1
|
Li T, Xiao L, Geng H, Chen A, Hu YQ. A weighted Bayesian integration method for predicting drug combination using heterogeneous data. J Transl Med 2024; 22:873. [PMID: 39342319 PMCID: PMC11437629 DOI: 10.1186/s12967-024-05660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND In the management of complex diseases, the strategic adoption of combination therapy has gained considerable prominence. Combination therapy not only holds the potential to enhance treatment efficacy but also to alleviate the side effects caused by excessive use of a single drug. Presently, the exploration of combination therapy encounters significant challenges due to the vast spectrum of potential drug combinations, necessitating the development of efficient screening strategies. METHODS In this study, we propose a prediction scoring method that integrates heterogeneous data using a weighted Bayesian method for drug combination prediction. Heterogeneous data refers to different types of data related to drugs, such as chemical, pharmacological, and target profiles. By constructing a multiplex drug similarity network, we formulate new features for drug pairs and propose a novel Bayesian-based integration scheme with the introduction of weights to integrate information from various sources. This method yields support strength scores for drug combinations to assess their potential effectiveness. RESULTS Upon comprehensive comparison with other methods, our method shows superior performance across multiple metrics, including the Area Under the Receiver Operating Characteristic Curve, accuracy, precision, and recall. Furthermore, literature validation shows that many top-ranked drug combinations based on the support strength score, such as goserelin and letrozole, have been experimentally or clinically validated for their effectiveness. CONCLUSIONS Our findings have significant clinical and practical implications. This new method enhances the performance of drug combination predictions, enabling effective pre-screening for trials and, thereby, benefiting clinical treatments. Future research should focus on developing new methods for application in various scenarios and for integrating diverse data sources.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Long Xiao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Haigang Geng
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Anqi Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China.
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Yang J, Zhuang X, Li Z, Xiong G, Xu P, Ling Y, Zhang G. CPMKG: a condition-based knowledge graph for precision medicine. Database (Oxford) 2024; 2024:baae102. [PMID: 39331730 PMCID: PMC11429523 DOI: 10.1093/database/baae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024]
Abstract
Personalized medicine tailors treatments and dosages based on a patient's unique characteristics, particularly its genetic profile. Over the decades, stratified research and clinical trials have uncovered crucial drug-related information-such as dosage, effectiveness, and side effects-affecting specific individuals with particular genetic backgrounds. This genetic-specific knowledge, characterized by complex multirelationships and conditions, cannot be adequately represented or stored in conventional knowledge systems. To address these challenges, we developed CPMKG, a condition-based platform that enables comprehensive knowledge representation. Through information extraction and meticulous curation, we compiled 307 614 knowledge entries, encompassing thousands of drugs, diseases, phenotypes (complications/side effects), genes, and genomic variations across four key categories: drug side effects, drug sensitivity, drug mechanisms, and drug indications. CPMKG facilitates drug-centric exploration and enables condition-based multiknowledge inference, accelerating knowledge discovery through three pivotal applications. To enhance user experience, we seamlessly integrated a sophisticated large language model that provides textual interpretations for each subgraph, bridging the gap between structured graphs and language expressions. With its comprehensive knowledge graph and user-centric applications, CPMKG serves as a valuable resource for clinical research, offering drug information tailored to personalized genetic profiles, syndromes, and phenotypes. Database URL: https://www.biosino.org/cpmkg/.
Collapse
Affiliation(s)
- Jiaxin Yang
- National Genomics Data Center & Bio-Med Big Data Center, Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinhao Zhuang
- National Genomics Data Center & Bio-Med Big Data Center, Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenqi Li
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Xiong
- Shanghai Southgene Technology Co., Ltd., Shanghai 201203, China
| | - Ping Xu
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yunchao Ling
- National Genomics Data Center & Bio-Med Big Data Center, Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoqing Zhang
- National Genomics Data Center & Bio-Med Big Data Center, Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
3
|
Li F, Mou M, Li X, Xu W, Yin J, Zhang Y, Zhu F. DrugMAP 2.0: molecular atlas and pharma-information of all drugs. Nucleic Acids Res 2024:gkae791. [PMID: 39271119 DOI: 10.1093/nar/gkae791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The escalating costs and high failure rates have decelerated the pace of drug development, which amplifies the research interests in developing combinatorial/repurposed drugs and understanding off-target adverse drug reaction (ADR). In other words, it is demanded to delineate the molecular atlas and pharma-information for the combinatorial/repurposed drugs and off-target interactions. However, such invaluable data were inadequately covered by existing databases. In this study, a major update was thus conducted to the DrugMAP, which accumulated (a) 20831 combinatorial drugs and their interacting atlas involving 1583 pharmacologically important molecules; (b) 842 repurposed drugs and their interacting atlas with 795 molecules; (c) 3260 off-targets relevant to the ADRs of 2731 drugs and (d) various types of pharmaceutical information, including diverse ADMET properties, versatile diseases, and various ADRs/off-targets. With the growing demands for discovering combinatorial/repurposed therapies and the rapidly emerging interest in AI-based drug discovery, DrugMAP was highly expected to act as an indispensable supplement to existing databases facilitating drug discovery, which was accessible at: https://idrblab.org/drugmap/.
Collapse
Affiliation(s)
- Fengcheng Li
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Xiaoyi Li
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
| | - Weize Xu
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Yin
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
4
|
Wang Q, Liu X, Yan G. Predicting effective drug combinations for cancer treatment using a graph-based approach. Synth Syst Biotechnol 2024; 10:148-155. [PMID: 39469106 PMCID: PMC11513824 DOI: 10.1016/j.synbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/17/2024] [Accepted: 09/08/2024] [Indexed: 10/30/2024] Open
Abstract
Drug combination therapy, involving the use of two or more drugs, has been widely employed to treat complex diseases such as cancer. It enhances therapeutic efficacy, reduces drug resistance, and minimizes side effects. However, traditional methods to identify effective drug combinations are time-consuming, costly, and less efficient than computational methods. Therefore, developing computational approaches to predict drug combinations has become increasingly important. In this paper, we developed the Random Walk with Restart for Drug Combination (RWRDC) model to predict effective drug combinations for cancer therapy. The RWRDC model offers a quantitative mathematical method for predicting the potential effective drug combinations. Cross-validation results indicate that the RWRDC model outperforms other predictive models, particularly in breast, colorectal, and lung cancer predictions across various performance metrics. We have theoretically proven the convergence of its algorithm and provided an explanation for the algorithm's rationality. A targeted case study on breast cancer further highlights the capability of RWRDC to identify effective drug combinations. These findings highlight our model as a novel and effective tool for discovering potential effective drug combinations, offering new possibilities in therapy. Additionally, the graph-based framework of RWRDC holds potential for predicting drug combinations in other complex diseases, expanding its utility in the medical field.
Collapse
Affiliation(s)
- Qi Wang
- College of Science, China Agricultural University, Beijing, 100083, China
| | - Xiya Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guiying Yan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
5
|
Orfanoudaki G, Psatha K, Aivaliotis M. Insight into Mantle Cell Lymphoma Pathobiology, Diagnosis, and Treatment Using Network-Based and Drug-Repurposing Approaches. Int J Mol Sci 2024; 25:7298. [PMID: 39000404 PMCID: PMC11242097 DOI: 10.3390/ijms25137298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Mantle cell lymphoma (MCL) is a rare, incurable, and aggressive B-cell non-Hodgkin lymphoma (NHL). Early MCL diagnosis and treatment is critical and puzzling due to inter/intra-tumoral heterogeneity and limited understanding of the underlying molecular mechanisms. We developed and applied a multifaceted analysis of selected publicly available transcriptomic data of well-defined MCL stages, integrating network-based methods for pathway enrichment analysis, co-expression module alignment, drug repurposing, and prediction of effective drug combinations. We demonstrate the "butterfly effect" emerging from a small set of initially differentially expressed genes, rapidly expanding into numerous deregulated cellular processes, signaling pathways, and core machineries as MCL becomes aggressive. We explore pathogenicity-related signaling circuits by detecting common co-expression modules in MCL stages, pointing out, among others, the role of VEGFA and SPARC proteins in MCL progression and recommend further study of precise drug combinations. Our findings highlight the benefit that can be leveraged by such an approach for better understanding pathobiology and identifying high-priority novel diagnostic and prognostic biomarkers, drug targets, and efficacious combination therapies against MCL that should be further validated for their clinical impact.
Collapse
Affiliation(s)
- Georgia Orfanoudaki
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-54124 Thessaloniki, Greece
- Institute of Molecular Biology and Biotechnology Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece
| | - Konstantina Psatha
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-54124 Thessaloniki, Greece
- Institute of Molecular Biology and Biotechnology Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Michalis Aivaliotis
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-54124 Thessaloniki, Greece
- Institute of Molecular Biology and Biotechnology Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Wang S, Lee HC, Lee S. Predicting herb-disease associations using network-based measures in human protein interactome. BMC Complement Med Ther 2024; 24:218. [PMID: 38845010 PMCID: PMC11157705 DOI: 10.1186/s12906-024-04503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Natural herbs are frequently used to treat diseases or to relieve symptoms in many countries. Moreover, as their safety has been proven for a long time, they are considered as main sources of new drug development. However, in many cases, the herbs are still prescribed relying on ancient records and/or traditional practices without scientific evidences. More importantly, the medicinal efficacy of the herbs has to be evaluated in the perspective of MCMT (multi-compound multi-target) effects, but most efforts focus on identifying and analyzing a single compound experimentally. To overcome these hurdles, computational approaches which are based on the scientific evidences and are able to handle the MCMT effects are needed to predict the herb-disease associations. RESULTS In this study, we proposed a network-based in silico method to predict the herb-disease associations. To this end, we devised a new network-based measure, WACP (weighted average closest path length), which not only quantifies proximity between herb-related genes and disease-related genes but also considers compound compositions of each herb. As a result, we confirmed that our method successfully predicts the herb-disease associations in the human protein interactome (AUROC = 0.777). In addition, we observed that our method is superior than the other simple network-based proximity measures (e.g. average shortest and closest path length). Additionally, we analyzed the associations between Brassica oleracea var. italica and its known associated diseases more specifically as case studies. Finally, based on the prediction results of the WACP, we suggested novel herb-disease pairs which are expected to have potential relations and their literature evidences. CONCLUSIONS This method could be a promising solution to modernize the use of the natural herbs by providing the scientific evidences about the molecular associations between the herb-related genes targeted by multiple compounds and the disease-related genes in the human protein interactome.
Collapse
Affiliation(s)
- Seunghyun Wang
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Chang Lee
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seungbuk-gu, Seoul, 02841, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, GIST, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
7
|
Abd El-Hafeez T, Shams MY, Elshaier YAMM, Farghaly HM, Hassanien AE. Harnessing machine learning to find synergistic combinations for FDA-approved cancer drugs. Sci Rep 2024; 14:2428. [PMID: 38287066 PMCID: PMC10825182 DOI: 10.1038/s41598-024-52814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Combination therapy is a fundamental strategy in cancer chemotherapy. It involves administering two or more anti-cancer agents to increase efficacy and overcome multidrug resistance compared to monotherapy. However, drug combinations can exhibit synergy, additivity, or antagonism. This study presents a machine learning framework to classify and predict cancer drug combinations. The framework utilizes several key steps including data collection and annotation from the O'Neil drug interaction dataset, data preprocessing, stratified splitting into training and test sets, construction and evaluation of classification models to categorize combinations as synergistic, additive, or antagonistic, application of regression models to predict combination sensitivity scores for enhanced predictions compared to prior work, and the last step is examination of drug features and mechanisms of action to understand synergy behaviors for optimal combinations. The models identified combination pairs most likely to synergize against different cancers. Kinase inhibitors combined with mTOR inhibitors, DNA damage-inducing drugs or HDAC inhibitors showed benefit, particularly for ovarian, melanoma, prostate, lung and colorectal carcinomas. Analysis highlighted Gemcitabine, MK-8776 and AZD1775 as frequently synergizing across cancer types. This machine learning framework provides a valuable approach to uncover more effective multi-drug regimens.
Collapse
Affiliation(s)
- Tarek Abd El-Hafeez
- Department of Computer Science, Faculty of Science, Minia University, El-Minia, Egypt.
- Computer Science Unit, Deraya University, El-Minia, Egypt.
| | - Mahmoud Y Shams
- Faculty of Artificial Intelligence, Kafrelsheikh University, Kafr El-Sheikh, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| | - Yaseen A M M Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Heba Mamdouh Farghaly
- Department of Computer Science, Faculty of Science, Minia University, El-Minia, Egypt
| | - Aboul Ella Hassanien
- Faculty of Computers and Artificial Intelligence, Cairo University, Cairo, Egypt.
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt.
| |
Collapse
|
8
|
Yu Z, Wu Z, Wang Z, Wang Y, Zhou M, Li W, Liu G, Tang Y. Network-Based Methods and Their Applications in Drug Discovery. J Chem Inf Model 2024; 64:57-75. [PMID: 38150548 DOI: 10.1021/acs.jcim.3c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Drug discovery is time-consuming, expensive, and predominantly follows the "one drug → one target → one disease" paradigm. With the rapid development of systems biology and network pharmacology, a novel drug discovery paradigm, "multidrug → multitarget → multidisease", has emerged. This new holistic paradigm of drug discovery aligns well with the essence of networks, leading to the emergence of network-based methods in the field of drug discovery. In this Perspective, we initially introduce the concept and data sources of networks and highlight classical methodologies employed in network-based methods. Subsequently, we focus on the practical applications of network-based methods across various areas of drug discovery, such as target prediction, virtual screening, prediction of drug therapeutic effects or adverse drug events, and elucidation of molecular mechanisms. In addition, we provide representative web servers for researchers to use network-based methods in specific applications. Finally, we discuss several challenges of network-based methods and the directions for future development. In a word, network-based methods could serve as powerful tools to accelerate drug discovery.
Collapse
Affiliation(s)
- Zhuohang Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zengrui Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ze Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yimeng Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Moran Zhou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
9
|
Liang J, Li ZW, Sun ZN, Bi Y, Cheng H, Zeng T, Guo WF. Latent space search based multimodal optimization with personalized edge-network biomarker for multi-purpose early disease prediction. Brief Bioinform 2023; 24:bbad364. [PMID: 37833844 DOI: 10.1093/bib/bbad364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Considering that cancer is resulting from the comutation of several essential genes of individual patients, researchers have begun to focus on identifying personalized edge-network biomarkers (PEBs) using personalized edge-network analysis for clinical practice. However, most of existing methods ignored the optimization of PEBs when multimodal biomarkers exist in multi-purpose early disease prediction (MPEDP). To solve this problem, this study proposes a novel model (MMPDENB-RBM) that combines personalized dynamic edge-network biomarkers (PDENB) theory, multimodal optimization strategy and latent space search scheme to identify biomarkers with different configurations of PDENB modules (i.e. to effectively identify multimodal PDENBs). The application to the three largest cancer omics datasets from The Cancer Genome Atlas database (i.e. breast invasive carcinoma, lung squamous cell carcinoma and lung adenocarcinoma) showed that the MMPDENB-RBM model could more effectively predict critical cancer state compared with other advanced methods. And, our model had better convergence, diversity and multimodal property as well as effective optimization ability compared with the other state-of-art methods. Particularly, multimodal PDENBs identified were more enriched with different functional biomarkers simultaneously, such as tissue-specific synthetic lethality edge-biomarkers including cancer driver genes and disease marker genes. Importantly, as our aim, these multimodal biomarkers can perform diverse biological and biomedical significances for drug target screen, survival risk assessment and novel biomedical sight as the expected multi-purpose of personalized early disease prediction. In summary, the present study provides multimodal property of PDENBs, especially the therapeutic biomarkers with more biological significances, which can help with MPEDP of individual cancer patients.
Collapse
Affiliation(s)
- Jing Liang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Intelligent Agricultural Power Equipment, Zhengzhou University, Luoyang 471000, China
| | - Zong-Wei Li
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ze-Ning Sun
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Bi
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Han Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Zeng
- Guangzhou National Laboratory, Guangzhou 510005, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, 510005, Guangzhou Medical University
| | - Wei-Feng Guo
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Intelligent Agricultural Power Equipment, Zhengzhou University, Luoyang 471000, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center,Guangzhou 7510060, China
| |
Collapse
|
10
|
Gu J, Bang D, Yi J, Lee S, Kim DK, Kim S. A model-agnostic framework to enhance knowledge graph-based drug combination prediction with drug-drug interaction data and supervised contrastive learning. Brief Bioinform 2023; 24:bbad285. [PMID: 37544660 DOI: 10.1093/bib/bbad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023] Open
Abstract
Combination therapies have brought significant advancements to the treatment of various diseases in the medical field. However, searching for effective drug combinations remains a major challenge due to the vast number of possible combinations. Biomedical knowledge graph (KG)-based methods have shown potential in predicting effective combinations for wide spectrum of diseases, but the lack of credible negative samples has limited the prediction performance of machine learning models. To address this issue, we propose a novel model-agnostic framework that leverages existing drug-drug interaction (DDI) data as a reliable negative dataset and employs supervised contrastive learning (SCL) to transform drug embedding vectors to be more suitable for drug combination prediction. We conducted extensive experiments using various network embedding algorithms, including random walk and graph neural networks, on a biomedical KG. Our framework significantly improved performance metrics compared to the baseline framework. We also provide embedding space visualizations and case studies that demonstrate the effectiveness of our approach. This work highlights the potential of using DDI data and SCL in finding tighter decision boundaries for predicting effective drug combinations.
Collapse
Affiliation(s)
- Jeonghyeon Gu
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea
| | - Dongmin Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea
- AIGENDRUG Co., Ltd., 1, Gwanak-ro, 08826 Seoul, Republic of Korea
| | - Jungseob Yi
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea
| | - Sangseon Lee
- Institute of Computer Technology Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea
| | - Dong Kyu Kim
- PHARMGENSCIENCE Co., Ltd., 216, Dongjak-daero, 06554 Seoul, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea
- Department of Computer Science and Engineering, Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea
- AIGENDRUG Co., Ltd., 1, Gwanak-ro, 08826 Seoul, Republic of Korea
- Institute of Computer Technology, Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea
| |
Collapse
|
11
|
Zhang P, Tu S, Zhang W, Xu L. Predicting cell line-specific synergistic drug combinations through a relational graph convolutional network with attention mechanism. Brief Bioinform 2022; 23:6711412. [PMID: 36136353 DOI: 10.1093/bib/bbac403] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/04/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022] Open
Abstract
Identifying synergistic drug combinations (SDCs) is a great challenge due to the combinatorial complexity and the fact that SDC is cell line specific. The existing computational methods either did not consider the cell line specificity of SDC, or did not perform well by building model for each cell line independently. In this paper, we present a novel encoder-decoder network named SDCNet for predicting cell line-specific SDCs. SDCNet learns common patterns across different cell lines as well as cell line-specific features in one model for drug combinations. This is realized by considering the SDC graphs of different cell lines as a relational graph, and constructing a relational graph convolutional network (R-GCN) as the encoder to learn and fuse the deep representations of drugs for different cell lines. An attention mechanism is devised to integrate the drug features from different layers of the R-GCN according to their relative importance so that representation learning is further enhanced. The common patterns are exploited through partial parameter sharing in cell line-specific decoders, which not only reconstruct the known SDCs but also predict new ones for each cell line. Experiments on various datasets demonstrate that SDCNet is superior to state-of-the-art methods and is also robust when generalized to new cell lines that are different from the training ones. Finally, the case study again confirms the effectiveness of our method in predicting novel reliable cell line-specific SDCs.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shikui Tu
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen Zhang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Xu
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Zhang Y, Luo M, Wu P, Wu S, Lee TY, Bai C. Application of Computational Biology and Artificial Intelligence in Drug Design. Int J Mol Sci 2022; 23:13568. [PMID: 36362355 PMCID: PMC9658956 DOI: 10.3390/ijms232113568] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/24/2023] Open
Abstract
Traditional drug design requires a great amount of research time and developmental expense. Booming computational approaches, including computational biology, computer-aided drug design, and artificial intelligence, have the potential to expedite the efficiency of drug discovery by minimizing the time and financial cost. In recent years, computational approaches are being widely used to improve the efficacy and effectiveness of drug discovery and pipeline, leading to the approval of plenty of new drugs for marketing. The present review emphasizes on the applications of these indispensable computational approaches in aiding target identification, lead discovery, and lead optimization. Some challenges of using these approaches for drug design are also discussed. Moreover, we propose a methodology for integrating various computational techniques into new drug discovery and design.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Mengqi Luo
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Peng Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Song Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Tzong-Yi Lee
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| |
Collapse
|
13
|
Ren S, Yu L, Gao L. Multidrug representation learning based on pretraining model and molecular graph for drug interaction and combination prediction. Bioinformatics 2022; 38:4387-4394. [PMID: 35904544 DOI: 10.1093/bioinformatics/btac538] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Approaches for the diagnosis and treatment of diseases often adopt the multidrug therapy method because it can increase the efficacy or reduce the toxic side effects of drugs. Using different drugs simultaneously may trigger unexpected pharmacological effects. Therefore, efficient identification of drug interactions is essential for the treatment of complex diseases. Currently proposed calculation methods are often limited by the collection of redundant drug features, a small amount of labeled data and low model generalization capabilities. Meanwhile, there is also a lack of unique methods for multidrug representation learning, which makes it more difficult to take full advantage of the originally scarce data. RESULTS Inspired by graph models and pretraining models, we integrated a large amount of unlabeled drug molecular graph information and target information, then designed a pretraining framework, MGP-DR (Molecular Graph Pretraining for Drug Representation), specifically for drug pair representation learning. The model uses self-supervised learning strategies to mine the contextual information within and between drug molecules to predict drug-drug interactions and drug combinations. The results achieved promising performance across multiple metrics compared with other state-of-the-art methods. Our MGP-DR model can be used to provide a reliable candidate set for the combined use of multiple drugs. AVAILABILITY AND IMPLEMENTATION Code of the model, datasets and results can be downloaded from GitHub (https://github.com/LiangYu-Xidian/MGP-DR). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shujie Ren
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| |
Collapse
|
14
|
CDCDB: A large and continuously updated drug combination database. Sci Data 2022; 9:263. [PMID: 35654801 PMCID: PMC9163158 DOI: 10.1038/s41597-022-01360-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/28/2022] [Indexed: 12/25/2022] Open
Abstract
In recent years, due to the complementary action of drug combinations over mono-therapy, the multiple-drugs for multiple-targets paradigm has received increased attention to treat bacterial infections and complex diseases. Although new drug combinations screening has benefited from experimental tests like automated high throughput screening, it is limited due to the large number of possible drug combinations. The task of drug combination screening can be streamlined through computational methods and models. Such models require up-to-date databases; however, existing databases are static and consist of the data collected at the time of their creation. This paper introduces the Continuous Drug Combination Database (CDCDB), a continuously updated drug combination database. The CDCDB includes over 40,795 drug combinations, of which 17,107 are unique combinations consisting of more than 4,129 individual drugs, curated from ClinicalTrials.gov, the FDA Orange Book®, and patents. To create CDCDB, we use various methods, including natural language processing techniques, to improve the process of drug combination discovery, ensuring that our database can be used for drug synergy prediction. Website: https://icc.ise.bgu.ac.il/medical_ai/CDCDB/. Measurement(s) | drug combination effect modeling • drug combination effect modeling | Technology Type(s) | Text mining • Clinical Trials Informatics System | Factor Type(s) | Medicine | Sample Characteristic - Organism | Homo sapiens |
Collapse
|
15
|
Ma Y, Liu Q. Generalized matrix factorization based on weighted hypergraph learning for microbe-drug association prediction. Comput Biol Med 2022; 145:105503. [DOI: 10.1016/j.compbiomed.2022.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/03/2022]
|
16
|
Integrated Network Pharmacology Approach for Drug Combination Discovery: A Multi-Cancer Case Study. Cancers (Basel) 2022; 14:cancers14082043. [PMID: 35454948 PMCID: PMC9028433 DOI: 10.3390/cancers14082043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Despite remarkable efforts of computational and predictive pharmacology to improve therapeutic strategies for complex diseases, only in a few cases have the predictions been eventually employed in the clinics. One of the reasons behind this drawback is that current predictive approaches are based only on the integration of molecular perturbation of a certain disease with drug sensitivity signatures, neglecting intrinsic properties of the drugs. Here we integrate mechanistic and chemocentric approaches to drug repositioning by developing an innovative network pharmacology strategy. We developed a multilayer network-based computational framework integrating perturbational signatures of the disease as well as intrinsic characteristics of the drugs, such as their mechanism of action and chemical structure. We present five case studies carried out on public data from The Cancer Genome Atlas, including invasive breast cancer, colon adenocarcinoma, lung squamous cell carcinoma, hepatocellular carcinoma and prostate adenocarcinoma. Our results highlight paclitaxel as a suitable drug for combination therapy for many of the considered cancer types. In addition, several non-cancer-related genes representing unusual drug targets were identified as potential candidates for pharmacological treatment of cancer.
Collapse
|
17
|
Torkamannia A, Omidi Y, Ferdousi R. A review of machine learning approaches for drug synergy prediction in cancer. Brief Bioinform 2022; 23:6552269. [PMID: 35323854 DOI: 10.1093/bib/bbac075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Combinational pharmacotherapy with the synergistic/additive effect is a powerful treatment strategy for complex diseases such as malignancies. Identifying synergistic combinations with various compounds and structures requires testing a large number of compound combinations. However, in practice, examining different compounds by in vivo and in vitro approaches is costly, infeasible and challenging. In the last decades, significant success has been achieved by expanding computational methods in different pharmacological and bioinformatics domains. As promising tools, computational approaches such as machine learning algorithms (MLAs) are used for prioritizing combinational pharmacotherapies. This review aims to provide the models developed to predict synergistic drug combinations in cancer by MLAs with various information, including gene expression, protein-protein interactions, metabolite interactions, pathways and pharmaceutical information such as chemical structure, molecular descriptor and drug-target interactions.
Collapse
Affiliation(s)
- Anna Torkamannia
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, United States
| | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Sun X, Zhang Y, Zhou Y, Lian X, Yan L, Pan T, Jin T, Xie H, Liang Z, Qiu W, Wang J, Li Z, Zhu F, Sui X. NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Res 2021; 50:D1324-D1333. [PMID: 34664659 PMCID: PMC8728151 DOI: 10.1093/nar/gkab913] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/16/2021] [Accepted: 09/25/2021] [Indexed: 01/15/2023] Open
Abstract
Natural product (NP) has a long history in promoting modern drug discovery, which has derived or inspired a large number of currently prescribed drugs. Recently, the NPs have emerged as the ideal candidates to combine with other therapeutic strategies to deal with the persistent challenge of conventional therapy, and the molecular regulation mechanism underlying these combinations is crucial for the related communities. Thus, it is urgently demanded to comprehensively provide the disease-specific molecular regulation data for various NP-based drug combinations. However, no database has been developed yet to describe such valuable information. In this study, a newly developed database entitled ‘Natural Product-based Drug Combination and Its Disease-specific Molecular Regulation (NPCDR)’ was thus introduced. This database was unique in (a) providing the comprehensive information of NP-based drug combinations & describing their clinically or experimentally validated therapeutic effect, (b) giving the disease-specific molecular regulation data for a number of NP-based drug combinations, (c) fully referencing all NPs, drugs, regulated molecules/pathways by cross-linking them to the available databases describing their biological or pharmaceutical characteristics. Therefore, NPCDR is expected to have great implications for the future practice of network pharmacology, medical biochemistry, drug design, and medicinal chemistry. This database is now freely accessible without any login requirement at both official (https://idrblab.org/npcdr/) and mirror (http://npcdr.idrblab.net/) sites.
Collapse
Affiliation(s)
- Xueni Sun
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yintao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lili Yan
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Pan
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Jin
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Han Xie
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Zimao Liang
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenqi Qiu
- Department of Surgery, HKU-SZH & Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Xinbing Sui
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
19
|
Ding P, Ouyang W, Luo J, Kwoh CK. Heterogeneous information network and its application to human health and disease. Brief Bioinform 2021; 21:1327-1346. [PMID: 31566212 DOI: 10.1093/bib/bbz091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 12/11/2022] Open
Abstract
The molecular components with the functional interdependencies in human cell form complicated biological network. Diseases are mostly caused by the perturbations of the composite of the interaction multi-biomolecules, rather than an abnormality of a single biomolecule. Furthermore, new biological functions and processes could be revealed by discovering novel biological entity relationships. Hence, more and more biologists focus on studying the complex biological system instead of the individual biological components. The emergence of heterogeneous information network (HIN) offers a promising way to systematically explore complicated and heterogeneous relationships between various molecules for apparently distinct phenotypes. In this review, we first present the basic definition of HIN and the biological system considered as a complex HIN. Then, we discuss the topological properties of HIN and how these can be applied to detect network motif and functional module. Afterwards, methodologies of discovering relationships between disease and biomolecule are presented. Useful insights on how HIN aids in drug development and explores human interactome are provided. Finally, we analyze the challenges and opportunities for uncovering combinatorial patterns among pharmacogenomics and cell-type detection based on single-cell genomic data.
Collapse
Affiliation(s)
- Pingjian Ding
- School of Computer Science, University of South China, Hengyang, China
| | - Wenjue Ouyang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Chee-Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
20
|
Wu L, Wen Y, Leng D, Zhang Q, Dai C, Wang Z, Liu Z, Yan B, Zhang Y, Wang J, He S, Bo X. Machine learning methods, databases and tools for drug combination prediction. Brief Bioinform 2021; 23:6363058. [PMID: 34477201 PMCID: PMC8769702 DOI: 10.1093/bib/bbab355] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Combination therapy has shown an obvious efficacy on complex diseases and can greatly reduce the development of drug resistance. However, even with high-throughput screens, experimental methods are insufficient to explore novel drug combinations. In order to reduce the search space of drug combinations, there is an urgent need to develop more efficient computational methods to predict novel drug combinations. In recent decades, more and more machine learning (ML) algorithms have been applied to improve the predictive performance. The object of this study is to introduce and discuss the recent applications of ML methods and the widely used databases in drug combination prediction. In this study, we first describe the concept and controversy of synergism between drug combinations. Then, we investigate various publicly available data resources and tools for prediction tasks. Next, ML methods including classic ML and deep learning methods applied in drug combination prediction are introduced. Finally, we summarize the challenges to ML methods in prediction tasks and provide a discussion on future work.
Collapse
Affiliation(s)
- Lianlian Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yuqi Wen
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Dongjin Leng
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Chong Dai
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhongming Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Ziqi Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, AMMS, Beijing, China
| | - Bowei Yan
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yixin Zhang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Jing Wang
- School of Medicine, Tsinghua University, Beijing, China
| | - Song He
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
21
|
Wang B, Warden AR, Ding X. The optimization of combinatorial drug therapies: Strategies and laboratorial platforms. Drug Discov Today 2021; 26:2646-2659. [PMID: 34332097 DOI: 10.1016/j.drudis.2021.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/19/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022]
Abstract
Designing optimal combinatorial drug therapies is challenging, because the drug interactions depend not only on the drugs involved, but also on their doses. With recent advances, combinatorial drug therapy is closer than ever to clinical application. Herein, we summarize approaches and advances over the past decade for identifying and optimizing drug combination therapies, with innovations across research fields, covering physical laboratory platforms for combination screening to computational models and algorithms designed for synergism prediction and optimization. By comparing different types of approach, we detail a three-step workflow that could maximize the overall optimization efficiency, thus enabling the application of personalized optimization of combinatorial drug therapy.
Collapse
Affiliation(s)
- Boqian Wang
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China
| | - Antony R Warden
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China
| | - Xianting Ding
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China.
| |
Collapse
|
22
|
Cui ZJ, Gao M, Quan Y, Lv BM, Tong XY, Dai TF, Zhou XH, Zhang HY. Systems Pharmacology-Based Precision Therapy and Drug Combination Discovery for Breast Cancer. Cancers (Basel) 2021; 13:cancers13143586. [PMID: 34298802 PMCID: PMC8305788 DOI: 10.3390/cancers13143586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a common disease and one of the main causes of death in females worldwide. In the omics era, researchers have used various high-throughput sequencing technologies to accumulate massive amounts of biomedical data and reveal an increasing number of disease-related mutations/genes. It is a major challenge to use these data effectively to find drugs that may protect human health. In this study, we combined the GeneRank algorithm and gene dependency network to propose a precision drug discovery strategy that can recommend drugs for individuals and screen existing drugs that could be used to treat different BC subtypes. We used this strategy to screen four BC subtype-specific drug combinations and verified the potential activity of combining gefitinib and irinotecan in triple-negative breast cancer (TNBC) through in vivo and in vitro experiments. The results of cell and animal experiments demonstrated that the combination of gefitinib and irinotecan can significantly inhibit the growth of TNBC tumour cells. The results also demonstrated that this systems pharmacology-based precision drug discovery strategy effectively identified important disease-related genes in individuals and special groups, which supports its efficiency, high reliability, and practical application value in drug discovery.
Collapse
Affiliation(s)
- Ze-Jia Cui
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.-J.C.); (M.G.); (Y.Q.); (B.-M.L.); (X.-Y.T.)
| | - Min Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.-J.C.); (M.G.); (Y.Q.); (B.-M.L.); (X.-Y.T.)
- Lab of Epigenetics and Advanced Health Technology, Space Science and Technology Institute (Shenzhen), Shenzhen 518117, China
| | - Yuan Quan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.-J.C.); (M.G.); (Y.Q.); (B.-M.L.); (X.-Y.T.)
| | - Bo-Min Lv
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.-J.C.); (M.G.); (Y.Q.); (B.-M.L.); (X.-Y.T.)
| | - Xin-Yu Tong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.-J.C.); (M.G.); (Y.Q.); (B.-M.L.); (X.-Y.T.)
| | | | - Xiong-Hui Zhou
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.-J.C.); (M.G.); (Y.Q.); (B.-M.L.); (X.-Y.T.)
- Correspondence: (X.-H.Z.); (H.-Y.Z.); Tel.: +86-27-8728-5085 (H.-Y.Z.)
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.-J.C.); (M.G.); (Y.Q.); (B.-M.L.); (X.-Y.T.)
- Correspondence: (X.-H.Z.); (H.-Y.Z.); Tel.: +86-27-8728-5085 (H.-Y.Z.)
| |
Collapse
|
23
|
Rafique R, Islam SR, Kazi JU. Machine learning in the prediction of cancer therapy. Comput Struct Biotechnol J 2021; 19:4003-4017. [PMID: 34377366 PMCID: PMC8321893 DOI: 10.1016/j.csbj.2021.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
Resistance to therapy remains a major cause of cancer treatment failures, resulting in many cancer-related deaths. Resistance can occur at any time during the treatment, even at the beginning. The current treatment plan is dependent mainly on cancer subtypes and the presence of genetic mutations. Evidently, the presence of a genetic mutation does not always predict the therapeutic response and can vary for different cancer subtypes. Therefore, there is an unmet need for predictive models to match a cancer patient with a specific drug or drug combination. Recent advancements in predictive models using artificial intelligence have shown great promise in preclinical settings. However, despite massive improvements in computational power, building clinically useable models remains challenging due to a lack of clinically meaningful pharmacogenomic data. In this review, we provide an overview of recent advancements in therapeutic response prediction using machine learning, which is the most widely used branch of artificial intelligence. We describe the basics of machine learning algorithms, illustrate their use, and highlight the current challenges in therapy response prediction for clinical practice.
Collapse
Affiliation(s)
| | - S.M. Riazul Islam
- Department of Computer Science and Engineering, Sejong University, Seoul, South Korea
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Corresponding author at: Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon village Building 404:C3, Scheelevägen 8, 22363 Lund, Sweden.
| |
Collapse
|
24
|
Ding P, Liang C, Ouyang W, Li G, Xiao Q, Luo J. Inferring Synergistic Drug Combinations Based on Symmetric Meta-Path in a Novel Heterogeneous Network. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1562-1571. [PMID: 31714232 DOI: 10.1109/tcbb.2019.2951557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combinatorial drug therapy is a promising way for treating cancers, which can reduce drug side effects and improve drug efficacy. However, due to the large-scale combinatorial space, it is difficult to quickly and effectively identify novel synergistic drug combinations for further implementing combinatorial drug therapy. The computational method of fusing multi-source knowledge is a time- and cost-efficient strategy to infer synergistic drug combinations for testing. However, for the existing computational methods of inferring synergistic drug combinations, it still remains a challenging to effectively combine multi-source information to achieve the desired results. Hence, in this study, we developed a novel Inference method of Synergistic Drug Combinations based on Symmetric Meta-Path (ISDCSMP), which can systematically and accurately prioritize synergistic drug combinations in a novel drug-target heterogeneous network integrating multi-source information. In the experiment, ISDCSMP outperformed the state-of-the-art methods in terms of AUC and precision on the benchmark dataset in five-fold cross validation. Moreover, we further illustrated performances of different ways for obtaining the combination coefficients, and analyzed the influences of the maximum meta-path length. The performances of various single meta-paths were described in five-fold cross validation. Finally, we confirmed the practical usefulness of ISDCSMP with the predicted novel synergistic drug combinations. The source code of ISDCSMP is available at https://github.com/KDDing/ISDCSMP.
Collapse
|
25
|
Using response surface models to analyze drug combinations. Drug Discov Today 2021; 26:2014-2024. [PMID: 34119666 DOI: 10.1016/j.drudis.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/09/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Quantitative evaluation of how drugs combine to elicit a biological response is crucial for drug development. Evaluations of drug combinations are often performed using index-based methods, which are known to be biased and unstable. We examine how these methods can produce misleadingly structured patterns of bias, leading to erroneous judgments of synergy or antagonism. By contrast, response surface models are less prone to these defects and can be applied to a wide range of data that have appeared in recent literature, including the measurement of combination therapeutic windows and the analysis of discrete experimental measures, three-way drug combinations, and atypical response behaviors.
Collapse
|
26
|
Guo WF, Zhang SW, Feng YH, Liang J, Zeng T, Chen L. Network controllability-based algorithm to target personalized driver genes for discovering combinatorial drugs of individual patients. Nucleic Acids Res 2021; 49:e37. [PMID: 33434272 PMCID: PMC8053130 DOI: 10.1093/nar/gkaa1272] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/02/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022] Open
Abstract
Multiple driver genes in individual patient samples may cause resistance to individual drugs in precision medicine. However, current computational methods have not studied how to fill the gap between personalized driver gene identification and combinatorial drug discovery for individual patients. Here, we developed a novel structural network controllability-based personalized driver genes and combinatorial drug identification algorithm (CPGD), aiming to identify combinatorial drugs for an individual patient by targeting personalized driver genes from network controllability perspective. On two benchmark disease datasets (i.e. breast cancer and lung cancer datasets), performance of CPGD is superior to that of other state-of-the-art driver gene-focus methods in terms of discovery rate among prior-known clinical efficacious combinatorial drugs. Especially on breast cancer dataset, CPGD evaluated synergistic effect of pairwise drug combinations by measuring synergistic effect of their corresponding personalized driver gene modules, which are affected by a given targeting personalized driver gene set of drugs. The results showed that CPGD performs better than existing synergistic combinatorial strategies in identifying clinical efficacious paired combinatorial drugs. Furthermore, CPGD enhanced cancer subtyping by computationally providing personalized side effect signatures for individual patients. In addition, CPGD identified 90 drug combinations candidates from SARS-COV2 dataset as potential drug repurposing candidates for recently spreading COVID-19.
Collapse
Affiliation(s)
- Wei-Feng Guo
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xian 710072, China.,School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xian 710072, China
| | - Yue-Hua Feng
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xian 710072, China
| | - Jing Liang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Zeng
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy Science, Shanghai 200031, China
| | - Luonan Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy Science, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
27
|
Zhang T, Zhang L, Payne PRO, Li F. Synergistic Drug Combination Prediction by Integrating Multiomics Data in Deep Learning Models. Methods Mol Biol 2021; 2194:223-238. [PMID: 32926369 DOI: 10.1007/978-1-0716-0849-4_12] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intrinsic and acquired drug resistance is a major challenge in cancer therapy. Synergistic drug combinations could help to overcome drug resistance. However, the number of possible drug combinations is enormous, and it is infeasible to experimentally screen all drug combinations with limited resources. Therefore, computational models to predict and prioritize effective drug combinations are important for combination therapy discovery. Compared with existing models, we propose a novel deep learning model, AuDNNsynergy, to predict the synergy of pairwise drug combinations by integrating multiomics data. Specifically, three autoencoders are trained using the gene expression, copy number, and genetic mutation data of tumor samples from The Cancer Genome Atlas (TCGA). Then the gene expression, copy number, and mutation of individual cancer cell lines are coded using the three trained autoencoders. The physicochemical features of individual drugs and the encoded omics data of individual cancer cell lines are used as the input features of a deep neural network that predicts the synergy score of given pairwise drug combinations against the specific cancer cell lines. The comparison results showed the proposed AuDNNsynergy model outperforms, specifically in terms of rank correlation metric, four state-of-the-art approaches, namely, DeepSynergy, Gradient Boosting Machines, Random Forests, and Elastic Nets.
Collapse
Affiliation(s)
- Tianyu Zhang
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.,School of Mathematical Science, Dalian University of Technology, Dalian, Liaoning, China
| | - Liwei Zhang
- School of Mathematical Science, Dalian University of Technology, Dalian, Liaoning, China
| | - Philip R O Payne
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Fuhai Li
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA. .,Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
28
|
Sadeghi SS, Keyvanpour MR. An Analytical Review of Computational Drug Repurposing. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:472-488. [PMID: 31403439 DOI: 10.1109/tcbb.2019.2933825] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug repurposing is a vital function in pharmaceutical fields and has gained popularity in recent years in both the pharmaceutical industry and research community. It refers to the process of discovering new uses and indications for existing or failed drugs. It is cost-effective and reliable in contrast to experimental drug discovery, which is a costly, time-consuming, and risky process and limited to a relatively small number of targets. Accordingly, a plethora of computational methodologies have been propounded to repurpose drugs on a large scale by utilizing available high throughput data. The available literature, however, lacks a contemporary and comprehensive analysis of the current computational drug repurposing methodologies. In this paper, we presented a systematic analysis of computational drug repurposing which consists of three main sections: Initially, we categorize the computational drug repurposing methods based on their technical approach and artificial intelligence perspective and discuss the strengths and weaknesses of various methods. Secondly, some general criteria are recommended to analyze our proposed categorization. In the third and final section, a qualitative comparison is made between each approach which is a guide to understanding their preference to one another. Further, this systematic analysis can help in the efficient selection and improvement of drug repurposing techniques based on the nature of computational methods implemented on biological resources.
Collapse
|
29
|
Chen X, Luo L, Shen C, Ding P, Luo J. An In Silico Method for Predicting Drug Synergy Based on Multitask Learning. Interdiscip Sci 2021; 13:299-311. [PMID: 33611781 DOI: 10.1007/s12539-021-00422-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 12/20/2022]
Abstract
To make better use of all kinds of knowledge to predict drug synergy, it is crucial to successfully establish a drug synergy prediction model and leverage the reconstruction of sparse known drug targets. Therefore, we present an in silico method that predicts the synergy scores of drug pairs based on multitask learning (DSML) that could fuse drug targets, protein-protein interactions, anatomical therapeutic chemical codes, a priori knowledge of drug combinations. To simultaneously reconstruct drug-target protein interactions and synergistic drug combinations, DSML benefits indirectly from the associations with relation through proteins. In cross-validation experiments, DSML improved the ability to predict drug synergy. Moreover, the reconstruction of drug-target interactions and the incorporation of multisource knowledge significantly improved drug combination predictions by a large margin. The potential drug combinations predicted by DSML demonstrate its ability to predict drug synergy.
Collapse
Affiliation(s)
- Xin Chen
- School of Computer Science, University of South China, Hengyang, 421001, Hunan, China
| | - Lingyun Luo
- School of Computer Science, University of South China, Hengyang, 421001, Hunan, China.,Hunan Medical Big Data International Sci.&Tech. Innovation Cooperation Base, Hengyang, 421000, Hunan, China
| | - Cong Shen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Pingjian Ding
- School of Computer Science, University of South China, Hengyang, 421001, Hunan, China. .,Hunan Medical Big Data International Sci.&Tech. Innovation Cooperation Base, Hengyang, 421000, Hunan, China.
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, Hunan, China
| |
Collapse
|
30
|
Wang C, Kurgan L. Survey of Similarity-Based Prediction of Drug-Protein Interactions. Curr Med Chem 2021; 27:5856-5886. [PMID: 31393241 DOI: 10.2174/0929867326666190808154841] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/16/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
Therapeutic activity of a significant majority of drugs is determined by their interactions with proteins. Databases of drug-protein interactions (DPIs) primarily focus on the therapeutic protein targets while the knowledge of the off-targets is fragmented and partial. One way to bridge this knowledge gap is to employ computational methods to predict protein targets for a given drug molecule, or interacting drugs for given protein targets. We survey a comprehensive set of 35 methods that were published in high-impact venues and that predict DPIs based on similarity between drugs and similarity between protein targets. We analyze the internal databases of known PDIs that these methods utilize to compute similarities, and investigate how they are linked to the 12 publicly available source databases. We discuss contents, impact and relationships between these internal and source databases, and well as the timeline of their releases and publications. The 35 predictors exploit and often combine three types of similarities that consider drug structures, drug profiles, and target sequences. We review the predictive architectures of these methods, their impact, and we explain how their internal DPIs databases are linked to the source databases. We also include a detailed timeline of the development of these predictors and discuss the underlying limitations of the current resources and predictive tools. Finally, we provide several recommendations concerning the future development of the related databases and methods.
Collapse
Affiliation(s)
- Chen Wang
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, United States
| |
Collapse
|
31
|
Vlot AH, Mason DJ, Bulusu KC, Bender A. Drug Combination Modeling. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Chen S, Yang SY, Zeng X, Zhu F, Tan Y, Jiang YY, Chen YZ. Combining kinase inhibitors for optimally co-targeting cancer and drug escape by exploitation of drug target promiscuities. Drug Dev Res 2020; 82:133-142. [PMID: 32931039 DOI: 10.1002/ddr.21738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023]
Abstract
Cancers resist targeted therapeutics by drug-escape signaling. Multitarget drugs co-targeting cancer and drug-escape mediators (DEMs) are clinically advantageous. DEM coverage may be expanded by drug combinations. This work evaluated to what extent the kinase DEMs (KDEMs) can be optimally co-targeted by drug combinations based on target promiscuities of individual drugs. We focused on 41 approved and 28 clinical trial small molecule kinase inhibitor drugs with available experimental kinome and clinical pharmacokinetic data. From the kinome inhibitory profiles of these drugs, drug combinations were assembled for optimally co-targeting an established cancer target (EGFR, HER2, ABL1, or MEK1) and 9-16 target-associated KDEMs at comparable potency levels as that against the cancer target. Each set of two-, three-, and four-drug combinations co-target 36-71%, 44-89%, 50-88%, and 27-55% KDEMs of EGFR, HER2, ABL1, and MEK1, respectively, compared with the 36, 33, 38, and 18% KDEMs maximally co-targeted by an existing drug or drug combination approved or clinically tested for the respective cancer. Some co-targeted KDEMs are not covered by any existing drug or drug combination. Our work suggested that novel drug combinations may be constructed for optimally co-targeting cancer and drug escape by the exploitation of drug target promiscuities.
Collapse
Affiliation(s)
- Shangying Chen
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University; Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen, China.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sheng Yong Yang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Feng Zhu
- Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Tan
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University; Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen, China
| | - Yu Yang Jiang
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University; Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen, China
| | - Yu Zong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Li J, Tong XY, Zhu LD, Zhang HY. A Machine Learning Method for Drug Combination Prediction. Front Genet 2020; 11:1000. [PMID: 33193585 PMCID: PMC7477631 DOI: 10.3389/fgene.2020.01000] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/06/2020] [Indexed: 01/15/2023] Open
Abstract
Drug combination is now a hot research topic in the pharmaceutical industry, but experiment-based methodologies are extremely costly in time and money. Many computational methods have been proposed to address these problems by starting from existing drug combinations. However, in most cases, only molecular structure information is included, which covers too limited a set of drug characteristics to efficiently screen drug combinations. Here, we integrated similarity-based multifeature drug data to improve the prediction accuracy by using the neighbor recommender method combined with ensemble learning algorithms. By conducting feature assessment analysis, we selected the most useful drug features and achieved 0.964 AUC in the ensemble models. The comparison results showed that the ensemble models outperform traditional machine learning algorithms such as support vector machine (SVM), naïve Bayes (NB), and logistic regression (GLM). Furthermore, we predicted 7 candidate drug combinations for a specific drug, paclitaxel, and successfully verified that the two of the predicted combinations have promising effects.
Collapse
Affiliation(s)
- Jiang Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xin-Yu Tong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Li-Da Zhu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
34
|
Rahman R, Dhruba SR, Matlock K, De-Niz C, Ghosh S, Pal R. Evaluating the consistency of large-scale pharmacogenomic studies. Brief Bioinform 2020; 20:1734-1753. [PMID: 31846027 DOI: 10.1093/bib/bby046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/04/2018] [Indexed: 12/21/2022] Open
Abstract
Recent years have seen an increase in the availability of pharmacogenomic databases such as Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) that provide genomic and functional characterization information for multiple cell lines. Studies have alluded to the fact that specific characterizations may be inconsistent between different databases. Analysis of the potential discrepancies in the different databases is highly significant, as these sources are frequently used to analyze and validate methodologies for personalized cancer therapies. In this article, we review the recent developments in investigating the correspondence between different pharmacogenomics databases and discuss the potential factors that require attention when incorporating these sources in any modeling analysis. Furthermore, we explored the consistency among these databases using copulas that can capture nonlinear dependencies between two sets of data.
Collapse
Affiliation(s)
- Raziur Rahman
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Saugato Rahman Dhruba
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Kevin Matlock
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Carlos De-Niz
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Souparno Ghosh
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA
| | - Ranadip Pal
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.,Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
35
|
Cuvitoglu A, Zhou JX, Huang S, Isik Z. Predicting drug synergy for precision medicine using network biology and machine learning. J Bioinform Comput Biol 2020; 17:1950012. [PMID: 31057072 DOI: 10.1142/s0219720019500124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Identification of effective drug combinations for patients is an expensive and time-consuming procedure, especially for in vitro experiments. To accelerate the synergistic drug discovery process, we present a new classification model to identify more effective anti-cancer drug pairs using in silico network biology approach. Based on the hypotheses that the drug synergy comes from the collective effects on the biological network, therefore, we developed six network biology features, including overlap and distance of drug perturbation network, that were derived by using individual drug-perturbed transcriptome profiles and the relevant biological network analysis. Using publicly available drug synergy databases and three machine-learning (ML) methods, the model was trained to discriminate the positive (synergistic) and negative (nonsynergistic) drug combinations. The proposed models were evaluated on the test cases to predict the most promising network biology feature, which is the network degree activity, i.e. the synergistic effect between drug pairs is mainly accounted by the complementary signaling pathways or molecular networks from two drugs.
Collapse
Affiliation(s)
- Ali Cuvitoglu
- 1 Computer Engineering Department, Dokuz Eylul University, Tinaztepe Kampusu, Izmir 35160, Turkey
| | - Joseph X Zhou
- 2 Institute for Systems Biology, 401 Terry Ave. N. Seattle, WA 98109, USA
| | - Sui Huang
- 2 Institute for Systems Biology, 401 Terry Ave. N. Seattle, WA 98109, USA
| | - Zerrin Isik
- 1 Computer Engineering Department, Dokuz Eylul University, Tinaztepe Kampusu, Izmir 35160, Turkey
| |
Collapse
|
36
|
Adam G, Rampášek L, Safikhani Z, Smirnov P, Haibe-Kains B, Goldenberg A. Machine learning approaches to drug response prediction: challenges and recent progress. NPJ Precis Oncol 2020; 4:19. [PMID: 32566759 PMCID: PMC7296033 DOI: 10.1038/s41698-020-0122-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/17/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Identifying the best treatment using computational models to personalize drug response prediction holds great promise to improve patient's chances of successful recovery. Unfortunately, the computational task of predicting drug response is very challenging, partially due to the limitations of the available data and partially due to algorithmic shortcomings. The recent advances in deep learning may open a new chapter in the search for computational drug response prediction models and ultimately result in more accurate tools for therapy response. This review provides an overview of the computational challenges and advances in drug response prediction, and focuses on comparing the machine learning techniques to be of utmost practical use for clinicians and machine learning non-experts. The incorporation of new data modalities such as single-cell profiling, along with techniques that rapidly find effective drug combinations will likely be instrumental in improving cancer care.
Collapse
Affiliation(s)
- George Adam
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON Canada
- Department of Computer Science, University of Toronto, Toronto, ON Canada
- Vector Institute, Toronto, ON Canada
| | - Ladislav Rampášek
- Department of Computer Science, University of Toronto, Toronto, ON Canada
- Vector Institute, Toronto, ON Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON Canada
| | - Zhaleh Safikhani
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON Canada
- Vector Institute, Toronto, ON Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Petr Smirnov
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON Canada
- Vector Institute, Toronto, ON Canada
- Ontario Institute for Cancer Research, Toronto, ON Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON Canada
- Department of Computer Science, University of Toronto, Toronto, ON Canada
- Vector Institute, Toronto, ON Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Ontario Institute for Cancer Research, Toronto, ON Canada
| | - Anna Goldenberg
- Department of Computer Science, University of Toronto, Toronto, ON Canada
- Vector Institute, Toronto, ON Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON Canada
| |
Collapse
|
37
|
Liu H, Zhang W, Zou B, Wang J, Deng Y, Deng L. DrugCombDB: a comprehensive database of drug combinations toward the discovery of combinatorial therapy. Nucleic Acids Res 2020; 48:D871-D881. [PMID: 31665429 PMCID: PMC7145671 DOI: 10.1093/nar/gkz1007] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 01/09/2023] Open
Abstract
Drug combinations have demonstrated high efficacy and low adverse side effects compared to single drug administration in cancer therapies and thus have drawn intensive attention from researchers and pharmaceutical enterprises. Due to the rapid development of high-throughput screening (HTS), the number of drug combination datasets available has increased tremendously in recent years. Therefore, there is an urgent need for a comprehensive database that is crucial to both experimental and computational screening of synergistic drug combinations. In this paper, we present DrugCombDB, a comprehensive database devoted to the curation of drug combinations from various data sources: (i) HTS assays of drug combinations; (ii) manual curations from the literature; and (iii) FDA Orange Book and external databases. Specifically, DrugCombDB includes 448 555 drug combinations derived from HTS assays, covering 2887 unique drugs and 124 human cancer cell lines. In particular, DrugCombDB has more than 6000 000 quantitative dose responses from which we computed multiple synergy scores to determine the overall synergistic or antagonistic effects of drug combinations. In addition to the combinations extracted from existing databases, we manually curated 457 drug combinations from thousands of PubMed publications. To benefit the further experimental validation and development of computational models, multiple datasets that are ready to train prediction models for classification and regression analysis were constructed and other significant related data were gathered. A website with a user-friendly graphical visualization has been developed for users to access the wealth of data and download prebuilt datasets. Our database is available at http://drugcombdb.denglab.org/.
Collapse
Affiliation(s)
- Hui Liu
- Lab of Information Management, Changzhou University, Changzhou 213164, China
| | - Wenhao Zhang
- Lab of Information Management, Changzhou University, Changzhou 213164, China
| | - Bo Zou
- School of Computer Science and Engineering, Central South University, Changsha 410075, China
| | - Jinxian Wang
- School of Computer Science and Engineering, Central South University, Changsha 410075, China
| | - Yuanyuan Deng
- School of Computer Science and Engineering, Central South University, Changsha 410075, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha 410075, China.,School of Software, Xinjiang University, Urumqi 830008, China
| |
Collapse
|
38
|
Yin Z, Wang Q, Yan X, Zhang L, Tang K, Cao Z, Qiu T. Reveal the Regulation Patterns of Prognosis-Related miRNAs and lncRNAs Across Solid Tumors in the Cancer Genome Atlas. Front Cell Dev Biol 2020; 8:368. [PMID: 32523951 PMCID: PMC7261917 DOI: 10.3389/fcell.2020.00368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The dysregulation of non-coding RNAs (ncRNAs) such as miRNAs and lncRNAs are associated with the pathogenesis and progression in multiple cancers including solid tumors. Comprehensive investigations of prognosis-related ncRNA markers could promote the development of therapeutic strategies for solid tumors, but rarely reported. METHODS By taking advantage of The Cancer Genome Atlas (TCGA), pan-cancer prognosis analysis (PCPA) models were firstly constructed based on miRNA and lncRNA expression profiles of 8,450 samples in 19 solid tumors. Further, the co-occurrence and exclusivity among ncRNA markers were systematically analyzed for different cancers. RESULTS In identified ncRNA makers, 71% of the miRNA markers were shared in multiple cancers, whereas 96% of the lncRNA markers were cancer-specific. Moreover, to analyze the regulation patterns of prognosis-related ncRNAs at the pan-cancer level, miRNA markers were further annotated into eight carcinogenic pathways. Results represented that approximately 86% of these miRNA markers could regulate the PI3K-Akt signaling pathway, while only 48% for the Notch signaling pathway. Finally, among 126 common genes that participated in eight carcinogenic pathways, BCL2, CSNK2A1, EGFR, PDGFRA, and VEGFA were proposed as potential drug targets for multiple cancers. CONCLUSION The prognosis analysis and regulation characteristics of ncRNAs presented in this study may help to facilitate the discovery of anti-cancer drugs for multiple solid tumors.
Collapse
Affiliation(s)
- Zuojing Yin
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qiming Wang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinmiao Yan
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lu Zhang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kailin Tang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhiwei Cao
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Tianyi Qiu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Ding P, Shen C, Lai Z, Liang C, Li G, Luo J. Incorporating Multisource Knowledge To Predict Drug Synergy Based on Graph Co-regularization. J Chem Inf Model 2020; 60:37-46. [PMID: 31891264 DOI: 10.1021/acs.jcim.9b00793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Drug combinations may reduce toxicity and increase therapeutic efficacy, offering a promising strategy to conquer multiple complex diseases. However, due to large-scale combinatorial space, it remains challenging to identify effective combinations. Although many computational methods have focused on predicting drug synergy to reduce combinatorial space, they fail to effectively consider multiple sources of important knowledge. Thus, it is necessary to propose a computational method that can exploit useful information to predict drug synergy. Here, we developed a computational method to predict drug synergy based on graph co-regularization, named DSGCR. By incorporating drug-target network patterns, pharmacological patterns, and prior knowledge of drug combinations, DSGCR performs predictions of synergistic drug combinations. Compared to several existing methods, DSGCR achieves superior performance in predicting drug synergy in terms of various metrics via cross-validation. Additionally, we analyzed the importance of various sources of drug knowledge concerning three DSGCR's scenarios. Finally, the potential of DSGCR to score drug synergy was confirmed by three predicted synergistic drug combinations.
Collapse
Affiliation(s)
- Pingjian Ding
- School of Computer Science , University of South China , Hengyang 421001 , China
| | - Cong Shen
- College of Computer Science and Electronic Engineering , Hunan University , Changsha 410082 , China
| | - Zihan Lai
- College of Computer Science and Electronic Engineering , Hunan University , Changsha 410082 , China
| | - Cheng Liang
- School of Information Science and Engineering , Shandong Normal University , Jinan 250014 , China
| | - Guanghui Li
- School of Information Engineering , East China Jiaotong University , Nanchang 330013 , China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering , Hunan University , Changsha 410082 , China
| |
Collapse
|
40
|
Liu H, Zhang W, Nie L, Ding X, Luo J, Zou L. Predicting effective drug combinations using gradient tree boosting based on features extracted from drug-protein heterogeneous network. BMC Bioinformatics 2019; 20:645. [PMID: 31818267 PMCID: PMC6902475 DOI: 10.1186/s12859-019-3288-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/21/2019] [Indexed: 01/30/2023] Open
Abstract
Background Although targeted drugs have contributed to impressive advances in the treatment of cancer patients, their clinical benefits on tumor therapies are greatly limited due to intrinsic and acquired resistance of cancer cells against such drugs. Drug combinations synergistically interfere with protein networks to inhibit the activity level of carcinogenic genes more effectively, and therefore play an increasingly important role in the treatment of complex disease. Results In this paper, we combined the drug similarity network, protein similarity network and known drug-protein associations into a drug-protein heterogenous network. Next, we ran random walk with restart (RWR) on the heterogenous network using the combinatorial drug targets as the initial probability, and obtained the converged probability distribution as the feature vector of each drug combination. Taking these feature vectors as input, we trained a gradient tree boosting (GTB) classifier to predict new drug combinations. We conducted performance evaluation on the widely used drug combination data set derived from the DCDB database. The experimental results show that our method outperforms seven typical classifiers and traditional boosting algorithms. Conclusions The heterogeneous network-derived features introduced in our method are more informative and enriching compared to the primary ontology features, which results in better performance. In addition, from the perspective of network pharmacology, our method effectively exploits the topological attributes and interactions of drug targets in the overall biological network, which proves to be a systematic and reliable approach for drug discovery.
Collapse
Affiliation(s)
- Hui Liu
- Lab of Information Management, Changzhou University, Jiangsu, China
| | - Wenhao Zhang
- Lab of Information Management, Changzhou University, Jiangsu, China
| | - Lixia Nie
- School of Information Science and Engineering, Changzhou University, Jiangsu, China
| | - Xiancheng Ding
- Information Center, Changzhou University, Jiangsu, 213164, China
| | - Judong Luo
- Department of Radiation Oncology, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Ling Zou
- School of Information Science and Engineering, Changzhou University, Jiangsu, China.
| |
Collapse
|
41
|
Roell KR, Havener TM, Reif DM, Jack J, McLeod HL, Wiltshire T, Motsinger-Reif AA. Synergistic Chemotherapy Drug Response Is a Genetic Trait in Lymphoblastoid Cell Lines. Front Genet 2019; 10:829. [PMID: 31681399 PMCID: PMC6804467 DOI: 10.3389/fgene.2019.00829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/12/2019] [Indexed: 01/02/2023] Open
Abstract
Lymphoblastoid cell lines (LCLs) are a highly successful model for evaluating the genetic etiology of cancer drug response, but applications using this model have typically focused on single drugs. Combination therapy is quite common in modern chemotherapy treatment since drugs often work synergistically, and it is an important progression in the use of the LCL model to expand work for drug combinations. In the present work, we demonstrate that synergy occurs and can be quantified in LCLs across a range of clinically important drug combinations. Lymphoblastoid cell lines have been commonly employed in association mapping in cancer pharmacogenomics, but it is so far untested as to whether synergistic effects have a genetic etiology. Here we use cell lines from extended pedigrees to demonstrate that there is a substantial heritable component to synergistic drug response. Additionally, we perform linkage mapping in these pedigrees to identify putative regions linked to this important phenotype. This demonstration supports the premise of expanding the use of the LCL model to perform association mapping for combination therapies.
Collapse
Affiliation(s)
- Kyle R Roell
- Department of Statistics, North Carolina State University, Raleigh, NC, United States.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - Tammy M Havener
- Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David M Reif
- Department of Statistics, North Carolina State University, Raleigh, NC, United States
| | - John Jack
- Department of Statistics, North Carolina State University, Raleigh, NC, United States.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - Howard L McLeod
- The DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL, United States
| | - Tim Wiltshire
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|
42
|
Rifaioglu AS, Atas H, Martin MJ, Cetin-Atalay R, Atalay V, Doğan T. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform 2019; 20:1878-1912. [PMID: 30084866 PMCID: PMC6917215 DOI: 10.1093/bib/bby061] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/25/2018] [Indexed: 01/16/2023] Open
Abstract
The identification of interactions between drugs/compounds and their targets is crucial for the development of new drugs. In vitro screening experiments (i.e. bioassays) are frequently used for this purpose; however, experimental approaches are insufficient to explore novel drug-target interactions, mainly because of feasibility problems, as they are labour intensive, costly and time consuming. A computational field known as 'virtual screening' (VS) has emerged in the past decades to aid experimental drug discovery studies by statistically estimating unknown bio-interactions between compounds and biological targets. These methods use the physico-chemical and structural properties of compounds and/or target proteins along with the experimentally verified bio-interaction information to generate predictive models. Lately, sophisticated machine learning techniques are applied in VS to elevate the predictive performance. The objective of this study is to examine and discuss the recent applications of machine learning techniques in VS, including deep learning, which became highly popular after giving rise to epochal developments in the fields of computer vision and natural language processing. The past 3 years have witnessed an unprecedented amount of research studies considering the application of deep learning in biomedicine, including computational drug discovery. In this review, we first describe the main instruments of VS methods, including compound and protein features (i.e. representations and descriptors), frequently used libraries and toolkits for VS, bioactivity databases and gold-standard data sets for system training and benchmarking. We subsequently review recent VS studies with a strong emphasis on deep learning applications. Finally, we discuss the present state of the field, including the current challenges and suggest future directions. We believe that this survey will provide insight to the researchers working in the field of computational drug discovery in terms of comprehending and developing novel bio-prediction methods.
Collapse
Affiliation(s)
- Ahmet Sureyya Rifaioglu
- Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
- Department of Computer Engineering, İskenderun Technical University, Hatay, Turkey
| | - Heval Atas
- Cancer System Biology Laboratory (CanSyL), Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Maria Jesus Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Cambridge, Hinxton, UK
| | - Rengul Cetin-Atalay
- Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
| | - Volkan Atalay
- Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
| | - Tunca Doğan
- Cancer System Biology Laboratory (CanSyL), Graduate School of Informatics, Middle East Technical University, Ankara, Turkey and European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Cambridge, Hinxton, UK
| |
Collapse
|
43
|
Lee C, Chang W, Chang Y, Yang J, Chang C, Hsu K, Chen Y, Liu T, Chen Y, Lin S, Wu Y, Chang J. Alternative splicing in human cancer cells is modulated by the amiloride derivative 3,5-diamino-6-chloro-N-(N-(2,6-dichlorobenzoyl)carbamimidoyl)pyrazine-2-carboxide. Mol Oncol 2019; 13:1744-1762. [PMID: 31152681 PMCID: PMC6670021 DOI: 10.1002/1878-0261.12524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/30/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing (AS) is a process that enables the generation of multiple protein isoforms with different biological properties from a single mRNA. Cancer cells often use the maneuverability conferred by AS to produce proteins that contribute to growth and survival. In our previous studies, we identified that amiloride modulates AS in cancer cells. However, the effective concentration of amiloride required to modulate AS is too high for use in cancer treatment. In this study, we used computational algorithms to screen potential amiloride derivatives for their ability to regulate AS in cancer cells. We found that 3,5-diamino-6-chloro-N-(N-(2,6-dichlorobenzoyl)carbamimidoyl)pyrazine-2-carboxamide (BS008) can regulate AS of apoptotic gene transcripts, including HIPK3, SMAC, and BCL-X, at a lower concentration than amiloride. This splicing regulation involved various splicing factors, and it was accompanied by a change in the phosphorylation state of serine/arginine-rich proteins (SR proteins). RNA sequencing was performed to reveal that AS of many other apoptotic gene transcripts, such as AATF, ATM, AIFM1, NFKB1, and API5, was also modulated by BS008. In vivo experiments further indicated that treatment of tumor-bearing mice with BS008 resulted in a marked decrease in tumor size. BS008 also had inhibitory effects in vitro, either alone or in a synergistic combination with the cytotoxic chemotherapeutic agents sorafenib and nilotinib. BS008 enabled sorafenib dose reduction without compromising antitumor activity. These findings suggest that BS008 may possess therapeutic potential for cancer treatment.
Collapse
Affiliation(s)
- Chien‐Chin Lee
- Epigenome Research CenterChina Medical University HospitalTaichungTaiwan
| | - Wen‐Hsin Chang
- Epigenome Research CenterChina Medical University HospitalTaichungTaiwan
- Department of Primary Care MedicineTaipei Medical University HospitalTaiwan
| | - Ya‐Sian Chang
- Epigenome Research CenterChina Medical University HospitalTaichungTaiwan
- Department of Laboratory MedicineChina Medical University HospitalTaichungTaiwan
- Center for Precision MedicineChina Medical University HospitalTaichungTaiwan
| | - Jinn‐Moon Yang
- TIGP‐BioinformaticsInstitute of Information ScienceAcademia SinicaTaipeiTaiwan
- Institute of Bioinformatics and Systems BiologyNational Chiao Tung UniversityHsinchuTaiwan
- Department of Biological Science and TechnologyNational Chiao Tung UniversityHsinchuTaiwan
| | - Chih‐Shiang Chang
- Graduate Institute of Pharmaceutical ChemistryChina Medical UniversityTaichungTaiwan
| | - Kai‐Cheng Hsu
- Graduate Institute of Cancer Molecular Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaiwan
| | - Yun‐Ti Chen
- Institute of Bioinformatics and Systems BiologyNational Chiao Tung UniversityHsinchuTaiwan
| | - Ting‐Yuan Liu
- Department of Laboratory MedicineChina Medical University HospitalTaichungTaiwan
| | - Yu‐Chia Chen
- Department of Laboratory MedicineChina Medical University HospitalTaichungTaiwan
| | - Shyr‐Yi Lin
- Department of Primary Care MedicineTaipei Medical University HospitalTaiwan
- Department of General MedicineSchool of MedicineCollege of MedicineTaipei Medical UniversityTaiwan
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaiwan
| | - Yang‐Chang Wu
- Graduate Institute of Natural ProductsKaohsiung Medical UniversityTaiwan
- Research Center for Natural Products and Drug DevelopmentKaohsiung Medical UniversityTaiwan
- Department of Medical ResearchKaohsiung Medical University HospitalTaiwan
- Chinese Medicine Research and Development CenterChina Medical University HospitalTaichungTaiwan
| | - Jan‐Gowth Chang
- Epigenome Research CenterChina Medical University HospitalTaichungTaiwan
- Department of Primary Care MedicineTaipei Medical University HospitalTaiwan
- Department of Laboratory MedicineChina Medical University HospitalTaichungTaiwan
| |
Collapse
|
44
|
Abstract
The most common applications of artificial intelligence (AI) in drug treatment have to do with matching patients to their optimal drug or combination of drugs, predicting drug-target or drug-drug interactions, and optimizing treatment protocols. This review outlines some of the recently developed AI methods aiding the drug treatment and administration process. Selection of the best drug(s) for a patient typically requires the integration of patient data, such as genetics or proteomics, with drug data, like compound chemical descriptors, to score the therapeutic efficacy of drugs. The prediction of drug interactions often relies on similarity metrics, assuming that drugs with similar structures or targets will have comparable behavior or may interfere with each other. Optimizing the dosage schedule for administration of drugs is performed using mathematical models to interpret pharmacokinetic and pharmacodynamic data. The recently developed and powerful models for each of these tasks are addressed, explained, and analyzed here.
Collapse
Affiliation(s)
- Eden L Romm
- CureMatch Inc., San Diego, California 92121, USA
| | - Igor F Tsigelny
- CureMatch Inc., San Diego, California 92121, USA.,San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, USA;
| |
Collapse
|
45
|
Ji X, Tong W, Liu Z, Shi T. Five-Feature Model for Developing the Classifier for Synergistic vs. Antagonistic Drug Combinations Built by XGBoost. Front Genet 2019; 10:600. [PMID: 31338106 PMCID: PMC6629777 DOI: 10.3389/fgene.2019.00600] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/05/2019] [Indexed: 12/20/2022] Open
Abstract
Combinatorial drug therapy can improve the therapeutic effect and reduce the corresponding adverse events. In silico strategies to classify synergistic vs. antagonistic drug pairs is more efficient than experimental strategies. However, most of the developed methods have been applied only to cancer therapies. In this study, we introduce a novel method, XGBoost, based on five features of drugs and biomolecular networks of their targets, to classify synergistic vs. antagonistic drug combinations from different drug categories. We found that XGBoost outperformed other classifiers in both stratified fivefold cross-validation (CV) and independent validation. For example, XGBoost achieved higher predictive accuracy than other models (0.86, 0.78, 0.78, and 0.83 for XGBoost, logistic regression, naïve Bayesian, and random forest, respectively) for an independent validation set. We also found that the five-feature XGBoost model is much more effective at predicting combinatorial therapies that have synergistic effects than those with antagonistic effects. The five-feature XGBoost model was also validated on TCGA data with accuracy of 0.79 among the 61 tested drug pairs, which is comparable to that of DeepSynergy. Among the 14 main anatomical/pharmacological groups classified according to WHO Anatomic Therapeutic Class, for drugs belonging to five groups, their prediction accuracy was significantly increased (odds ratio < 1) or reduced (odds ratio > 1) (Fisher's exact test, p < 0.05). This study concludes that our five-feature XGBoost model has significant benefits for classifying synergistic vs. antagonistic drug combinations.
Collapse
Affiliation(s)
- Xiangjun Ji
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences–School of Life Sciences, East China Normal University, Shanghai, China
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weida Tong
- National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, United States
| | - Zhichao Liu
- National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, United States
| | - Tieliu Shi
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences–School of Life Sciences, East China Normal University, Shanghai, China
- National Center for International Research of Biological Targeting Diagnosis and Therapy/Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research/Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| |
Collapse
|
46
|
Sheng Z, Sun Y, Yin Z, Tang K, Cao Z. Advances in computational approaches in identifying synergistic drug combinations. Brief Bioinform 2019; 19:1172-1182. [PMID: 28475767 DOI: 10.1093/bib/bbx047] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 12/21/2022] Open
Abstract
Accumulated empirical clinical experience, supported by animal or cell line models, has initiated efforts of predicting synergistic combinatorial drugs with more-than-additive effect compared with the sum of the individual agents. Aiming to construct better computational models, this review started from the latest updated data resources of combinatorial drugs, then summarized the reported mechanism of the known synergistic combinations from aspects of drug molecular and pharmacological patterns, target network properties and compound functional annotation. Based on above, we focused on the main in silico strategies recently published, covering methods of molecular modeling, mathematical simulation, optimization of combinatorial targets and pattern-based statistical/learning model. Future thoughts are also discussed related to the role of natural compounds, drug combination with immunotherapy and management of adverse effects. Overall, with particular emphasis on mechanism of action of drug synergy, this review may serve as a rapid reference to design improved models for combinational drugs.
Collapse
Affiliation(s)
- Zhen Sheng
- School of Life Sciences and Technology, Tongji University
| | - Yi Sun
- School of Life Sciences and Technology, Tongji University
| | - Zuojing Yin
- School of Life Sciences and Technology, Tongji University
| | - Kailin Tang
- Advanced Institute of Translational Medicine, Tongji University
| | - Zhiwei Cao
- School of Life Sciences and Technology, Tongji University
| |
Collapse
|
47
|
Caesar LK, Cech NB. Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Nat Prod Rep 2019; 36:869-888. [PMID: 31187844 PMCID: PMC6820002 DOI: 10.1039/c9np00011a] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 2000 to 2019 According to a 2012 survey from the Centers for Disease Control and Prevention, approximately 18% of the U.S. population uses natural products (including plant-based or botanical preparations) for treatment or prevention of disease. The use of plant-based medicines is even more prevalent in developing countries, where for many they constitute the primary health care modality. Proponents of the medicinal use of natural product mixtures often claim that they are more effective than purified compounds due to beneficial "synergistic" interactions. A less-discussed phenomenon, antagonism, in which effects of active constituents are masked by other compounds in a complex mixture, also occurs in natural product mixtures. Synergy and antagonism are notoriously difficult to study in a rigorous fashion, particularly given that natural products chemistry research methodology is typically devoted to reducing complexity and identifying single active constituents for drug development. This report represents a critical review with commentary about the current state of the scientific literature as it relates to studying combination effects (including both synergy and antagonism) in natural product extracts. We provide particular emphasis on analytical and Big Data approaches for identifying synergistic or antagonistic combinations and elucidating the mechanisms that underlie their interactions. Specific case studies of botanicals in which synergistic interactions have been documented are also discussed. The topic of synergy is important given that consumer use of botanical natural products and associated safety concerns continue to garner attention by the public and the media. Guidance by the natural products community is needed to provide strategies for effective evaluation of safety and toxicity of botanical mixtures and to drive discovery in botanical natural product research.
Collapse
Affiliation(s)
- Lindsay K Caesar
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | | |
Collapse
|
48
|
Vakil V, Trappe W. Drug Combinations: Mathematical Modeling and Networking Methods. Pharmaceutics 2019; 11:E208. [PMID: 31052580 PMCID: PMC6571786 DOI: 10.3390/pharmaceutics11050208] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 12/14/2022] Open
Abstract
Treatments consisting of mixtures of pharmacological agents have been shown to have superior effects to treatments involving single compounds. Given the vast amount of possible combinations involving multiple drugs and the restrictions in time and resources required to test all such combinations in vitro, mathematical methods are essential to model the interactive behavior of the drug mixture and the target, ultimately allowing one to better predict the outcome of the combination. In this review, we investigate various mathematical methods that model combination therapies. This survey includes the methods that focus on predicting the outcome of drug combinations with respect to synergism and antagonism, as well as the methods that explore the dynamics of combination therapy and its role in combating drug resistance. This comprehensive investigation of the mathematical methods includes models that employ pharmacodynamics equations, those that rely on signaling and how the underlying chemical networks are affected by the topological structure of the target proteins, and models that are based on stochastic models for evolutionary dynamics. Additionally, this article reviews computational methods including mathematical algorithms, machine learning, and search algorithms that can identify promising combinations of drug compounds. A description of existing data and software resources is provided that can support investigations in drug combination therapies. Finally, the article concludes with a summary of future directions for investigation by the research community.
Collapse
Affiliation(s)
- Vahideh Vakil
- WINLAB, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Wade Trappe
- WINLAB, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
49
|
Zhou L, Li Z, Yang J, Tian G, Liu F, Wen H, Peng L, Chen M, Xiang J, Peng L. Revealing Drug-Target Interactions with Computational Models and Algorithms. Molecules 2019; 24:molecules24091714. [PMID: 31052598 PMCID: PMC6540161 DOI: 10.3390/molecules24091714] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/02/2022] Open
Abstract
Background: Identifying possible drug-target interactions (DTIs) has become an important task in drug research and development. Although high-throughput screening is becoming available, experimental methods narrow down the validation space because of extremely high cost, low success rate, and time consumption. Therefore, various computational models have been exploited to infer DTI candidates. Methods: We introduced relevant databases and packages, mainly provided a comprehensive review of computational models for DTI identification, including network-based algorithms and machine learning-based methods. Specially, machine learning-based methods mainly include bipartite local model, matrix factorization, regularized least squares, and deep learning. Results: Although computational methods have obtained significant improvement in the process of DTI prediction, these models have their limitations. We discussed potential avenues for boosting DTI prediction accuracy as well as further directions.
Collapse
Affiliation(s)
- Liqian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou 412007, Hunan, China.
| | - Zejun Li
- School of Computer Science, Hunan Institute of Technology, Henyang 421002, Hunan, China.
| | | | - Geng Tian
- Geneis (Beijing) Co. Ltd., Beijing 100102, China.
| | - Fuxing Liu
- School of Computer Science, Hunan University of Technology, Zhuzhou 412007, Hunan, China.
| | - Hong Wen
- School of Computer Science, Hunan University of Technology, Zhuzhou 412007, Hunan, China.
| | - Li Peng
- School of Computer Science, University of Science and Technology of Hunan, Xiangtan 411201, Hunan, China.
| | - Min Chen
- School of Computer Science, Hunan Institute of Technology, Henyang 421002, Hunan, China.
| | - Ju Xiang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China.
- Neuroscience Research Center, Department of Basic Medical Sciences, Changsha Medical University, Changsha 410219, Hunan, China.
| | - Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou 412007, Hunan, China.
| |
Collapse
|
50
|
Du D, Chang CH, Wang Y, Tong P, Chan WK, Chiu Y, Peng B, Tan L, Weinstein JN, Lorenzi PL. Response envelope analysis for quantitative evaluation of drug combinations. Bioinformatics 2019; 35:3761-3770. [PMID: 30851108 PMCID: PMC7963081 DOI: 10.1093/bioinformatics/btz091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/21/2019] [Accepted: 03/07/2019] [Indexed: 02/02/2023] Open
Abstract
MOTIVATION The concept of synergy between two agents, over a century old, is important to the fields of biology, chemistry, pharmacology and medicine. A key step in drug combination analysis is the selection of an additivity model to identify combination effects including synergy, additivity and antagonism. Existing methods for identifying and interpreting those combination effects have limitations. RESULTS We present here a computational framework, termed response envelope analysis (REA), that makes use of 3D response surfaces formed by generalized Loewe Additivity and Bliss Independence models of interaction to evaluate drug combination effects. Because the two models imply two extreme limits of drug interaction (mutually exclusive and mutually non-exclusive), a response envelope defined by them provides a quantitatively stringent additivity model for identifying combination effects without knowing the inhibition mechanism. As a demonstration, we apply REA to representative published data from large screens of anticancer and antibiotic combinations. We show that REA is more accurate than existing methods and provides more consistent results in the context of cross-experiment evaluation. AVAILABILITY AND IMPLEMENTATION The open-source software package associated with REA is available at: https://github.com/4dsoftware/rea. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Di Du
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Hua Chang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yumeng Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wai Kin Chan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yulun Chiu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bo Peng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|