1
|
Prabhash K, Saldanha E, Patil V, Bal M, Reddy P S, Sanjeev A, Kumar R, Poojary D, Noronha V, Menon N, Mittal N, Trivedi V, Nambiar K, Mishra R, Tanwar N, Malhotra R, Pange P, Gupta V, Veldore VH, Chougule A, Chaturvedi P, Dutt A, Chandrani P. RET Alterations Differentiate Molecular Profile of Medullary Thyroid Cancer. JCO Precis Oncol 2024; 8:e2300622. [PMID: 38754058 DOI: 10.1200/po.23.00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/31/2024] [Accepted: 03/19/2024] [Indexed: 05/18/2024] Open
Abstract
PURPOSE Medullary thyroid cancer (MTC) is a rare cancer originating from parafollicular C cells of the thyroid gland. Therapeutically relevant alterations in MTC are predominantly reported in RET oncogene, and lower-frequency alterations are reported in KRAS and BRAF. Nevertheless, there is an unmet need existing to analyze the MTC in the Indian cohort by using in-depth sequencing techniques that go beyond the identification of known therapeutic biomarkers. MATERIALS AND METHODS Here, we characterize MTC using integrative whole-exome and whole-transcriptome sequencing of 32 MTC tissue samples. We performed clinically relevant variant analysis, molecular pathway analysis, tumor immune-microenvironment analysis, and structural characterization of RET novel mutation. RESULTS Mutational landscape analysis shows expected RET mutations in 50% of the cases. Furthermore, we observed mutations in known cancer genes like KRAS, HRAS, SF3B1, and BRAF to be altered only in the RET-negative cohort. Pathway analysis showed differential enrichment of mutations in transcriptional deregulation genes in the RET-negative cohort. Furthermore, we observed novel RET kinase domain mutation Y900S showing affinity to RET inhibitors accessed via molecular docking and molecular dynamics simulation. CONCLUSION Altogether, this study provides a detailed genomic characterization of patients with MTC of Indian origin, highlighting the possible utility of targeted therapies in this disease.
Collapse
Affiliation(s)
- Kumar Prabhash
- Homi Bhabha National Institute (HBNI), Mumbai, India
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Elveera Saldanha
- Homi Bhabha National Institute (HBNI), Mumbai, India
- Medical Oncology Molecular Laboratory, Tata Memorial Hospital, Mumbai, India
- Computational Biology, Bioinformatics and Crosstalk Laboratory, Advanced Centre for Treatment Research and Education in Cancer, Navi Mumbai, India
| | - Vijay Patil
- Homi Bhabha National Institute (HBNI), Mumbai, India
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Munita Bal
- Department of Pathology, Tata Memorial Hospital, Mumbai, India
| | - Sreekanth Reddy P
- 4baseCare Onco Solutions Pvt Ltd, Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Airy Sanjeev
- Medical Oncology Molecular Laboratory, Tata Memorial Hospital, Mumbai, India
- Computational Biology, Bioinformatics and Crosstalk Laboratory, Advanced Centre for Treatment Research and Education in Cancer, Navi Mumbai, India
| | - Raunak Kumar
- Medical Oncology Molecular Laboratory, Tata Memorial Hospital, Mumbai, India
- Computational Biology, Bioinformatics and Crosstalk Laboratory, Advanced Centre for Treatment Research and Education in Cancer, Navi Mumbai, India
| | - Disha Poojary
- Medical Oncology Molecular Laboratory, Tata Memorial Hospital, Mumbai, India
- Computational Biology, Bioinformatics and Crosstalk Laboratory, Advanced Centre for Treatment Research and Education in Cancer, Navi Mumbai, India
| | - Vanita Noronha
- Homi Bhabha National Institute (HBNI), Mumbai, India
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Nandini Menon
- Homi Bhabha National Institute (HBNI), Mumbai, India
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Neha Mittal
- Department of Pathology, Tata Memorial Hospital, Mumbai, India
| | - Vaishakhi Trivedi
- Homi Bhabha National Institute (HBNI), Mumbai, India
- Medical Oncology Molecular Laboratory, Tata Memorial Hospital, Mumbai, India
| | - Kavya Nambiar
- Medical Oncology Molecular Laboratory, Tata Memorial Hospital, Mumbai, India
| | - Rohit Mishra
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment Research and Education in Cancer, Navi Mumbai, India
| | - Nishtha Tanwar
- 4baseCare Onco Solutions Pvt Ltd, Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Richa Malhotra
- 4baseCare Onco Solutions Pvt Ltd, Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Priyanka Pange
- Medical Oncology Molecular Laboratory, Tata Memorial Hospital, Mumbai, India
| | - Vinod Gupta
- Medical Oncology Molecular Laboratory, Tata Memorial Hospital, Mumbai, India
| | - Vidya H Veldore
- 4baseCare Onco Solutions Pvt Ltd, Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Anuradha Chougule
- Homi Bhabha National Institute (HBNI), Mumbai, India
- Medical Oncology Molecular Laboratory, Tata Memorial Hospital, Mumbai, India
| | - Pankaj Chaturvedi
- Homi Bhabha National Institute (HBNI), Mumbai, India
- Department of Head and Neck Surgery, Tata Memorial Hospital, Mumbai, India
| | - Amit Dutt
- Homi Bhabha National Institute (HBNI), Mumbai, India
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment Research and Education in Cancer, Navi Mumbai, India
| | - Pratik Chandrani
- Homi Bhabha National Institute (HBNI), Mumbai, India
- Medical Oncology Molecular Laboratory, Tata Memorial Hospital, Mumbai, India
- Computational Biology, Bioinformatics and Crosstalk Laboratory, Advanced Centre for Treatment Research and Education in Cancer, Navi Mumbai, India
| |
Collapse
|
2
|
Examining Barriers and Opportunities of Conducting Genome-Wide Association Studies in Developing Countries. CURR EPIDEMIOL REP 2022. [DOI: 10.1007/s40471-022-00303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Desai S, Mishra R, Ahmad S, Hait S, Joshi A, Dutt A. TMC-SNPdb 2.0: an ethnic-specific database of Indian germline variants. Database (Oxford) 2022; 2022:6583650. [PMID: 35551364 PMCID: PMC9216475 DOI: 10.1093/database/baac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023]
Abstract
Cancer is a somatic disease. The lack of Indian-specific reference germline variation resources limits the ability to identify true cancer-associated somatic variants among Indian cancer patients. We integrate two recent studies, the GenomeAsia 100K and the Genomics for Public Health in India (IndiGen) program, describing genome sequence variations across 598 and 1029 healthy individuals of Indian origin, respectively, along with the unique variants generated from our in-house 173 normal germline samples derived from cancer patients to generate the Tata Memorial Centre-SNP database (TMC-SNPdb) 2.0. To show its utility, GATK/Mutect2-based somatic variant calling was performed on 224 in-house tumor samples to demonstrate a reduction in false-positive somatic variants. In addition to the ethnic-specific variants from GenomeAsia 100K and IndiGenomes databases, 305 132 unique variants generated from 173 in-house normal germline samples derived from cancer patients of Indian origin constitute the Indian specific, TMC-SNPdb 2.0. Of 305 132 unique variants, 11.13% were found in the coding region with missense variants (31.3%) as the most predominant category. Among the non-coding variations, intronic variants (49%) were the highest contributors. The non-synonymous to synonymous SNP ratio was observed to be 1.9, consistent with the previous version of TMC-SNPdb and literature. Using TMC SNPdb 2.0, we analyzed a whole-exome sequence from 224 in-house tumor samples (180 paired and 44 orphans). We show an average depletion of 3.44% variants per paired tumor and significantly higher depletion (P-value < 0.001) for orphan tumors (4.21%), demonstrating the utility of the rare, unique variants found in the ethnic-specific variant datasets in reducing the false-positive somatic mutations. TMC-SNPdb 2.0 is the most exhaustive open-source reference database of germline variants occurring across 1800 Indian individuals to analyze cancer genomes and other genetic disorders. The database and toolkit package is available for download at the following: Database URL http://www.actrec.gov.in/pi-webpages/AmitDutt/TMCSNPdb2/TMCSNPdb2.html.
Collapse
Affiliation(s)
| | | | - Suhail Ahmad
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India
| | - Supriya Hait
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India
| | - Asim Joshi
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India
| | - Amit Dutt
- *Corresponding author: Tel: +91-22-27405056/30435056; Fax: +91-22-27405085;
| |
Collapse
|
4
|
Joshi A, Mishra R, Desai S, Chandrani P, Kore H, Sunder R, Hait S, Iyer P, Trivedi V, Choughule A, Noronha V, Joshi A, Patil V, Menon N, Kumar R, Prabhash K, Dutt A. Molecular characterization of lung squamous cell carcinoma tumors reveals therapeutically relevant alterations. Oncotarget 2021; 12:578-588. [PMID: 33796225 PMCID: PMC7984830 DOI: 10.18632/oncotarget.27905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/15/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Unlike lung adenocarcinoma patients, there is no FDA-approved targeted-therapy likely to benefit lung squamous cell carcinoma patients. MATERIALS AND METHODS We performed survival analyses of lung squamous cell carcinoma patients harboring therapeutically relevant alterations identified by whole exome sequencing and mass spectrometry-based validation across 430 lung squamous tumors. RESULTS We report a mean of 11.6 mutations/Mb with a characteristic smoking signature along with mutations in TP53 (65%), CDKN2A (20%), NFE2L2 (20%), FAT1 (15%), KMT2C (15%), LRP1B (15%), FGFR1 (14%), PTEN (10%) and PREX2 (5%) among lung squamous cell carcinoma patients of Indian descent. In addition, therapeutically relevant EGFR mutations occur in 5.8% patients, significantly higher than as reported among Caucasians. In overall, our data suggests 13.5% lung squamous patients harboring druggable mutations have lower median overall survival, and 19% patients with a mutation in at least one gene, known to be associated with cancer, result in significantly shorter median overall survival compared to those without mutations. CONCLUSIONS We present the first comprehensive landscape of genetic alterations underlying Indian lung squamous cell carcinoma patients and identify EGFR, PIK3CA, KRAS and FGFR1 as potentially important therapeutic and prognostic target.
Collapse
Affiliation(s)
- Asim Joshi
- 1Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Rohit Mishra
- 1Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
| | - Sanket Desai
- 1Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Pratik Chandrani
- 2Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, Maharashtra 400012, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
- 5Centre for Computational Biology, Bioinformatics and Crosstalk Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
| | - Hitesh Kore
- 1Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
| | - Roma Sunder
- 1Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
| | - Supriya Hait
- 1Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Prajish Iyer
- 1Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Vaishakhi Trivedi
- 2Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, Maharashtra 400012, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Anuradha Choughule
- 2Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, Maharashtra 400012, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Vanita Noronha
- 2Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, Maharashtra 400012, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Amit Joshi
- 2Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, Maharashtra 400012, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Vijay Patil
- 2Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, Maharashtra 400012, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Nandini Menon
- 2Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, Maharashtra 400012, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Rajiv Kumar
- 3Department of Pathology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, Maharashtra 400012, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Kumar Prabhash
- 2Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, Maharashtra 400012, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
- Kumar Prabhash, email:
| | - Amit Dutt
- 1Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
- Correspondence to: Amit Dutt, email:
| |
Collapse
|
5
|
Kausthubham N, Shukla A, Gupta N, Bhavani GS, Kulshrestha S, Das Bhowmik A, Moirangthem A, Bijarnia-Mahay S, Kabra M, Puri RD, Mandal K, Verma IC, Bielas SL, Phadke SR, Dalal A, Girisha KM. A data set of variants derived from 1455 clinical and research exomes is efficient in variant prioritization for early-onset monogenic disorders in Indians. Hum Mutat 2021; 42:e15-e61. [PMID: 33502066 PMCID: PMC10052794 DOI: 10.1002/humu.24172] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/05/2021] [Accepted: 01/24/2021] [Indexed: 12/16/2022]
Abstract
Given the genomic uniqueness, a local data set is most desired for Indians, who are underrepresented in existing public databases. We hypothesize patients with rare monogenic disorders and their family members can provide a reliable source of common variants in the population. Exome sequencing (ES) data from families with rare Mendelian disorders was aggregated from five centers in India. The dataset was refined by excluding related individuals and removing the disease-causing variants (refined cohort). The efficiency of these data sets was assessed in a new set of 50 exomes against gnomAD and GenomeAsia. Our original cohort comprised 1455 individuals from 1203 families. The refined cohort had 836 unrelated individuals that retained 1,251,064 variants with 181,125 population-specific and 489,618 common variants. The allele frequencies from our cohort helped to define 97,609 rare variants in gnomAD and 44,520 rare variants in GenomeAsia as common variants in our population. Our variant dataset provided an additional 1.7% and 0.1% efficiency for prioritizing heterozygous and homozygous variants respectively for rare monogenic disorders. We observed additional 19 genes/human knockouts. We list carrier frequency for 142 recessive disorders. This is a large and useful resource of exonic variants for Indians. Despite limitations, datasets from patients are efficient tools for variant prioritization in a resource-limited setting.
Collapse
Affiliation(s)
- Neethukrishna Kausthubham
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Gandham S Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Samarth Kulshrestha
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Aneek Das Bhowmik
- Division of Diagnostics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.,ASPIRE (Diagnostics Facility), CSIR-Centre for Cellular & Molecular Biology, CCMB Annexe II, Hyderabad, India
| | - Amita Moirangthem
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Sunita Bijarnia-Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Ratna D Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ishwar C Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ashwin Dalal
- Division of Diagnostics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
6
|
Pemmasani SK, Raman R, Mohapatra R, Vidyasagar M, Acharya A. A Review on the Challenges in Indian Genomics Research for Variant Identification and Interpretation. Front Genet 2020; 11:753. [PMID: 32793285 PMCID: PMC7387655 DOI: 10.3389/fgene.2020.00753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/24/2020] [Indexed: 11/13/2022] Open
Abstract
Today, genomic data holds great potential to improve healthcare strategies across various dimensions – be it disease prevention, enhanced diagnosis, or optimized treatment. The biggest hurdle faced by the medical and research community in India is the lack of genotype-phenotype correlations for Indians at a population-wide and an individual level. This leads to inefficient translation of genomic information during clinical decision making. Population-wide sequencing projects for Indian genomes help overcome hurdles and enable us to unearth and validate the genetic markers for different health conditions. Machine learning algorithms are essential to analyze huge amounts of genotype data in synergy with gene expression, demographic, clinical, and pathological data. Predictive models developed through these algorithms help in classifying the individuals into different risk groups, so that preventive measures and personalized therapies can be designed. They also help in identifying the impact of each genetic marker with the associated condition, from a clinical perspective. In India, genome sequencing technologies have now become more accessible to the general population. However, information on variants associated with several major diseases is not available in publicly-accessible databases. Creating a centralized database of variants facilitates early detection and mitigation of health risks in individuals. In this article, we discuss the challenges faced by genetic researchers and genomic testing facilities in India, in terms of dearth of public databases, people with knowledge on machine learning algorithms, computational resources and awareness in the medical community in interpreting genetic variants. Potential solutions to enhance genomic research in India, are also discussed.
Collapse
Affiliation(s)
| | - Rasika Raman
- Research and Development Division, Mapmygenome India Limited, Hyderabad, India
| | | | | | - Anuradha Acharya
- Research and Development Division, Mapmygenome India Limited, Hyderabad, India
| |
Collapse
|
7
|
Sivasubbu S, Scaria V. Genomics of rare genetic diseases-experiences from India. Hum Genomics 2019; 14:52. [PMID: 31554517 PMCID: PMC6760067 DOI: 10.1186/s40246-019-0215-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Home to a culturally heterogeneous population, India is also a melting pot of genetic diversity. The population architecture characterized by multiple endogamous groups with specific marriage patterns, including the widely prevalent practice of consanguinity, not only makes the Indian population distinct from rest of the world but also provides a unique advantage and niche to understand genetic diseases. Centuries of genetic isolation of population groups have amplified the founder effects, contributing to high prevalence of recessive alleles, which translates into genetic diseases, including rare genetic diseases in India.Rare genetic diseases are becoming a public health concern in India because a large population size of close to a billion people would essentially translate to a huge disease burden for even the rarest of the rare diseases. Genomics-based approaches have been demonstrated to accelerate the diagnosis of rare genetic diseases and reduce the socio-economic burden. The Genomics for Understanding Rare Diseases: India Alliance Network (GUaRDIAN) stands for providing genomic solutions for rare diseases in India. The consortium aims to establish a unique collaborative framework in health care planning, implementation, and delivery in the specific area of rare genetic diseases. It is a nation-wide collaborative research initiative catering to rare diseases across multiple cohorts, with over 240 clinician/scientist collaborators across 70 major medical/research centers. Within the GUaRDIAN framework, clinicians refer rare disease patients, generate whole genome or exome datasets followed by computational analysis of the data for identifying the causal pathogenic variations. The outcomes of GUaRDIAN are being translated as community services through a suitable platform providing low-cost diagnostic assays in India. In addition to GUaRDIAN, several genomic investigations for diseased and healthy population are being undertaken in the country to solve the rare disease dilemma.In summary, rare diseases contribute to a significant disease burden in India. Genomics-based solutions can enable accelerated diagnosis and management of rare diseases. We discuss how a collaborative research initiative such as GUaRDIAN can provide a nation-wide framework to cater to the rare disease community of India.
Collapse
Affiliation(s)
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, Delhi, 110025, India.
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, Delhi, 110025, India.
| |
Collapse
|
8
|
Iyer P, Shrikhande SV, Ranjan M, Joshi A, Gardi N, Prasad R, Dharavath B, Thorat R, Salunkhe S, Sahoo B, Chandrani P, Kore H, Mohanty B, Chaudhari V, Choughule A, Kawle D, Chaudhari P, Ingle A, Banavali S, Gera P, Ramadwar MR, Prabhash K, Barreto SG, Dutt S, Dutt A. ERBB2 and KRAS alterations mediate response to EGFR inhibitors in early stage gallbladder cancer. Int J Cancer 2019; 144:2008-2019. [PMID: 30304546 PMCID: PMC6378102 DOI: 10.1002/ijc.31916] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 02/05/2023]
Abstract
The uncommonness of gallbladder cancer in the developed world has contributed to the generally poor understanding of the disease. Our integrated analysis of whole exome sequencing, copy number alterations, immunohistochemical, and phospho-proteome array profiling indicates ERBB2 alterations in 40% early-stage rare gallbladder tumors, among an ethnically distinct population not studied before, that occurs through overexpression in 24% (n = 25) and recurrent mutations in 14% tumors (n = 44); along with co-occurring KRAS mutation in 7% tumors (n = 44). We demonstrate that ERBB2 heterodimerizes with EGFR to constitutively activate the ErbB signaling pathway in gallbladder cells. Consistent with this, treatment with ERBB2-specific, EGFR-specific shRNA or with a covalent EGFR family inhibitor Afatinib inhibits tumor-associated characteristics of the gallbladder cancer cells. Furthermore, we observe an in vivo reduction in tumor size of gallbladder xenografts in response to Afatinib is paralleled by a reduction in the amounts of phospho-ERK, in tumors harboring KRAS (G13D) mutation but not in KRAS (G12V) mutation, supporting an essential role of the ErbB pathway. In overall, besides implicating ERBB2 as an important therapeutic target under neo-adjuvant or adjuvant settings, we present the first evidence that the presence of KRAS mutations may preclude gallbladder cancer patients to respond to anti-EGFR treatment, similar to a clinical algorithm commonly practiced to opt for anti-EGFR treatment in colorectal cancer.
Collapse
Affiliation(s)
- Prajish Iyer
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
| | - Shailesh V. Shrikhande
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
- Department of Gastrointestinal and Hepato‐Pancreato‐Biliary Surgical OncologyTata Memorial Centre, Ernest Borges MargMumbaiMaharashtraIndia
| | - Malika Ranjan
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Asim Joshi
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
| | - Nilesh Gardi
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Ratnam Prasad
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Bhasker Dharavath
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
| | - Rahul Thorat
- Laboratory Animal FacilityAdvanced Centre for Treatment, Research and Education in Cancer, Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Sameer Salunkhe
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
- Shilpee laboratoryAdvanced Centre for Treatment Research Education In Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Bikram Sahoo
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Pratik Chandrani
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Hitesh Kore
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Bhabani Mohanty
- Small Animal Imaging facilityAdvanced Centre for Treatment Research Education In Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Vikram Chaudhari
- Department of Gastrointestinal and Hepato‐Pancreato‐Biliary Surgical OncologyTata Memorial Centre, Ernest Borges MargMumbaiMaharashtraIndia
| | - Anuradha Choughule
- Department of Medical OncologyTata Memorial Centre, Ernest Borges MargMumbaiMaharashtraIndia
| | - Dhananjay Kawle
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Pradip Chaudhari
- Small Animal Imaging facilityAdvanced Centre for Treatment Research Education In Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Arvind Ingle
- Laboratory Animal FacilityAdvanced Centre for Treatment, Research and Education in Cancer, Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Shripad Banavali
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
- Department of Medical OncologyTata Memorial Centre, Ernest Borges MargMumbaiMaharashtraIndia
| | - Poonam Gera
- Tissue BiorepositoryAdvanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Mukta R. Ramadwar
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
- Department of PathologyTata Memorial Centre, Ernest Borges MargMumbaiMaharashtraIndia
| | - Kumar Prabhash
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
- Department of Medical OncologyTata Memorial Centre, Ernest Borges MargMumbaiMaharashtraIndia
| | - Savio George Barreto
- Department of Gastrointestinal and Hepato‐Pancreato‐Biliary Surgical OncologyTata Memorial Centre, Ernest Borges MargMumbaiMaharashtraIndia
| | - Shilpee Dutt
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
- Shilpee laboratoryAdvanced Centre for Treatment Research Education In Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Amit Dutt
- Integrated Cancer Genomics LaboratoryAdvanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiMaharashtraIndia
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
| |
Collapse
|
9
|
Ahmed P H, V V, More RP, Viswanath B, Jain S, Rao MS, Mukherjee O. INDEX-db: The Indian Exome Reference Database (Phase I). J Comput Biol 2019; 26:225-234. [PMID: 30615482 PMCID: PMC6441288 DOI: 10.1089/cmb.2018.0199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Deep sequencing-based genetic mapping has greatly enhanced the ability to catalog variants with plausible disease association. Confirming how these identified variants contribute to specific disease conditions, across human populations, poses the next challenge. Differential selection pressure may impact the frequency of genetic variations, and thus detection of association with disease conditions, across populations. To understand genotype to phenotype correlations, it thus becomes important to first understand the spectrum of genetic variation within a population by creating a reference map. In this study, we report the development of phase I of a new database of genetic variations called INDian EXome database (INDEX-db), from the Indian population, with an aim to establish a centralized database of integrated information. This could be useful for researchers involved in studying disease mechanisms at clinical, genetic, and cellular levels.
Collapse
Affiliation(s)
- Husayn Ahmed P
- Accelerator Program for Discovery in Brain Disorders Using Stem Cells (ADBS), National Centre for Biological Sciences, Tata Institute of Fundamental Research (NCBS-TIFR), Bengaluru, India
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, India
| | - Vidhya V
- Accelerator Program for Discovery in Brain Disorders Using Stem Cells (ADBS), Centre for Brain Development and Repair (CBDR), Institute for Stem Cell Biology and Regenerative Medicine (InStem), Bengaluru, India
| | - Ravi Prabhakar More
- Accelerator Program for Discovery in Brain Disorders Using Stem Cells (ADBS), National Centre for Biological Sciences, Tata Institute of Fundamental Research (NCBS-TIFR), Bengaluru, India
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Mahendra S. Rao
- Accelerator Program for Discovery in Brain Disorders Using Stem Cells (ADBS), Centre for Brain Development and Repair (CBDR), Institute for Stem Cell Biology and Regenerative Medicine (InStem), Bengaluru, India
| | - Odity Mukherjee
- Address correspondence to: Dr. Odity Mukherjee, Investigator & Chief Technologist, Accelerator Program for Discovery in Brain Disorders Using Stem Cells (ADBS), Centre for Brain Development and Repair (CBDR), Institute for Stem Cell Biology and Regenerative Medicine (InStem), Bellary Road, Bengaluru–560065, Karnataka, India
| |
Collapse
|
10
|
Sundar S, Khetrapal-Singh P, Frampton J, Trimble E, Rajaraman P, Mehrotra R, Hariprasad R, Maitra A, Gill P, Suri V, Srinivasan R, Singh G, Thakur JS, Dhillon P, Cazier JB. Harnessing genomics to improve outcomes for women with cancer in India: key priorities for research. Lancet Oncol 2019; 19:e102-e112. [PMID: 29413464 DOI: 10.1016/s1470-2045(17)30726-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 08/03/2017] [Accepted: 09/11/2017] [Indexed: 02/08/2023]
Abstract
Cumulatively, breast, cervical, ovarian, and uterine cancer account for more than 70% of cancers in women in India. Distinct differences in the clinical presentation of women with cancer suggest underlying differences in cancer biology and genetics. The peak age of onset of breast and ovarian cancer appears to be a decade earlier in India (age 45-50 years) than in high-income countries (age >60 years). Understanding these differences through research to develop diagnosis, screening, prevention, and treatment frameworks that ar e specific to the Indian population are critical and essential to improving women's health in India. Since the sequencing of the human genome in 2001, applications of advanced technologies, such as massively parallel sequencing, have transformed the understanding of the genetic and environmental drivers of cancer. How can advanced technologies be harnessed to provide health-care solutions at a scale and to a budget suitable for a country of 1·2 billion people? What research programmes are necessary to answer questions specific to India, and to build capacity for innovative solutions using these technologies? In order to answer these questions, we convened a workshop with key stakeholders to address these issues. In this Series paper, we highlight challenges in tackling the growing cancer burden in India, discuss ongoing genomics research and developments in infrastructure, and suggest key priorities for future research in cancer in India.
Collapse
Affiliation(s)
- Sudha Sundar
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | | | - Jon Frampton
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | | | - Ravi Mehrotra
- National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Roopa Hariprasad
- National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Kolkata, West Bengal, India
| | - Paramjit Gill
- Institute of Applied Health, University of Birmingham, Birmingham, UK
| | - Vanita Suri
- Department of Obstetrics and Gynaecology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Radhika Srinivasan
- Department of Pathology and Cytology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gurpreet Singh
- Department of Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - J S Thakur
- Department of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Jean-Baptiste Cazier
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK; Centre for Computational Biology, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Upadhyay P, Gardi N, Desai S, Chandrani P, Joshi A, Dharavath B, Arora P, Bal M, Nair S, Dutt A. Genomic characterization of tobacco/nut chewing HPV-negative early stage tongue tumors identify MMP10 asa candidate to predict metastases. Oral Oncol 2017; 73:56-64. [PMID: 28939077 PMCID: PMC5628952 DOI: 10.1016/j.oraloncology.2017.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/27/2017] [Accepted: 08/06/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Nodal metastases status among early stage tongue squamous cell cancer patients plays a decisive role in the choice of treatment, wherein about 70% patients can be spared from surgery with an accurate prediction of negative pathological lymph node status. This underscores an unmet need for prognostic biomarkers to stratify the patients who are likely to develop metastases. MATERIALS AND METHODS We performed high throughput sequencing of fifty four samples derived from HPV negative early stage tongue cancer patients habitual of chewing betel nuts, areca nuts, lime or tobacco using whole exome (n=47) and transcriptome (n=17) sequencing that were analyzed using in-house computational tools. Additionally, gene expression meta-analyses were carried out for 253 tongue cancer samples. The candidate genes were validated using qPCR and immuno-histochemical analysis in an extended set of 50 early primary tongue cancer samples. RESULTS AND CONCLUSION Somatic analysis revealed a classical tobacco mutational signature C:G>A:T transversion in 53% patients that were mutated in TP53, NOTCH1, CDKN2A, HRAS, USP6, PIK3CA, CASP8, FAT1, APC, and JAK1. Similarly, significant gains at genomic locus 11q13.3 (CCND1, FGF19, ORAOV1, FADD), 5p15.33 (SHANK2, MMP16, TERT), and 8q24.3 (BOP1); and, losses at 5q22.2 (APC), 6q25.3 (GTF2H2) and 5q13.2 (SMN1) were observed in these samples. Furthermore, an integrated gene-expression analysis of 253 tongue tumors suggested an upregulation of metastases-related pathways and over-expression of MMP10 in 48% tumors that may be crucial to predict nodal metastases in early tongue cancer patients. In overall, we present the first descriptive portrait of somatic alterations underlying the genome of tobacco/nut chewing HPV-negative early tongue cancer, and identify MMP10 asa potential prognostic biomarker to stratify those likely to develop metastases.
Collapse
Affiliation(s)
- Pawan Upadhyay
- Integrated Genomics Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Nilesh Gardi
- Integrated Genomics Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
| | - Sanket Desai
- Integrated Genomics Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Pratik Chandrani
- Integrated Genomics Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Asim Joshi
- Integrated Genomics Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Bhaskar Dharavath
- Integrated Genomics Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Priyanca Arora
- Division of Head and Neck Oncology, Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai 400012, India
| | - Munita Bal
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai 400012, India
| | - Sudhir Nair
- Division of Head and Neck Oncology, Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai 400012, India
| | - Amit Dutt
- Integrated Genomics Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
12
|
Chandrani P, Prabhash K, Prasad R, Sethunath V, Ranjan M, Iyer P, Aich J, Dhamne H, Iyer DN, Upadhyay P, Mohanty B, Chandna P, Kumar R, Joshi A, Noronha V, Patil V, Ramaswamy A, Karpe A, Thorat R, Chaudhari P, Ingle A, Choughule A, Dutt A. Drug-sensitive FGFR3 mutations in lung adenocarcinoma. Ann Oncol 2017; 28:597-603. [PMID: 27998968 PMCID: PMC5391708 DOI: 10.1093/annonc/mdw636] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths across the world. In this study, we present therapeutically relevant genetic alterations in lung adenocarcinoma of Indian origin. MATERIALS AND METHODS Forty-five primary lung adenocarcinoma tumors were sequenced for 676 amplicons using RainDance cancer panel at an average coverage of 1500 × (reads per million mapped reads). To validate the findings, 49 mutations across 23 genes were genotyped in an additional set of 363 primary lung adenocarcinoma tumors using mass spectrometry. NIH/3T3 cells over expressing mutant and wild-type FGFR3 constructs were characterized for anchorage independent growth, constitutive activation, tumor formation and sensitivity to FGFR inhibitors using in vitro and xenograft mouse models. RESULTS We present the first spectrum of actionable alterations in lung adenocarcinoma tumors of Indian origin, and shows that mutations of FGFR3 are present in 20 of 363 (5.5%) patients. These FGFR3 mutations are constitutively active and oncogenic when ectopically expressed in NIH/3T3 cells and using a xenograft model in NOD/SCID mice. Inhibition of FGFR3 kinase activity inhibits transformation of NIH/3T3 overexpressing FGFR3 constructs and growth of tumors driven by FGFR3 in the xenograft models. The reduction in tumor size in the mouse is paralleled by a reduction in the amounts of phospho-ERK, validating the in vitro findings. Interestingly, the FGFR3 mutations are significantly higher in a proportion of younger patients and show a trend toward better overall survival, compared with patients lacking actionable alterations or those harboring KRAS mutations. CONCLUSION We present the first actionable mutation spectrum in Indian lung cancer genome. These findings implicate FGFR3 as a novel therapeutic in lung adenocarcinoma.
Collapse
Affiliation(s)
- P. Chandrani
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai
| | - K. Prabhash
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai
- Department of Medical Oncology, Tata Memorial Hospital
| | - R. Prasad
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai
| | - V. Sethunath
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai
| | - M. Ranjan
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai
| | - P. Iyer
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai
| | - J. Aich
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai
| | - H. Dhamne
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai
| | - D. N. Iyer
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai
| | - P. Upadhyay
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai
| | - B. Mohanty
- Small Animal Imaging Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai
| | - P. Chandna
- AceProbe Technologies Pvt. Ltd, New Delhi, India
| | - R. Kumar
- Department of Pathology, Tata Memorial Hospital
| | - A. Joshi
- Department of Medical Oncology, Tata Memorial Hospital
| | - V. Noronha
- Department of Medical Oncology, Tata Memorial Hospital
| | - V. Patil
- Department of Medical Oncology, Tata Memorial Hospital
| | - A. Ramaswamy
- Department of Medical Oncology, Tata Memorial Hospital
| | - A. Karpe
- Department of Medical Oncology, Tata Memorial Hospital
| | - R. Thorat
- Department of Pathology, Tata Memorial Hospital
| | - P. Chaudhari
- Small Animal Imaging Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai
| | - A. Ingle
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai
| | - A. Choughule
- Department of Medical Oncology, Tata Memorial Hospital
| | - A. Dutt
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai
- Correspondence to: Dr Amit Dutt, Wellcome Trust/DBT India Alliance Intermediate Fellow, Tata Memorial Centre, ACTREC, Navi Mumbai 410 210, India. Tel: +91-22-27405056; E-mail:
| |
Collapse
|