1
|
Li J, Gao J, Feng B, Jing Y. PlagueKD: a knowledge graph-based plague knowledge database. Database (Oxford) 2022; 2022:baac100. [PMID: 36412326 PMCID: PMC10161524 DOI: 10.1093/database/baac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
Abstract
Plague has been confirmed as an extremely horrific international quarantine infectious disease attributed to Yersinia pestis. It has an extraordinarily high lethal rate that poses a serious hazard to human and animal lives. With the deepening of research, there has been a considerable amount of literature related to the plague that has never been systematically integrated. Indeed, it makes researchers time-consuming and laborious when they conduct some investigation. Accordingly, integrating and excavating plague-related knowledge from considerable literature takes on a critical significance. Moreover, a comprehensive plague knowledge base should be urgently built. To solve the above issues, the plague knowledge base is built for the first time. A database is built from the literature mining based on knowledge graph, which is capable of storing, retrieving, managing and accessing data. First, 5388 plague-related abstracts that were obtained automatically from PubMed are integrated, and plague entity dictionary and ontology knowledge base are constructed by using text mining technology. Second, the scattered plague-related knowledge is correlated through knowledge graph technology. A multifactor correlation knowledge graph centered on plague is formed, which contains 9633 nodes of 33 types (e.g. disease, gene, protein, species, symptom, treatment and geographic location), as well as 9466 association relations (e.g. disease-gene, gene-protein and disease-species). The Neo4j graph database is adopted to store and manage the relational data in the form of triple. Lastly, a plague knowledge base is built, which can successfully manage and visualize a large amount of structured plague-related data. This knowledge base almost provides an integrated and comprehensive plague-related knowledge. It should not only help researchers to better understand the complex pathogenesis and potential therapeutic approaches of plague but also take on a key significance to reference for exploring potential action mechanisms of corresponding drug candidates and the development of vaccine in the future. Furthermore, it is of great significance to promote the field of plague research. Researchers are enabled to acquire data more easily for more effective research. Database URL: http://39.104.28.169:18095/.
Collapse
Affiliation(s)
- Jin Li
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Erdos East Street No. 29, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application of Agriculture and Animal Husbandry, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Jing Gao
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Erdos East Street No. 29, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application of Agriculture and Animal Husbandry, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Baiyang Feng
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Erdos East Street No. 29, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application of Agriculture and Animal Husbandry, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Yi Jing
- Faculty of Science, University of New South Wales, Sydney, New Sales Wales 2020, Australia
| |
Collapse
|
2
|
Wang Q, Su G, Tan X, Deng J, Du L, Huang X, Lv M, Yi S, Hou S, Kijlstra A, Yang P. UVEOGENE: An SNP database for investigations on genetic factors associated with uveitis and their relationship with other systemic autoimmune diseases. Hum Mutat 2019; 40:258-266. [PMID: 30614601 PMCID: PMC6590147 DOI: 10.1002/humu.23702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 01/22/2023]
Abstract
Uveitis is an intraocular inflammatory disease which can lead to serious visual impairment. Genetic factors have been shown to be involved in its development. However, few databases have focused on the information of associations between single nucleotide polymorphisms (SNPs) and uveitis. To discover the exact genetic background of uveitis, we developed an SNP database specific for uveitis, “UVEOGENE,” which includes 370 genes and 918 SNPs covering 14 uveitis entities and 40 populations from 286 PubMed English‐language papers. Stratification analyses by gender, HLA status, and different clinical features were also extracted from the publications. As a result, 371 associations were judged as “statistically significant.” These associations were also shared with Global Variome shared Leiden Open Variation Database (LOVD) (https://databases.lovd.nl/shared/genes). Based on these associations, we investigated the genetic relationship among three widely studied uveitis entities including Behcet's disease (BD), Vogt–Koyanagi–Harada (VKH) disease, and acute anterior uveitis (AAU). Furthermore, “UVEOGENE” can be used as a reliable and informative resource to identify similarities as well as differences in the genetic susceptibility among uveitis and other autoimmune diseases. UVEOGENE is freely accessible at http://www.uvogene.com.
Collapse
Affiliation(s)
- Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Xiao Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Jing Deng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Liping Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Xinyue Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Meng Lv
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Shenglan Yi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, The Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Saad MN, Mabrouk MS, Eldeib AM, Shaker OG. Comparative study for haplotype block partitioning methods - Evidence from chromosome 6 of the North American Rheumatoid Arthritis Consortium (NARAC) dataset. PLoS One 2018; 13:e0209603. [PMID: 30596705 PMCID: PMC6312333 DOI: 10.1371/journal.pone.0209603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/07/2018] [Indexed: 11/19/2022] Open
Abstract
Haplotype-based methods compete with "one-SNP-at-a-time" approaches on being preferred for association studies. Chromosome 6 contains most of the known genetic biomarkers for rheumatoid arthritis (RA) disease. Therefore, chromosome 6 serves as a benchmark for the haplotype methods testing. The aim of this study is to test the North American Rheumatoid Arthritis Consortium (NARAC) dataset to find out if haplotype block methods or single-locus approaches alone can sufficiently provide the significant single nucleotide polymorphisms (SNPs) associated with RA. In addition, could we be satisfied with only one method of the haplotype block methods for partitioning chromosome 6 of the NARAC dataset? In the NARAC dataset, chromosome 6 comprises 35,574 SNPs for 2,062 individuals (868 cases, 1,194 controls). Individual SNP approach and three haplotype block methods were applied to the NARAC dataset to identify the RA biomarkers. We employed three haplotype partitioning methods which are confidence interval test (CIT), four gamete test (FGT), and solid spine of linkage disequilibrium (SSLD). P-values after stringent Bonferroni correction for multiple testing were measured to assess the strength of association between the genetic variants and RA susceptibility. Moreover, the block size (in base pairs (bp) and number of SNPs included), number of blocks, percentage of uncovered SNPs by the block method, percentage of significant blocks from the total number of blocks, number of significant haplotypes and SNPs were used to compare among the three haplotype block methods. Individual SNP, CIT, FGT, and SSLD methods detected 432, 1,086, 1,099, and 1,322 associated SNPs, respectively. Each method identified significant SNPs that were not detected by any other method (Individual SNP: 12, FGT: 37, CIT: 55, and SSLD: 189 SNPs). 916 SNPs were discovered by all the three haplotype block methods. 367 SNPs were discovered by the haplotype block methods and the individual SNP approach. The P-values of these 367 SNPs were lower than those of the SNPs uniquely detected by only one method. The 367 SNPs detected by all the methods represent promising candidates for RA susceptibility. They should be further investigated for the European population. A hybrid technique including the four methods should be applied to detect the significant SNPs associated with RA for chromosome 6 of the NARAC dataset. Moreover, SSLD method may be preferred for its favored benefits in case of selecting only one method.
Collapse
Affiliation(s)
- Mohamed N. Saad
- Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
| | - Mai S. Mabrouk
- Biomedical Engineering Department, Faculty of Engineering, Misr University for Science and Technology (MUST), 6th of October City, Egypt
| | - Ayman M. Eldeib
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
van Beers-Tas MH, Turk SA, van Schaardenburg D. How does established rheumatoid arthritis develop, and are there possibilities for prevention? Best Pract Res Clin Rheumatol 2015; 29:527-42. [PMID: 26697764 DOI: 10.1016/j.berh.2015.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Established rheumatoid arthritis (RA) is a chronic state with more or less joint damage and inflammation, which persists after a phase of early arthritis. Autoimmunity is the main determinant of persistence. Although the autoimmune response is already fully developed in the phase of early arthritis, targeted treatment within the first months produces better results than delayed treatment. Prevention of established RA currently depends on the success of remission-targeted treatment of early disease. Early recognition is aided by the new criteria for RA. Further improvement may be possible by even earlier recognition and treatment in the at-risk phase. This requires the improvement of prediction models and strategies, and more intervention studies. Such interventions should also be directed at modifiable risk factors such as smoking and obesity. The incidence of RA has declined for decades in parallel with the decrease of smoking rates; however, a recent increase has occurred that is associated with obesity.
Collapse
Affiliation(s)
- Marian H van Beers-Tas
- Amsterdam Rheumatology and Immunology Center, Reade, Doctor Jan van Breemenstraat 2, 1056 AB Amsterdam, The Netherlands.
| | - Samina A Turk
- Amsterdam Rheumatology and Immunology Center, Reade, Doctor Jan van Breemenstraat 2, 1056 AB Amsterdam, The Netherlands.
| | - Dirkjan van Schaardenburg
- Amsterdam Rheumatology and Immunology Center, Reade and Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Verma MK, Sobha K. Understanding the major risk factors in the beginning and the progression of rheumatoid arthritis: current scenario and future prospects. Inflamm Res 2015; 64:647-59. [DOI: 10.1007/s00011-015-0843-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 12/19/2022] Open
|
6
|
Nagai Y, Takahashi Y, Imanishi T. VaDE: a manually curated database of reproducible associations between various traits and human genomic polymorphisms. Nucleic Acids Res 2014; 43:D868-72. [PMID: 25361969 PMCID: PMC4383886 DOI: 10.1093/nar/gku1037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms (SNPs) associated with the development of common diseases. However, it is clear that genetic risk factors of common diseases are heterogeneous among human populations. Therefore, we developed a database of genomic polymorphisms that are reproducibly associated with disease susceptibilities, drug responses and other traits for each human population: 'VarySysDB Disease Edition' (VaDE; http://bmi-tokai.jp/VaDE/). SNP-trait association data were obtained from the National Human Genome Research Institute GWAS (NHGRI GWAS) catalog and RAvariome, and we added detailed information of sample populations by curating original papers. In addition, we collected and curated original papers, and registered the detailed information of SNP-trait associations in VaDE. Then, we evaluated reproducibility of associations in each population by counting the number of significantly associated studies. VaDE provides literature-based SNP-trait association data and functional genomic region annotation for SNP functional research. SNP functional annotation data included experimental data of the ENCODE project, H-InvDB transcripts and the 1000 Genome Project. A user-friendly web interface was developed to assist quick search, easy download and fast swapping among viewers. We believe that our database will contribute to the future establishment of personalized medicine and increase our understanding of genetic factors underlying diseases.
Collapse
Affiliation(s)
- Yoko Nagai
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Yasuko Takahashi
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Tadashi Imanishi
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan Data Management and Integration Team, Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
7
|
Stratified medicine approaches for the treatment of musculoskeletal disorders. Curr Opin Pharmacol 2014; 16:127-32. [DOI: 10.1016/j.coph.2014.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/04/2014] [Indexed: 11/23/2022]
|