1
|
Swint-Kruse L, Martin TA, Wu T, Dougherty LL, Fenton AW. Identification of positions in human aldolase a that are neutral for apparent K M. Arch Biochem Biophys 2024; 761:110183. [PMID: 39461494 DOI: 10.1016/j.abb.2024.110183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
According to evolutionary theory, many naturally-occurring amino acid substitutions are expected to be neutral or near-neutral, with little effect on protein structure or function. Accordingly, most changes observed in human exomes are also expected to be neutral. As such, accurate algorithms for identifying medically-relevant changes must discriminate rare, non-neutral substitutions against a background of neutral substitutions. However, due to historical biases in biochemical experiments, the data available to train and validate prediction algorithms mostly contains non-neutral substitutions, with few examples of neutral substitutions. Thus, available training sets have the opposite composition of the desired test sets. Towards improving a dataset of these critical negative controls, we have concentrated on identifying neutral positions - those positions for which most of the possible 19 amino acid substitutions have little effect on protein structure or function. Here, we used a strategy based on multiple sequence alignments to identify putative neutral positions in human aldolase A, followed by biochemical assays for 147 aldolase substitutions. Results showed that most variants had little effect on either the apparent Michaelis constant for substrate fructose-1,6-bisphosphate or its apparent cooperativity. Thus, these data are useful for training and validating prediction algorithms. In addition, we created a database of these and other biochemically characterized aldolase variants along with aldolase sequences and characteristics derived from sequence and structure analyses. This database is publicly available at https://github.com/liskinsk/Aldolase-variant-and-sequence-database.
Collapse
Affiliation(s)
- Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd, MSN 3030, Kansas City, KS, 66160, USA.
| | - Tyler A Martin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd, MSN 3030, Kansas City, KS, 66160, USA
| | - Tiffany Wu
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd, MSN 3030, Kansas City, KS, 66160, USA
| | - Larissa L Dougherty
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd, MSN 3030, Kansas City, KS, 66160, USA
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd, MSN 3030, Kansas City, KS, 66160, USA.
| |
Collapse
|
2
|
Campitelli P, Ross D, Swint-Kruse L, Ozkan SB. Dynamics-based protein network features accurately discriminate neutral and rheostat positions. Biophys J 2024; 123:3612-3626. [PMID: 39277794 PMCID: PMC11494493 DOI: 10.1016/j.bpj.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/03/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024] Open
Abstract
In some proteins, a unique class of nonconserved positions is characterized by their ability to generate diverse functional outcomes through single amino acid substitutions. Due to their ability to tune protein function, accurately identifying such "rheostat" positions is crucial for protein design, for understanding the impact of mutations observed in humans, and for predicting the evolution of pathogen drug resistance. However, identifying rheostat positions has been challenging, due-in part-to the absence of a clear structural relationship with binding sites. In this study, experimental data from our previous study of the Escherichia coli lactose repressor protein (LacI) was used to identify rheostat positions for which mutations tune in vivo EC50 for the allosteric ligand "IPTG." We next used the rheostat assignments to test the hypothesis that rheostat positions have unique dynamic features that will enable their identification. To that end, we integrated all-atom molecular dynamics simulations with perturbation residue response analysis. Results first revealed distinct dynamic behavior in IPTG-bound LacI compared with apo LacI, which was consistent with IPTG's role as an allosteric inducer. Next, we used a variety of dynamic features to build a classification model that discriminates experimentally characterized rheostat positions in LacI from positions with other types of substitution outcomes. In parallel, we built a second classifier model based on the 3D structural "static" network features of LacI. In comparative studies, the dynamic model better identified rheostat positions that were >8 Å from the binding site. In summary, our study provides insights into the dynamic characteristics of rheostat positions and suggests that models built on dynamic features may be useful for predicting the locations of rheostat positions in a wide range of proteins.
Collapse
Affiliation(s)
- P Campitelli
- Department of Physics, Center for Biological Physics, Arizona State University, Tempe, Arizona
| | - D Ross
- Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - L Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas.
| | - S B Ozkan
- Department of Physics, Center for Biological Physics, Arizona State University, Tempe, Arizona.
| |
Collapse
|
3
|
Hu Y, Tang J, Xu Q, Fang Z, Li R, Yang M, Zhao J, Chen X. Role of pyruvate kinase M2 in regulating sepsis (Review). Mol Med Rep 2024; 30:185. [PMID: 39155878 DOI: 10.3892/mmr.2024.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024] Open
Abstract
Glycolysis occurs in all living organisms as a form of energy supply. Pyruvate kinase M2 (PKM2) is one of the rate‑limiting enzymes in the glycolytic process. PKM2 is considered to serve an important role in several terminal diseases, including sepsis. However, to the best of our knowledge, the specific mechanistic role of PKM2 in sepsis remains to be systematically summarised. Therefore, the present review aims to summarise the roles of PKM2 in sepsis progression. In addition, potential treatment strategies for patients with sepsis are discussed. The present review hopes to lay the groundwork for studying the role of PKM2 and developing therapeutic strategies against metabolic disorders that occur during sepsis.
Collapse
Affiliation(s)
- Yifei Hu
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Jing Tang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Qiao Xu
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Zenghui Fang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Rongqing Li
- Department of Clinical Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Mengxuan Yang
- Department of Clinical Laboratory, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Jie Zhao
- Department of Clinical Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Xin Chen
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
4
|
O'Neil PT, Swint‐Kruse L, Fenton AW. Rheostatic contributions to protein stability can obscure a position's functional role. Protein Sci 2024; 33:e5075. [PMID: 38895978 PMCID: PMC11187868 DOI: 10.1002/pro.5075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Rheostat positions, which can be substituted with various amino acids to tune protein function across a range of outcomes, are a developing area for advancing personalized medicine and bioengineering. Current methods cannot accurately predict which proteins contain rheostat positions or their substitution outcomes. To compare the prevalence of rheostat positions in homologs, we previously investigated their occurrence in two pyruvate kinase (PYK) isozymes. Human liver PYK contained numerous rheostat positions that tuned the apparent affinity for the substrate phosphoenolpyruvate (Kapp-PEP) across a wide range. In contrast, no functional rheostat positions were identified in Zymomonas mobilis PYK (ZmPYK). Further, the set of ZmPYK substitutions included an unusually large number that lacked measurable activity. We hypothesized that the inactive substitution variants had reduced protein stability, precluding detection of Kapp-PEP tuning. Using modified buffers, robust enzymatic activity was obtained for 19 previously-inactive ZmPYK substitution variants at three positions. Surprisingly, both previously-inactive and previously-active substitution variants all had Kapp-PEP values close to wild-type. Thus, none of the three positions were functional rheostat positions, and, unlike human liver PYK, ZmPYK's Kapp-PEP remained poorly tunable by single substitutions. To directly assess effects on stability, we performed thermal denaturation experiments for all ZmPYK substitution variants. Many diminished stability, two enhanced stability, and the three positions showed different thermal sensitivity to substitution, with one position acting as a "stability rheostat." The differences between the two PYK homologs raises interesting questions about the underlying mechanism(s) that permit functional tuning by single substitutions in some proteins but not in others.
Collapse
Affiliation(s)
- Pierce T. O'Neil
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansasUSA
| | - Liskin Swint‐Kruse
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansasUSA
| | - Aron W. Fenton
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansasUSA
| |
Collapse
|
5
|
Swint-Kruse L, Fenton AW. Rheostats, toggles, and neutrals, Oh my! A new framework for understanding how amino acid changes modulate protein function. J Biol Chem 2024; 300:105736. [PMID: 38336297 PMCID: PMC10914490 DOI: 10.1016/j.jbc.2024.105736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Advances in personalized medicine and protein engineering require accurately predicting outcomes of amino acid substitutions. Many algorithms correctly predict that evolutionarily-conserved positions show "toggle" substitution phenotypes, which is defined when a few substitutions at that position retain function. In contrast, predictions often fail for substitutions at the less-studied "rheostat" positions, which are defined when different amino acid substitutions at a position sample at least half of the possible functional range. This review describes efforts to understand the impact and significance of rheostat positions: (1) They have been observed in globular soluble, integral membrane, and intrinsically disordered proteins; within single proteins, their prevalence can be up to 40%. (2) Substitutions at rheostat positions can have biological consequences and ∼10% of substitutions gain function. (3) Although both rheostat and "neutral" (defined when all substitutions exhibit wild-type function) positions are nonconserved, the two classes have different evolutionary signatures. (4) Some rheostat positions have pleiotropic effects on function, simultaneously modulating multiple parameters (e.g., altering both affinity and allosteric coupling). (5) In structural studies, substitutions at rheostat positions appear to cause only local perturbations; the overall conformations appear unchanged. (6) Measured functional changes show promising correlations with predicted changes in protein dynamics; the emergent properties of predicted, dynamically coupled amino acid networks might explain some of the complex functional outcomes observed when substituting rheostat positions. Overall, rheostat positions provide unique opportunities for using single substitutions to tune protein function. Future studies of these positions will yield important insights into the protein sequence/function relationship.
Collapse
Affiliation(s)
- Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
6
|
McCullagh M, Zeczycki TN, Kariyawasam CS, Durie CL, Halkidis K, Fitzkee NC, Holt JM, Fenton AW. What is allosteric regulation? Exploring the exceptions that prove the rule! J Biol Chem 2024; 300:105672. [PMID: 38272229 PMCID: PMC10897898 DOI: 10.1016/j.jbc.2024.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
"Allosteric" was first introduced to mean the other site (i.e., a site distinct from the active or orthosteric site), an adjective for "regulation" to imply a regulatory outcome resulting from ligand binding at another site. That original idea outlines a system with two ligand-binding events at two distinct locations on a macromolecule (originally a protein system), which defines a four-state energy cycle. An allosteric energy cycle provides a quantifiable allosteric coupling constant and focuses our attention on the unique properties of the four equilibrated protein complexes that constitute the energy cycle. Because many observed phenomena have been referenced as "allosteric regulation" in the literature, the goal of this work is to use literature examples to explore which systems are and are not consistent with the two-ligand thermodynamic energy cycle-based definition of allosteric regulation. We emphasize the need for consistent language so comparisons can be made among the ever-increasing number of allosteric systems. Building on the mutually exclusive natures of an energy cycle definition of allosteric regulation versus classic two-state models, we conclude our discussion by outlining how the often-proposed Rube-Goldberg-like mechanisms are likely inconsistent with an energy cycle definition of allosteric regulation.
Collapse
Affiliation(s)
- Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Chathuri S Kariyawasam
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Clarissa L Durie
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Konstantine Halkidis
- Department of Hematologic Malignancies and Cellular Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jo M Holt
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|