanical power during push-off) and multivariate analyses of bony hindlimb morphology highlight different mechanical strategies among taxa. For instance, Callimico, which has relatively long hindlimbs, followed a strategy of fully extending of the limbs to maximize CoM displacement - rather than force production - during push-off. In contrast, relatively shorter-limbed Callithrix depended mostly on relatively high push-off forces. Overall, these results suggest that leaping performance is at least partially associated with correlated anatomical and behavioral adaptations, suggesting the possibility of improving inferences about performance in the fossil record.
Collapse
Affiliation(s)
- Grégoire Boulinguez-Ambroise
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, NC 27708, USA
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, OH 44272, USA
| | - Doug M Boyer
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, NC 27708, USA
| | - Noah T Dunham
- Division of Conservation and Science, Cleveland Metroparks Zoo, 3900 Wildlife Way, Cleveland, OH 44109, USA
- Department of Biology, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Gabriel S Yapuncich
- Medical Education Administration, Duke University School of Medicine, 40 Duke Medicine Circle, Durham, NC 27710, USA
| | | | - Angel Zeininger
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, NC 27708, USA
| | - Daniel Schmitt
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, NC 27708, USA
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, OH 44272, USA
| |
Collapse
|
3
|
Liao W, Jiang Y, Jin L, Lüpold S. How hibernation in frogs drives brain and reproductive evolution in opposite directions. eLife 2023; 12:RP88236. [PMID: 38085091 PMCID: PMC10715729 DOI: 10.7554/elife.88236] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Environmental seasonality can promote the evolution of larger brains through cognitive and behavioral flexibility but can also hamper it when temporary food shortage is buffered by stored energy. Multiple hypotheses linking brain evolution with resource acquisition and allocation have been proposed for warm-blooded organisms, but it remains unclear how these extend to cold-blooded taxa whose metabolism is tightly linked to ambient temperature. Here, we integrated these hypotheses across frogs and toads in the context of varying brumation (hibernation) durations and their environmental correlates. We showed that protracted brumation covaried negatively with brain size but positively with reproductive investment, likely in response to brumation-dependent changes in the socio-ecological context and associated selection on different tissues. Our results provide novel insights into resource allocation strategies and possible constraints in trait diversification, which may have important implications for the adaptability of species under sustained environmental change.
Collapse
Affiliation(s)
- Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal UniversitySichuanChina
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal UniversityNanchongChina
- Institute of Eco-Adaptation in Amphibians and Reptiles, China West Normal UniversityNanchongChina
| | - Ying Jiang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal UniversitySichuanChina
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal UniversityNanchongChina
- Institute of Eco-Adaptation in Amphibians and Reptiles, China West Normal UniversityNanchongChina
| | - Long Jin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal UniversitySichuanChina
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal UniversityNanchongChina
- Institute of Eco-Adaptation in Amphibians and Reptiles, China West Normal UniversityNanchongChina
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of ZurichZurichSwitzerland
| |
Collapse
|
4
|
Li X, Li J, Li K, Zhang Z, Wang H. Effects of perchlorate and exogenous T4 exposures on body condition and endochondral ossification of Rana chensinensis tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106767. [PMID: 37972501 DOI: 10.1016/j.aquatox.2023.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/14/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Perchlorate, as an endocrine-disrupting chemical (EDC), is largely produced and used in the military, fireworks, fertilizers, and other industries and widely exists in water. Although perchlorate is known to destroy the normal function of thyroid hormones (THs) in amphibians and interfere with their growth and development, the impact of TH levels caused by sodium perchlorate (NaClO4) on endochondral ossification and skeletal development is poorly investigated, and the underlying molecular mechanism has not been clarified. The present study aimed to explore the potential effects of NaClO4 and exogenous thyroxine (T4) on the skeletal development of Rana chensinensis tadpoles and elucidate the related molecular mechanisms. Our results showed that histological changes occurred to the femur and tibia-fibula of tadpoles raised in 250 μg/L NaClO4 and 5 μg/L exogenous T4, and the length of their hindlimbs was significantly reduced. In addition, exogenous T4 exposure significantly interfered with the expression of Dio3, TRβ, MMP9, MMP13, and Runx2, inhibiting the endochondral ossification process. Therefore, we provide robust evidence that the changes in TH levels caused by NaClO4 and exogenous T4 will adversely affect the endochondral ossification and skeletal development of R. chensinensis tadpoles.
Collapse
Affiliation(s)
- Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jiayi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Kaiyue Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Zhiqin Zhang
- Basic Experimental Teaching Center, Shaanxi Normal University, Xi'an 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
5
|
Hernández-Valdivia E, Islas-Ojeda E, Casillas-Peñuelas R, Valdivia-Flores A, García-Munguía A. Gastrointestinal parasites in bullfrogs (Lithobates catesbeianus) in aquaculture production units in the Mexican central highlands. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2023; 32:e001523. [PMID: 37403883 DOI: 10.1590/s1984-29612023038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2023] [Indexed: 07/06/2023]
Abstract
In Mexico, intensive production of bullfrogs is one of the most important aquaculture activities, due to growing demand for their meat. Frogs can be hosts for several parasites that negatively affect their development and health. The objective of this study was to identify the presence of intestinal parasites in bullfrogs in aquaculture production units. Eighteen bullfrogs aquaculture production units were selected, and 20 animals (n=360) from each farm. Fecal samples were obtained by mucosal scraping and processed using the concentration method. The overall prevalence of intestinal parasites was 70.5%, and all farms had frogs infected by some species of parasite. Two species of parasites were identified: Eimeria sp. and Strongyloides sp. Significant differences were found regarding parasite prevalence between males and females (73.8% vs 58.8%) and regarding tibia length (5.5 vs 6.1 cm) and weight (168 vs 187 g) between parasitized and non-parasitized frogs. In conclusion, the present study showed a high prevalence of intestinal parasites, and morphometric alterations (weight, snout-cloaca length, radio-ulna length, tibia length and distance between parotid glands) were identified in the parasitized animals. These results provided useful information that will enable establishment of adequate control measures to help minimize the adverse effects of these parasites.
Collapse
Affiliation(s)
| | - Efraín Islas-Ojeda
- Departamento de Ciencias Veterinarias, Universidad Autónoma de Aguascalientes - UAA, Aguascalientes, Mexico
| | - Rafael Casillas-Peñuelas
- Departmento de Ciencias de los Alimentos, Universidad Autónoma de Aguascalientes - UAA, Aguascalientes, Mexico
| | - Arturo Valdivia-Flores
- Departamento de Ciencias Veterinarias, Universidad Autónoma de Aguascalientes - UAA, Aguascalientes, Mexico
| | - Alberto García-Munguía
- Departmento de Ciencias Agronómicas, Universidad Autónoma de Aguascalientes - UAA, Aguascalientes, Mexico
| |
Collapse
|
6
|
Monroe DJ, Barny LA, Wu A, Minbiole KPC, Gabor CR. An integrated physiological perspective on anthropogenic stressors in the Gulf coast toad (Incilius nebulifer). Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Anthropogenic environmental change, including climate change and urbanization, results in warmer temperatures in both terrestrial and aquatic habitats and changes in community assemblages including invasive species introductions, among many other alterations. Anurans are particularly susceptible to these changes because generally they have a biphasic lifecycle and rely on aquatic and terrestrial habitats for survival. Changes such as warmer water temperature can result in direct and carryover effects, after metamorphosis that decrease fitness. However, Gulf Coast toads (Incilius (Bufo) nebulifer) are expanding their range, including into anthropogenically disturbed areas. We hypothesize that I. nebulifer copes with warmer water, reduced water levels, and invasive species by altering their physiology and/or behavior. Corticosterone is the primary glucocorticoid in amphibians, and it modulates many aspects of physiology and behavior, potentially including lipid storage and hop performance, during unpredictable (stressful) events. As a true toad, I. nebulifer also produces bufadienolide toxins that aid in its antipredator defense and may have tradeoffs with corticosterone. In a fully factorial design, we measured baseline corticosterone levels in tadpoles in response to two treatments: decreased water levels and increased water temperatures. After metamorphosis, we measured the corticosterone profile and other associated responses to exposure to the predatory red imported fire ant (Solenopsis invicta; RIFA). We found that tadpoles had elevated baseline corticosterone release rates when reared in warmer water and reduced water levels. Toadlets also had elevated baseline corticosterone release rates when exposed to any combination of two of the three treatments but when exposed to all three treatments toadlets instead showed elevated magnitude of their stress response. Predator avoidance (as measured by hop performance) was reduced after exposure to RIFA. Tadpoles from warmer water developed more quickly and were smaller in mass after metamorphosis. Toadlets had reduced production of two of the three detected bufadienolides and increased energy storage (lipids) after exposure to warmer water and reduced growth after exposure to reduced water levels. We found direct and carryover effects of common anthropogenic changes in I. nebulifer that may aid in their ability to persist despite these changes.
Collapse
|
7
|
Morphological Correlates of Locomotion in the Aquatic and the Terrestrial Phases of Pleurodeles waltl Newts from Southwestern Iberia. DIVERSITY 2023. [DOI: 10.3390/d15020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Animals capable of moving in different environments might face conflicting selection on morphology, thus posing trade-offs on the relationships between morphology and locomotor performance in each of these environments. Moreover, given the distinct ecological roles of the sexes, these relationships can be sexually dimorphic. In this article, I studied the relationships between morphological traits and locomotor performance in male and female semiaquatic Pleurodeles waltl newts in their aquatic and their terrestrial stages. Morphology was sexually dimorphic: males have proportionally longer limbs and tails, as well as a better body condition (only in the aquatic phase), whereas females were larger and had greater body mass in both phases. Nonetheless, these morphological differences did not translate into sexual divergence in locomotor performance in either stage. This finding suggests other functions for the morphological traits measured, among which only SVL showed a positive relationship with locomotor performance in both stages, whereas the effect of SMI was negative only in the terrestrial stage, and that of tail length was positive only in the aquatic stage. In any case, the morphological correlates of terrestrial and aquatic locomotion did not conflict, which suggests no trade-off between both locomotory modes in the newts studied.
Collapse
|
8
|
Burress ED, Muñoz MM. Functional Trade-offs Asymmetrically Promote Phenotypic Evolution. Syst Biol 2022; 72:150-160. [PMID: 35961046 DOI: 10.1093/sysbio/syac058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
Trade-offs are thought to bias evolution and are core features of many anatomical systems. Therefore, trade-offs may have far-reaching macroevolutionary consequences, including patterns of morphological, functional, and ecological diversity. Jaws, like many complex anatomical systems, are comprised of elements involved in biomechanical trade-offs. We test the impact of a core mechanical trade-off, transmission of velocity versus force (i.e., mechanical advantage), on rates of jaw evolution in Neotropical cichlids. Across 130 species representing a wide array of feeding ecologies, we find that the velocity-force trade-off impacts evolution of the surrounding jaw system. Specifically, rates of jaw evolution are faster at functional extremes than in more functionally intermediate or unspecialized jaws. Yet, surprisingly, the effect on jaw evolution is uneven across the extremes of the velocity-force continuum. Rates of jaw evolution are 4 to 10-fold faster in velocity-modified jaws, whereas force-modified jaws are 7 to 18-fold faster, compared to unspecialized jaws, depending on the extent of specialization. Further, we find that a more extreme mechanical trade-off resulted in faster rates of jaw evolution. The velocity-force trade-off reflects a gradient from specialization on capture-intensive (e.g., evasive or buried) to processing-intensive prey (e.g., attached or shelled), respectively. The velocity extreme of the trade-off is characterized by large magnitudes of trait change leading to functionally divergent specialists and ecological stasis. By contrast, the force extreme of the trade-off is characterized by enhanced ecological lability made possible by phenotypes more readily co-opted for different feeding ecologies. This asymmetry of macroevolutionary outcomes along each extreme is likely the result of an enhanced utility of the pharyngeal jaw system as force-modified oral jaws are adapted for prey that require intensive processing (e.g., algae, detritus, and molluscs). The velocity-force trade-off, a fundamental feature of many anatomical systems, promotes rapid phenotypic evolution of the surrounding jaw system in a canonical continental adaptive radiation. Considering that the velocity-force trade-off is an inherent feature of all jaw systems that involve a lower element that rotates at a joint, spanning the vast majority of vertebrates, our results may be widely applicable across the tree of life. [adaptive radiation; constraint; decoupling; jaws; macroevolution; specialization].
Collapse
Affiliation(s)
- Edward D Burress
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Zamora-Camacho FJ, Zambrano-Fernández S, Aragón P. Carryover effects of chronic exposure to ammonium during the larval stage on post-metamorphic frogs. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106196. [PMID: 35598377 DOI: 10.1016/j.aquatox.2022.106196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Water contamination poses an important challenge to aquatic fauna, including well-documented effects on amphibian larvae. However, little is known about how contamination during the larval stages may affect post-metamorphic phases, or whether resistance may have evolved in some populations. In this work, we tested the hypothesis that chronic exposure to ammonium (a common contaminant in agroecosystems with confirmed effects on anuran tadpoles) during the larval stage of Pelophylax perezi frogs would affect growth and locomotor performance of metamorph, juvenile, subadult and adult stages. We also predicted that the effects of ammonium would be milder in offspring originated from parental agroecosystem frogs than those originating from forests. We compared tadpoles from both habitats either reared in untreated water or chronically exposed to ammonium. We found that exposure to ammonium during the larval stage inflicted effects on morphology (different measures of body size) and swimming speed after metamorphosis until adulthood. However, these effects were not always consistent through post-metamorphic stages and the effects differed as a function of treatment and habitat. In adults, body size and condition were greater in non-ammonium and ammonium exposed individuals, respectively. These differences were not detectable in metamorphs, for which only ammonium-exposed individuals from agroecosystem showed reduced body size in intermediate post-metamorphic stages. In turn, treatment reduced jumping distance only in agroecosystem adults, subadults and juveniles, which was opposite to the trend observed just after metamorphosis. These changes of patterns throughout the ontogeny of P. perezi could be due to processes such as compensatory growth, delayed energy costs derived from it, or early sexual differences that could be present even before they can be accounted for. In summary, this study suggests that exposure to ammonium during larval stages can result in diverse biological and long-term outcomes in later life stages.
Collapse
Affiliation(s)
- Francisco Javier Zamora-Camacho
- Museo Nacional de Ciencias Naturales, (MNCN-CSIC), C/ José Gutiérrez Abascal 2, Madrid 28006, Spain; Universidad Complutense de Madrid, C/José Antonio Novais 2, Madrid 28040, Spain.
| | | | - Pedro Aragón
- Museo Nacional de Ciencias Naturales, (MNCN-CSIC), C/ José Gutiérrez Abascal 2, Madrid 28006, Spain; Universidad Complutense de Madrid, C/José Antonio Novais 2, Madrid 28040, Spain
| |
Collapse
|
10
|
Teng Y, Ren C, Chen X, Shen Y, Zhang Z, Chai L, Wang H. Effects of cadmium exposure on thyroid gland and endochondral ossification in Rana zhenhaiensis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103860. [PMID: 35367624 DOI: 10.1016/j.etap.2022.103860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Discovery of elevated concentrations of cadmium in the natural environment has increased awareness because of their potential threats. Amphibians are negatively affected due to their moderate sensitivity to cadmium. Here, we conduct acute and subchronic toxicity tests to examine whether, and to what extent, cadmium exposure disturbs metamorphosis, growth, and kinetic ability of Rana zhenhaiensis. We set different concentration treatment groups for the subchronic toxicity test (0, 10, 40, 160 μg Cd L-1). Our findings demonstrate that cadmium exposure reduces growth parameters and the cumulative metamorphosis percent of R. zhenhaiensis. Decreases in follicular size and follicular epithelial cell thickness of thyroid gland are found in the treatment group. Further, subchronic exposure to cadmium decreases ossification ratio of hindlimbs in all treatment. Also, adverse effects of cadmium exposure on aquatic tadpoles can result in the reduced physical parameters and weak jumping ability in adult frogs. In this sense, our study suggests that cadmium adversely influences body condition and metamorphosis of R. zhenhaiensis, damages thyroid gland and impairs endochondral ossification. Meanwhile, we speculated that cadmium-damaged thyroid hormones inhibit skeletal development, resulting in the poor jumping ability, which probably leads to reduced survival of R. zhenhaiensis.
Collapse
Affiliation(s)
- Yiran Teng
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chaolu Ren
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoyan Chen
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yujia Shen
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Zhiyi Zhang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710062, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
11
|
Chen A, Deng H, Song X, Liu X, Chai L. Effects of Separate and Combined Exposure of Cadmium and Lead on the Endochondral Ossification in Bufo gargarizans. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1228-1245. [PMID: 35040517 DOI: 10.1002/etc.5296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) and lead (Pb) are ubiquitous in aquatic environments and most studies have examined the potential effects of Cd or Pb alone on aquatic organisms. In the present study, chronic effects of Cd and Pb, alone and in combination, on Bufo gargarizans were investigated by exposing embryos to these contaminants throughout metamorphosis. Significant reductions in body mass and snout-to-vent length were observed in B. gargarizans at Gosner stage 42 (Gs 42) and Gs 46 exposed to a Cd/Pb mixture. Single and combined exposure with Cd and Pb induced histological alterations of the thyroid gland characterized by reduced colloid area and thickness of epithelial cells. There was a significant decrease in the maximum jump distance of froglets exposed to Cd alone and the Cd/Pb mixture, and the jumping capacity showed a positive correlation with hind limb length and tibia/fibula. Moreover, single metals and their mixture induced reduction of endochondral bone formation in B. gargarizans. Transcriptomic and real-time quantitative polymerase chain reaction results showed that genes involved in skeletal ossification (TRα, TRβ, Dio2, Dio3, MMP9, MMP13, Runx1, Runx2, and Runx3) were transcriptionally dysregulated by Cd and Pb exposure alone or in combination. Our results suggested that despite the low concentration tested, the Cd/Pb mixture induced more severe impacts on B. gargarizans. In addition, the Cd/Pb mixture might reduce chances of survival for B. gargarizans froglets by decreasing size at metamorphosis, impaired skeletal ossification, and reduction in jumping ability, which might result from dysregulation of genes involved in thyroid hormone action and endochondral ossification. The findings obtained could add a new dimension to understanding of the mechanisms underpinning skeletal ossification response to heavy metals in amphibians. Environ Toxicol Chem 2022;41:1228-1245. © 2022 SETAC.
Collapse
Affiliation(s)
- Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Hongzhang Deng
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Xiuling Song
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Xiaoli Liu
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| |
Collapse
|
12
|
Antipredator responses of the morphs of an amphibian species match their differential predation pressures. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Zambrano-Fernández S, Zamora-Camacho FJ, Aragón P. Direct and indirect effects of chronic exposure to ammonium on anuran larvae survivorship, morphology, and swimming speed. CHEMOSPHERE 2022; 287:132349. [PMID: 34826957 DOI: 10.1016/j.chemosphere.2021.132349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Several constituents of the current global change are usually deemed accountable for the worldwide declines of amphibian populations. Among these, water contamination poses a major threat, especially to larval stages, which are unable to escape a polluted water body. This problem is remarkable in agrosystems, one of the main sources of water pollution and whose area is forecasted to increase in the forthcoming decades. However, pollutants represent a selective pressure that may result in tolerance in affected areas. In this work, we tested whether chronic exposure to a sublethal concentration of ammonium (10 mg/L), one of the most frequent agrochemicals, affects differently hatching success, survivorship, morphology and swimming performance of Pelophylax perezi tadpoles from agrosystem and pine grove habitats. Ammonium diminished survivorship at the earliest stages after hatching. Thus, lower density was a by-product of exposure to ammonium. Higher density slowed down development, reduced snout-vent length, and had a sharper negative effect on body mass and tail length and depth of ammonium treated individuals with respect to the control. In turn, ammonium accelerated development and increased body mass, SVL, and tail length and depth. These effects did not depend on provenance habitat. However, only pine grove tadpoles' swimming speed was negatively affected by ammonium, which supports the hypothesis that agrosystem tadpoles are more tolerant to ammonium. Finally, corroborating previous findings, tadpoles with larger bodies and tails were faster swimmers, whereas proportionally more massive individuals were slower, and tail depth was unrelated to swimming speed.
Collapse
Affiliation(s)
| | - Francisco Javier Zamora-Camacho
- Museo Nacional de Ciencias Naturales, (MNCN-CSIC), C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain; Universidad Complutense de Madrid, C/José Antonio Novais 2, 2804, Madrid, Spain.
| | - Pedro Aragón
- Museo Nacional de Ciencias Naturales, (MNCN-CSIC), C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain; Universidad Complutense de Madrid, C/José Antonio Novais 2, 2804, Madrid, Spain
| |
Collapse
|
14
|
Park JK, Kim JB, Do Y. Examination of Physiological and Morphological Differences between Farm-Bred and Wild Black-Spotted Pond Frogs ( Pelophylax nigromaculatus). Life (Basel) 2021; 11:1089. [PMID: 34685460 PMCID: PMC8540089 DOI: 10.3390/life11101089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/22/2023] Open
Abstract
Due to the decline in the population and the difficulty of in situ conservation, several anuran species are being reared in captivity. In this study, we identified physiological and morphological differences between farm-bred and wild frogs. Nine different serum components were used as indicators of osmotic pressure, homeostatic state, organ function, and nutritional status of farm-bred frogs and wild frogs, while radiographic techniques were used to visualize differences in bone mineral density and body composition ratio. Additionally, X-ray skeletal images were used for morphological analysis to estimate differences in locomotory performance between the two groups. Wild frogs harbor traits that aid in better locomotory performance than farm-bred frogs. They also have a relatively lower fat content ratio and higher calcium and phosphorus serum levels than farm-bred frogs, suggesting a difference in nutritional status. However, hepatic stress was higher in wild frogs than in farm-bred frogs. Veterinary clinical examinations allow for the identification of differences in nutritional and morphological conditions between farm-bred and wild frogs. Determining the health of animals can help improve their living conditions, eliminate conditions that can negatively affect them, and effectively manage them on farms, in zoos, and at ex situ conservation institutes.
Collapse
Affiliation(s)
- Jun-Kyu Park
- Department of Biological Science, Kongju National University, Gongju 32588, Korea;
| | - Jeong Bae Kim
- Inland Fisheries Research Institute, National Institute of Fisheries Science, Seoul 12453, Korea;
| | - Yuno Do
- Department of Biological Science, Kongju National University, Gongju 32588, Korea;
| |
Collapse
|