1
|
Monraz Gomez LC, Kondratova M, Sompairac N, Lonjou C, Ravel JM, Barillot E, Zinovyev A, Kuperstein I. Atlas of Cancer Signaling Network: A Resource of Multi-Scale Biological Maps to Study Disease Mechanisms. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
2
|
Ravel JM, Monraz Gomez LC, Sompairac N, Calzone L, Zhivotovsky B, Kroemer G, Barillot E, Zinovyev A, Kuperstein I. Comprehensive Map of the Regulated Cell Death Signaling Network: A Powerful Analytical Tool for Studying Diseases. Cancers (Basel) 2020; 12:E990. [PMID: 32316560 PMCID: PMC7226067 DOI: 10.3390/cancers12040990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 12/25/2022] Open
Abstract
The processes leading to, or avoiding cell death are widely studied, because of their frequent perturbation in various diseases. Cell death occurs in three highly interconnected steps: Initiation, signaling and execution. We used a systems biology approach to gather information about all known modes of regulated cell death (RCD). Based on the experimental data retrieved from literature by manual curation, we graphically depicted the biological processes involved in RCD in the form of a seamless comprehensive signaling network map. The molecular mechanisms of each RCD mode are represented in detail. The RCD network map is divided into 26 functional modules that can be visualized contextually in the whole seamless network, as well as in individual diagrams. The resource is freely available and accessible via several web platforms for map navigation, data integration, and analysis. The RCD network map was employed for interpreting the functional differences in cell death regulation between Alzheimer's disease and non-small cell lung cancer based on gene expression data that allowed emphasizing the molecular mechanisms underlying the inverse comorbidity between the two pathologies. In addition, the map was used for the analysis of genomic and transcriptomic data from ovarian cancer patients that provided RCD map-based signatures of four distinct tumor subtypes and highlighted the difference in regulations of cell death molecular mechanisms.
Collapse
Affiliation(s)
- Jean-Marie Ravel
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005 Paris, France; (J.-M.R.); (L.C.M.G.); (N.S.); (L.C.); (E.B.); (A.Z.)
- Laboratoire de génétique médicale, CHRU-Nancy, F-54000 Nancy, France
- Inserm, NGERE, Université de Lorraine, F-54000 Nancy, France
| | - L. Cristobal Monraz Gomez
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005 Paris, France; (J.-M.R.); (L.C.M.G.); (N.S.); (L.C.); (E.B.); (A.Z.)
| | - Nicolas Sompairac
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005 Paris, France; (J.-M.R.); (L.C.M.G.); (N.S.); (L.C.); (E.B.); (A.Z.)
- Centre de Recherches Interdisciplinaires, Université Paris Descartes, 75006 Paris, France
| | - Laurence Calzone
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005 Paris, France; (J.-M.R.); (L.C.M.G.); (N.S.); (L.C.); (E.B.); (A.Z.)
| | - Boris Zhivotovsky
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou 215163, China
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005 Paris, France; (J.-M.R.); (L.C.M.G.); (N.S.); (L.C.); (E.B.); (A.Z.)
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005 Paris, France; (J.-M.R.); (L.C.M.G.); (N.S.); (L.C.); (E.B.); (A.Z.)
| | - Inna Kuperstein
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005 Paris, France; (J.-M.R.); (L.C.M.G.); (N.S.); (L.C.); (E.B.); (A.Z.)
| |
Collapse
|
3
|
Duciel L, Monraz Gomez LC, Kondratova M, Kuperstein I, Saule S. The Phosphatase PRL-3 Is Involved in Key Steps of Cancer Metastasis. J Mol Biol 2019; 431:3056-3067. [DOI: 10.1016/j.jmb.2019.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
|
4
|
Oulas A, Minadakis G, Zachariou M, Sokratous K, Bourdakou MM, Spyrou GM. Systems Bioinformatics: increasing precision of computational diagnostics and therapeutics through network-based approaches. Brief Bioinform 2019; 20:806-824. [PMID: 29186305 PMCID: PMC6585387 DOI: 10.1093/bib/bbx151] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/17/2017] [Indexed: 02/01/2023] Open
Abstract
Systems Bioinformatics is a relatively new approach, which lies in the intersection of systems biology and classical bioinformatics. It focuses on integrating information across different levels using a bottom-up approach as in systems biology with a data-driven top-down approach as in bioinformatics. The advent of omics technologies has provided the stepping-stone for the emergence of Systems Bioinformatics. These technologies provide a spectrum of information ranging from genomics, transcriptomics and proteomics to epigenomics, pharmacogenomics, metagenomics and metabolomics. Systems Bioinformatics is the framework in which systems approaches are applied to such data, setting the level of resolution as well as the boundary of the system of interest and studying the emerging properties of the system as a whole rather than the sum of the properties derived from the system's individual components. A key approach in Systems Bioinformatics is the construction of multiple networks representing each level of the omics spectrum and their integration in a layered network that exchanges information within and between layers. Here, we provide evidence on how Systems Bioinformatics enhances computational therapeutics and diagnostics, hence paving the way to precision medicine. The aim of this review is to familiarize the reader with the emerging field of Systems Bioinformatics and to provide a comprehensive overview of its current state-of-the-art methods and technologies. Moreover, we provide examples of success stories and case studies that utilize such methods and tools to significantly advance research in the fields of systems biology and systems medicine.
Collapse
Affiliation(s)
- Anastasis Oulas
- Bioinformatics European Research Area Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George Minadakis
- Bioinformatics European Research Area Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Margarita Zachariou
- Bioinformatics European Research Area Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kleitos Sokratous
- Bioinformatics European Research Area Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marilena M Bourdakou
- Bioinformatics European Research Area Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M Spyrou
- Bioinformatics European Research Area Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
5
|
Kondratova M, Sompairac N, Barillot E, Zinovyev A, Kuperstein I. Signalling maps in cancer research: construction and data analysis. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4964960. [PMID: 29688383 PMCID: PMC5890450 DOI: 10.1093/database/bay036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/19/2018] [Indexed: 12/22/2022]
Abstract
Generation and usage of high-quality molecular signalling network maps can be augmented by standardizing notations, establishing curation workflows and application of computational biology methods to exploit the knowledge contained in the maps. In this manuscript, we summarize the major aims and challenges of assembling information in the form of comprehensive maps of molecular interactions. Mainly, we share our experience gained while creating the Atlas of Cancer Signalling Network. In the step-by-step procedure, we describe the map construction process and suggest solutions for map complexity management by introducing a hierarchical modular map structure. In addition, we describe the NaviCell platform, a computational technology using Google Maps API to explore comprehensive molecular maps similar to geographical maps and explain the advantages of semantic zooming principles for map navigation. We also provide the outline to prepare signalling network maps for navigation using the NaviCell platform. Finally, several examples of cancer high-throughput data analysis and visualization in the context of comprehensive signalling maps are presented.
Collapse
Affiliation(s)
- Maria Kondratova
- Institut Curie, PSL Research University, F-75005 Paris, France.,INSERM, U900, F-75005 Paris, France.,MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Nicolas Sompairac
- Institut Curie, PSL Research University, F-75005 Paris, France.,INSERM, U900, F-75005 Paris, France.,MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, F-75005 Paris, France.,INSERM, U900, F-75005 Paris, France.,MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, F-75005 Paris, France.,INSERM, U900, F-75005 Paris, France.,MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Inna Kuperstein
- Institut Curie, PSL Research University, F-75005 Paris, France.,INSERM, U900, F-75005 Paris, France.,MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| |
Collapse
|
6
|
Model reduction in chemical dynamics: slow invariant manifolds, singular perturbations, thermodynamic estimates, and analysis of reaction graph. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Monraz Gomez LC, Kondratova M, Ravel JM, Barillot E, Zinovyev A, Kuperstein I. Application of Atlas of Cancer Signalling Network in preclinical studies. Brief Bioinform 2018; 20:701-716. [DOI: 10.1093/bib/bby031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/28/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- L Cristobal Monraz Gomez
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Maria Kondratova
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Jean-Marie Ravel
- Genetic Laboratory, Nancy's Regional University Hospital, Vandœuvre-lès-Nancy and INSERM UMR 954, Lorraine University, Vandœuvre-lès-Nancy
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Inna Kuperstein
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| |
Collapse
|
8
|
Naß J, Efferth T. Insights into apoptotic proteins in chemotherapy: quantification techniques and informing therapy choice. Expert Rev Proteomics 2018; 15:413-429. [DOI: 10.1080/14789450.2018.1468755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Janine Naß
- Department of Pharmaceutical Biology, Institute of Biochemistry and Pharmacy, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Biochemistry and Pharmacy, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
9
|
Cantini L, Calzone L, Martignetti L, Rydenfelt M, Blüthgen N, Barillot E, Zinovyev A. Classification of gene signatures for their information value and functional redundancy. NPJ Syst Biol Appl 2017; 4:2. [PMID: 29263798 PMCID: PMC5736638 DOI: 10.1038/s41540-017-0038-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
Gene signatures are more and more used to interpret results of omics data analyses but suffer from compositional (large overlap) and functional (correlated read-outs) redundancy. Moreover, many gene signatures rarely come out as significant in statistical tests. Based on pan-cancer data analysis, we construct a restricted set of 962 signatures defined as informative and demonstrate that they have a higher probability to appear enriched in comparative cancer studies. We show that the majority of informative signatures conserve their weights for the genes composing the signature (eigengenes) from one cancer type to another. We finally construct InfoSigMap, an interactive online map of these signatures and their cross-correlations. This map highlights the structure of compositional and functional redundancies between informative signatures, and it charts the territories of biological functions. InfoSigMap can be used to visualize the results of omics data analyses and suggests a rearrangement of existing gene sets. An informative collection of gene signatures for transcriptomic data analysis is constructed. The number of transcriptomic signatures grows fast and their collections are highly redundant that hampers omics data analyses interpretation. A computational biology team from Institut Curie led by Andrei Zinovyev selected a collection of 962 gene signatures shown to be informative for cancer studies and reflecting mechanisms of cancer progression. The signatures were filtered from a large compendium without requiring any manual curation by experts through a large-scale unbiased analysis of pancancer data. They have much higher chance to obtain significant enrichment scores in a comparative trancriptomic study. The authors integrated the 962 signatures into InfoSigMap, a new data visualization resource for the interpretation of the results of omics data analyses, which facilitates getting an insight into the mechanisms driving cancer.
Collapse
Affiliation(s)
- Laura Cantini
- Institut Curie, PSL Research University, INSERM U900, Mines ParisTech, 26, rue d'Ulm, F-75248 Paris, France
| | - Laurence Calzone
- Institut Curie, PSL Research University, INSERM U900, Mines ParisTech, 26, rue d'Ulm, F-75248 Paris, France
| | - Loredana Martignetti
- Institut Curie, PSL Research University, INSERM U900, Mines ParisTech, 26, rue d'Ulm, F-75248 Paris, France
| | - Mattias Rydenfelt
- Institute of Pathology, Charite Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany.,IRI Life Sciences and Institute for Theoretical Biology, Humboldt University, Philippstr. 13, Haus 18, 10115 Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charite Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany.,IRI Life Sciences and Institute for Theoretical Biology, Humboldt University, Philippstr. 13, Haus 18, 10115 Berlin, Germany
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, INSERM U900, Mines ParisTech, 26, rue d'Ulm, F-75248 Paris, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, INSERM U900, Mines ParisTech, 26, rue d'Ulm, F-75248 Paris, France
| |
Collapse
|