1
|
Meng W, Pan H, Sha Y, Zhai X, Xing A, Lingampelly SS, Sripathi SR, Wang Y, Li K. Metabolic Connectome and Its Role in the Prediction, Diagnosis, and Treatment of Complex Diseases. Metabolites 2024; 14:93. [PMID: 38392985 PMCID: PMC10890086 DOI: 10.3390/metabo14020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The interconnectivity of advanced biological systems is essential for their proper functioning. In modern connectomics, biological entities such as proteins, genes, RNA, DNA, and metabolites are often represented as nodes, while the physical, biochemical, or functional interactions between them are represented as edges. Among these entities, metabolites are particularly significant as they exhibit a closer relationship to an organism's phenotype compared to genes or proteins. Moreover, the metabolome has the ability to amplify small proteomic and transcriptomic changes, even those from minor genomic changes. Metabolic networks, which consist of complex systems comprising hundreds of metabolites and their interactions, play a critical role in biological research by mediating energy conversion and chemical reactions within cells. This review provides an introduction to common metabolic network models and their construction methods. It also explores the diverse applications of metabolic networks in elucidating disease mechanisms, predicting and diagnosing diseases, and facilitating drug development. Additionally, it discusses potential future directions for research in metabolic networks. Ultimately, this review serves as a valuable reference for researchers interested in metabolic network modeling, analysis, and their applications.
Collapse
Affiliation(s)
- Weiyu Meng
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau SAR 999078, China; (W.M.); (H.P.); (Y.S.); (X.Z.); (A.X.)
| | - Hongxin Pan
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau SAR 999078, China; (W.M.); (H.P.); (Y.S.); (X.Z.); (A.X.)
| | - Yuyang Sha
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau SAR 999078, China; (W.M.); (H.P.); (Y.S.); (X.Z.); (A.X.)
| | - Xiaobing Zhai
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau SAR 999078, China; (W.M.); (H.P.); (Y.S.); (X.Z.); (A.X.)
| | - Abao Xing
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau SAR 999078, China; (W.M.); (H.P.); (Y.S.); (X.Z.); (A.X.)
| | | | - Srinivasa R. Sripathi
- Henderson Ocular Stem Cell Laboratory, Retina Foundation of the Southwest, Dallas, TX 75231, USA;
| | - Yuefei Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Kefeng Li
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau SAR 999078, China; (W.M.); (H.P.); (Y.S.); (X.Z.); (A.X.)
| |
Collapse
|
2
|
Ozden F, Siper MC, Acarsoy N, Elmas T, Marty B, Qi X, Cicek AE. DORMAN: Database of Reconstructed MetAbolic Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1474-1480. [PMID: 31581093 DOI: 10.1109/tcbb.2019.2944905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Genome-scale reconstructed metabolic networks have provided an organism specific understanding of cellular processes and their relations to phenotype. As they are deemed essential to study metabolism, the number of organisms with reconstructed metabolic networks continues to increase. This everlasting research interest lead to the development of online systems/repositories that store existing reconstructions and enable new model generation, integration, and constraint-based analyses. While features that support model reconstruction are widely available, current systems lack the means to help users who are interested in analyzing the topology of the reconstructed networks. Here, we present the Database of Reconstructed Metabolic Networks - DORMAN. DORMAN is a centralized online database that stores SBML-based reconstructed metabolic networks published in the literature, and provides web-based computational tools for visualizing and analyzing the model topology. Novel features of DORMAN are (i) interactive visualization interface that allows rendering of the complete network as well as editing and exporting the model, (ii) hierarchical navigation that provides efficient access to connected entities in the model, (iii) built-in query interface that allow posing topological queries, and finally, and (iv) model comparison tool that enables comparing models with different nomenclatures, using approximate string matching. DORMAN is online and freely accessible at http://ciceklab.cs.bilkent.edu.tr/dorman.
Collapse
|
3
|
Yao D, Zhan X, Zhan X, Kwoh CK, Sun Y. ncRNA2MetS: a manually curated database for non-coding RNAs associated with metabolic syndrome. PeerJ 2019; 7:e7909. [PMID: 31637139 PMCID: PMC6798904 DOI: 10.7717/peerj.7909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022] Open
Abstract
Metabolic syndrome is a cluster of the most dangerous heart attack risk factors (diabetes and raised fasting plasma glucose, abdominal obesity, high cholesterol and high blood pressure), and has become a major global threat to human health. A number of studies have demonstrated that hundreds of non-coding RNAs, including miRNAs and lncRNAs, are involved in metabolic syndrome-related diseases such as obesity, type 2 diabetes mellitus, hypertension, etc. However, these research results are distributed in a large number of literature, which is not conducive to analysis and use. There is an urgent need to integrate these relationship data between metabolic syndrome and non-coding RNA into a specialized database. To address this need, we developed a metabolic syndrome-associated non-coding RNA database (ncRNA2MetS) to curate the associations between metabolic syndrome and non-coding RNA. Currently, ncRNA2MetS contains 1,068 associations between five metabolic syndrome traits and 627 non-coding RNAs (543 miRNAs and 84 lncRNAs) in four species. Each record in ncRNA2MetS database represents a pair of disease-miRNA (lncRNA) association consisting of non-coding RNA category, miRNA (lncRNA) name, name of metabolic syndrome trait, expressive patterns of non-coding RNA, method for validation, specie involved, a brief introduction to the association, the article referenced, etc. We also developed a user-friendly website so that users can easily access and download all data. In short, ncRNA2MetS is a complete and high-quality data resource for exploring the role of non-coding RNA in the pathogenesis of metabolic syndrome and seeking new treatment options. The website is freely available at http://www.biomed-bigdata.com:50020/index.html
Collapse
Affiliation(s)
- Dengju Yao
- School of Software and Microelectronics, Harbin University of Science and Technology, Harbin, Heilongjiang, China.,School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore.,College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaojuan Zhan
- College of Computer Science and Technology, Heilongjiang Institute of Technology, Harbin, Heilongjiang, China.,School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Xiaorong Zhan
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yuezhongyi Sun
- School of Software and Microelectronics, Harbin University of Science and Technology, Harbin, Heilongjiang, China.,School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Vitale L, Piovesan A, Antonaros F, Strippoli P, Pelleri MC, Caracausi M. Dataset of differential gene expression between total normal human thyroid and histologically normal thyroid adjacent to papillary thyroid carcinoma. Data Brief 2019; 24:103835. [PMID: 31049370 PMCID: PMC6479735 DOI: 10.1016/j.dib.2019.103835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
This article contains further data and information from our published manuscript [1]. We aim to identify significant transcriptome alterations of total normal human thyroid vs. histologically normal thyroid adjacent to papillary thyroid carcinoma. We performed a systematic meta-analysis of all the available gene expression profiles for the whole organ also collecting gene expression data for the normal thyroid adjacent to papillary thyroid carcinoma. A differential quantitative transcriptome reference map was generated by using TRAM (Transcriptome Mapper) software able to combine, normalize and integrate a total of 35 datasets from total normal thyroid and 40 datasets from histologically normal thyroid adjacent to papillary thyroid carcinoma from different sources. This analysis identified genes and genome segments that significantly discriminated the two groups of samples. Differentially expressed genes were grouped and enrichment function analyses were performed identifying the main features of the differentially expressed genes between total normal thyroid and histologically normal thyroid adjacent to papillary thyroid carcinoma. The search for housekeeping genes retrieved 414 loci.
Collapse
|
5
|
Wang J, Wang C, Liu H, Qi H, Chen H, Wen J. Metabolomics assisted metabolic network modeling and network wide analysis of metabolites in microbiology. Crit Rev Biotechnol 2018; 38:1106-1120. [DOI: 10.1080/07388551.2018.1462141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Junhua Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Cheng Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Huanhuan Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Haishan Qi
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Hong Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|