1
|
Liu C, Ding X, Wu Y, Zhang J, Huang R, Li X, Liu G, Liu P. Chromosome-scale reference genome of an ancient landrace: unveiling the genetic basis of seed weight in the food legume crop pigeonpea ( Cajanus cajan). HORTICULTURE RESEARCH 2024; 11:uhae201. [PMID: 39257540 PMCID: PMC11387010 DOI: 10.1093/hr/uhae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/11/2024] [Indexed: 09/12/2024]
Abstract
Pigeonpea (Cajanus cajan) is a nutrient-rich and versatile food legume crop of tropical and subtropical regions. In this study, we describe the de novo assembly of a high-quality genome for the ancient pigeonpea landrace 'D30', achieved through a combination of Pacific Biosciences high-fidelity (PacBio HiFi) and high-throughput chromatin conformation capture (Hi-C) sequencing technologies. The assembled 'D30' genome has a size of 813.54 Mb, with a contig N50 of 10.74 Mb, a scaffold N50 of 73.07 Mb, and a GC content of 35.67%. Genomic evaluation revealed that the 'D30' genome contains 99.2% of Benchmarking Universal Single-Copy Orthologs (BUSCO) and achieves a 29.06 long terminal repeat (LTR) assembly index (LAI). Genome annotation indicated that 'D30' encompasses 431.37 Mb of repeat elements (53.02% of the genome) and 37 977 protein-coding genes. Identification of single-nucleotide polymorphisms (SNPs), insertions/deletions (indels), and structural variations between 'D30' and the published genome of pigeonpea cultivar 'Asha' suggests that genes affected by these variations may play important roles in biotic and abiotic stress responses. Further investigation of genomic regions under selection highlights genes enriched in starch and sucrose metabolism, with 42.11% of these genes highly expressed in seeds. Finally, we conducted genome-wide association studies (GWAS) to facilitate the identification of 28 marker-trait associations for six agronomic traits of pigeonpea. Notably, we discovered a calmodulin-like protein (CcCML) that harbors a dominant haplotype associated with the 100-seed weight of pigeonpea. Our study provides a foundational resource for developing genomics-assisted breeding programs in pigeonpea.
Collapse
Affiliation(s)
- Chun Liu
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou/Sanya 571101/572024, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- School of Tropical Agriculture and Forestry, Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
| | - Xipeng Ding
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou/Sanya 571101/572024, China
| | - Yuanhang Wu
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Jianyu Zhang
- School of Tropical Agriculture and Forestry, Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
| | - Rui Huang
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou/Sanya 571101/572024, China
| | - Xinyong Li
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou/Sanya 571101/572024, China
| | - Guodao Liu
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou/Sanya 571101/572024, China
| | - Pandao Liu
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou/Sanya 571101/572024, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| |
Collapse
|
2
|
Liu C, Huang R, Zhao X, Xu R, Zhang J, Li X, Liu G, Dong R, Liu P. Comparative analysis of lipid and flavonoid biosynthesis between Pongamia and soybean seeds: genomic, transcriptional, and metabolic perspectives. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:86. [PMID: 38915078 PMCID: PMC11197198 DOI: 10.1186/s13068-024-02538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Soybean (Glycine max) is a vital oil-producing crop. Augmenting oleic acid (OA) levels in soybean oil enhances its oxidative stability and health benefits, representing a key objective in soybean breeding. Pongamia (Pongamia pinnata), known for its abundant oil, OA, and flavonoid in the seeds, holds promise as a biofuel and medicinal plant. A comparative analysis of the lipid and flavonoid biosynthesis pathways in Pongamia and soybean seeds would facilitate the assessment of the potential value of Pongamia seeds and advance the genetic improvements of seed traits in both species. RESULTS The study employed multi-omics analysis to systematically compare differences in metabolite accumulation and associated biosynthetic genes between Pongamia seeds and soybean seeds at the transcriptional, metabolic, and genomic levels. The results revealed that OA is the predominant free fatty acid in Pongamia seeds, being 8.3 times more abundant than in soybean seeds. Lipidomics unveiled a notably higher accumulation of triacylglycerols (TAGs) in Pongamia seeds compared to soybean seeds, with 23 TAG species containing OA. Subsequently, we identified orthologous groups (OGs) involved in lipid biosynthesis across 25 gene families in the genomes of Pongamia and soybean, and compared the expression levels of these OGs in the seeds of the two species. Among the OGs with expression levels in Pongamia seeds more than twice as high as in soybean seeds, we identified one fatty acyl-ACP thioesterase A (FATA) and two stearoyl-ACP desaturases (SADs), responsible for OA biosynthesis, along with two phospholipid:diacylglycerol acyltransferases (PDATs) and three acyl-CoA:diacylglycerol acyltransferases (DGATs), responsible for TAG biosynthesis. Furthermore, we observed a significantly higher content of the flavonoid formononetin in Pongamia seeds compared to soybean seeds, by over 2000-fold. This difference may be attributed to the tandem duplication expansions of 2,7,4'-trihydroxyisoflavanone 4'-O-methyltransferases (HI4'OMTs) in the Pongamia genome, which are responsible for the final step of formononetin biosynthesis, combined with their high expression levels in Pongamia seeds. CONCLUSIONS This study extends beyond observations made in single-species research by offering novel insights into the molecular basis of differences in lipid and flavonoid biosynthetic pathways between Pongamia and soybean, from a cross-species comparative perspective.
Collapse
Affiliation(s)
- Chun Liu
- Tropical Crops Genetic Resources Institute & National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Haikou, 571101, China
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, 571101, China
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou, 570228/572025, Sanya, China
| | - Rui Huang
- Tropical Crops Genetic Resources Institute & National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xingkun Zhao
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou, 570228/572025, Sanya, China
| | - Ranran Xu
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou, 570228/572025, Sanya, China
| | - Jianyu Zhang
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou, 570228/572025, Sanya, China
| | - Xinyong Li
- Tropical Crops Genetic Resources Institute & National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Guodao Liu
- Tropical Crops Genetic Resources Institute & National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Rongshu Dong
- Tropical Crops Genetic Resources Institute & National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Pandao Liu
- Tropical Crops Genetic Resources Institute & National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Haikou, 571101, China.
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, 571101, China.
| |
Collapse
|
3
|
Shan B, Bao G, Shi T, Zhai L, Bian S, Li X. Genome-wide identification of BBX gene family and their expression patterns under salt stress in soybean. BMC Genomics 2022; 23:820. [PMID: 36510141 PMCID: PMC9743715 DOI: 10.1186/s12864-022-09068-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND BBX genes are key players in the regulation of various developmental processes and stress responses, which have been identified and functionally characterized in many plant species. However, our understanding of BBX family was greatly limited in soybean. RESULTS In this study, 59 BBX genes were identified and characterized in soybean, which can be phylogenetically classified into 5 groups. GmBBXs showed diverse gene structures and motif compositions among the groups and similar within each group. Noticeably, synteny analysis suggested that segmental duplication contributed to the expansion of GmBBX family. Moreover, our RNA-Seq data indicated that 59 GmBBXs showed different transcript profiling under salt stress, and qRT-PCR analysis confirmed their expression patterns. Among them, 22 GmBBXs were transcriptionally altered with more than two-fold changes by salt stress, supporting that GmBBXs play important roles in soybean tolerance to salt stress. Additionally, Computational assay suggested that GmBBXs might potentially interact with GmGI3, GmTOE1b, GmCOP1, GmCHI and GmCRY, while eight types of transcription factors showed potentials to bind the promoter regions of GmBBX genes. CONCLUSIONS Fifty-nine BBX genes were identified and characterized in soybean, and their expression patterns under salt stress and computational assays suggested their functional roles in response to salt stress. These findings will contribute to future research in regard to functions and regulatory mechanisms of soybean BBX genes in response to salt stress.
Collapse
Affiliation(s)
- Binghui Shan
- grid.64924.3d0000 0004 1760 5735College of Plant Science, Jilin University, Changchun, China
| | - Guohua Bao
- grid.64924.3d0000 0004 1760 5735College of Plant Science, Jilin University, Changchun, China
| | - Tianran Shi
- grid.64924.3d0000 0004 1760 5735College of Plant Science, Jilin University, Changchun, China
| | - Lulu Zhai
- grid.64924.3d0000 0004 1760 5735College of Plant Science, Jilin University, Changchun, China
| | - Shaomin Bian
- grid.64924.3d0000 0004 1760 5735College of Plant Science, Jilin University, Changchun, China
| | - Xuyan Li
- grid.64924.3d0000 0004 1760 5735College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
4
|
Liu C, Tai Y, Luo J, Wu Y, Zhao X, Dong R, Ding X, Zhao S, Luo L, Liu P, Liu G. Integrated multi-omics analysis provides insights into genome evolution and phosphorus deficiency adaptation in pigeonpea ( Cajanus cajan). HORTICULTURE RESEARCH 2022; 9:uhac107. [PMID: 35795392 PMCID: PMC9251600 DOI: 10.1093/hr/uhac107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/23/2022] [Indexed: 05/12/2023]
Abstract
Pigeonpea (Cajanus cajan) is an important legume food crop and plays a crucial role in a secure food supply in many developing countries. Several previous studies have suggested that pigeonpea has great potential for phosphorus (P) deficiency tolerance, but little is known about the underlying mechanism. In this study, the physiological and molecular responses of pigeonpea roots to phosphate (Pi) starvation were investigated through integrating phenotypic, genomic, transcriptomic, metabolomic, and lipidomic analyses. The results showed that low-Pi treatment increased total root length, root surface area, and root acid phosphatase activity, and promoted the secretion of organic acids (e.g. citric acids, piscidic acids, and protocatechuic acids) and the degradation of phospholipids and other P-containing metabolites in the roots of pigeonpea. Consistent with the morphological, physiological, and biochemical changes, a large number of genes involved in these Pi-starvation responses were significantly upregulated in Pi-deficient pigeonpea roots. Among these Pi-starvation response genes upregulated by low-Pi treatment, four gene families were expanded through recent tandem duplication in the pigeonpea genome, namely phosphate transporter 1 (PHT1), phosphoethanolamine/phosphocholine phosphatase (PECP), fasciclin-like arabinogalactan protein (FLA), and glutamate decarboxylase (GAD). These gene families may be associated with Pi uptake from the soil, phospholipid recycling, root morphological remodeling, and regulation of organic acid exudation. Taken together, our results suggest that pigeonpea employs complex Pi-starvation responses to strengthen P acquisition and utilization during low-Pi stress. This study provides new insights into the genome evolution and P deficiency adaptation mechanism of pigeonpea.
Collapse
Affiliation(s)
| | | | - Jiajia Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yuanhang Wu
- College of Forestry & College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Xingkun Zhao
- College of Forestry & College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Rongshu Dong
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xipeng Ding
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shancen Zhao
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen 518120, China
| | - Lijuan Luo
- College of Forestry & College of Tropical Crops, Hainan University, Haikou 570228, China
| | | | | |
Collapse
|
5
|
de Vries S, Kloesges T, Rose LE. Evolutionarily Dynamic, but Robust, Targeting of Resistance Genes by the miR482/2118 Gene Family in the Solanaceae. Genome Biol Evol 2015; 7:3307-21. [PMID: 26590211 PMCID: PMC4700956 DOI: 10.1093/gbe/evv225] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plants are exposed to pathogens around the clock. A common resistance response in plants upon pathogen detection is localized cell death. Given the irreversible nature of this response, multiple layers of negative regulation are present to prevent the untimely or misexpression of resistance genes. One layer of negative regulation is provided by a recently discovered microRNA (miRNA) gene family, miR482/2118. This family targets the transcripts of resistance genes in plants. We investigated the evolutionary history and specificity of this miRNA gene family within the Solanaceae. This plant family includes many important crop species, providing a set of well-defined resistance gene repertoires. Across 14 species from the Solanaceae, we identified eight distinct miR482/2118 gene family members. Our studies show conservation of miRNA type and number in the group of wild tomatoes and, to a lesser extent, throughout the Solanaceae. The eight orthologous miRNA gene clusters evolved under different evolutionary constraints, allowing for individual subfunctionalization of the miRNAs. Despite differences in the predicted targeting behavior of each miRNA, the miRNA-R-gene network is robust due to its high degree of interconnectivity and redundant targeting. Our data suggest that the miR482/2118 gene family acts as an evolutionary buffer for R-gene sequence diversity.
Collapse
Affiliation(s)
- Sophie de Vries
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Germany iGRAD-Plant Graduate School, Heinrich-Heine University Duesseldorf, Germany
| | - Thorsten Kloesges
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Germany
| | - Laura E Rose
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Germany iGRAD-Plant Graduate School, Heinrich-Heine University Duesseldorf, Germany Ceplas, Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, Germany
| |
Collapse
|
6
|
Lin Y, Cheng Y, Jin J, Jin X, Jiang H, Yan H, Cheng B. Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes. PLoS One 2014; 9:e102825. [PMID: 25047803 PMCID: PMC4105503 DOI: 10.1371/journal.pone.0102825] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/25/2014] [Indexed: 11/18/2022] Open
Abstract
Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species.
Collapse
Affiliation(s)
- Yongxiang Lin
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Ying Cheng
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Jing Jin
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaolei Jin
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Haiyang Jiang
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Hanwei Yan
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Beijiu Cheng
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
7
|
Darrasse A, Bolot S, Serres-Giardi L, Charbit E, Boureau T, Fisher-Le Saux M, Briand M, Arlat M, Gagnevin L, Koebnik R, Noël LD, Carrère S, Jacques MA. High-Quality Draft Genome Sequences of Xanthomonas axonopodis pv. glycines Strains CFBP 2526 and CFBP 7119. GENOME ANNOUNCEMENTS 2013; 1:e01036-13. [PMID: 24336374 PMCID: PMC3861427 DOI: 10.1128/genomea.01036-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 11/11/2013] [Indexed: 11/20/2022]
Abstract
We report here the high-quality draft genome sequences of two strains of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule on soybeans. Comparison of these genomes with those of phylogenetically closely related pathovars of Xanthomonas spp. will help to understand the mechanisms involved in host specificity and adaptation to host plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - L. Gagnevin
- UMR “Peuplements Végétaux et Bioagresseurs en Milieu Tropical” (PVBMT), CIRAD, Saint-Pierre, La Réunion, France
| | - R. Koebnik
- UMR 186 IRD-Cirad-Université Montpellier 2 “Résistance des Plantes aux Bioaggresseurs,” Montpellier, France
| | | | | | | |
Collapse
|
8
|
Lestari P, Van K, Lee J, Kang YJ, Lee SH. Gene divergence of homeologous regions associated with a major seed protein content QTL in soybean. FRONTIERS IN PLANT SCIENCE 2013; 4:176. [PMID: 23761803 PMCID: PMC3672674 DOI: 10.3389/fpls.2013.00176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 05/17/2013] [Indexed: 05/28/2023]
Abstract
Understanding several modes of duplication contributing on the present genome structure is getting an attention because it could be related to numerous agronomically important traits. Since soybean serves as a rich protein source for animal feeds and human consumption, breeding efforts in soybean have been directed toward enhancing seed protein content. The publicly available soybean sequences and its genomically featured elements facilitate comprehending of quantitative trait loci (QTL) for seed protein content in concordance with homeologous regions in soybean genome. Although parts of chromosome (Chr) 20 and Chr 10 showed synteny, QTLs for seed protein content present only on Chr 20. Using comparative analysis of gene contents in recently duplicated genomic regions harboring QTL for protein/oil content on Chrs 20 and 10, a total of 27 genes are present in duplicated regions of both Chrs. Notably, 4 tandem duplicates of the putative homeobox protein 22 (HB22) are present only on Chr 20 and this Medicago truncatula homolog expressed in endosperm at seed filling stage. These tandem duplicates could contribute on the protein/oil QTL of Chr 20. Our study suggests that non-shared gene contents within the duplicated genomic regions might lead to absence/presence of QTL related to protein/oil content.
Collapse
Affiliation(s)
- Puji Lestari
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National UniversitySeoul, Korea
- Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and DevelopmentBogor, Indonesia
| | - Kyujung Van
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National UniversitySeoul, Korea
| | - Jayern Lee
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National UniversitySeoul, Korea
| | - Yang Jae Kang
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National UniversitySeoul, Korea
| | - Suk-Ha Lee
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National UniversitySeoul, Korea
- Plant Genomics and Breeding Institute, Seoul National UniversitySeoul, Korea
| |
Collapse
|
9
|
Zheng H, Qiyan J, Zhiyong N, Hui Z. Prediction and identification of natural antisense transcripts and their small RNAs in soybean (Glycine max). BMC Genomics 2013; 14:280. [PMID: 23617936 PMCID: PMC3643859 DOI: 10.1186/1471-2164-14-280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 04/20/2013] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Natural antisense transcripts (NATs) are a class of RNAs that contain a sequence complementary to other transcripts. NATs occur widely in eukaryotes and play critical roles in post-transcriptional regulation. Soybean NAT sequences are predicted in the PlantNATsDB, but detailed analyses of these NATs remain to be performed. RESULTS A total of 26,216 NATs, including 994 cis-NATs and 25,222 trans-NATs, were predicted in soybean. Each sense transcript had 1-177 antisense transcripts. We identified 21 trans-NATs using RT-PCR amplification. Additionally, we identified 179 cis-NATs and 6,629 trans-NATs that gave rise to small RNAs; these were enriched in the NAT overlapping region. The most abundant small RNAs were 21, 22, and 24 nt in length. The generation of small RNAs was biased to one stand of the NATs, and the degradation of NATs was biased. High-throughput sequencing of the degradome allowed for the global identification of NAT small interfering RNAs (nat-siRNAs) targets. 446 target genes for 165 of these nat-siRNAs were identified. The nat-siRNA target could be one transcript of a given NAT, or from other gene transcripts. We identified five NAT transcripts containing a hairpin structure that is characteristic of pre-miRNA. We identified a total of 86 microRNA (miRNA) targets that had antisense transcripts in soybean. CONCLUSIONS We globally identified nat-siRNAs, and the targets of nat-siRNAs in soybean. It is likely that the cis-NATs, trans-NATs, nat-siRNAs, miRNAs, and miRNA targets form complex regulatory networks.
Collapse
Affiliation(s)
- Hu Zheng
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiang Qiyan
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ni Zhiyong
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhang Hui
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
10
|
Kim MY, Van K, Kang YJ, Kim KH, Lee SH. Tracing soybean domestication history: From nucleotide to genome. BREEDING SCIENCE 2012; 61:445-52. [PMID: 23136484 PMCID: PMC3406779 DOI: 10.1270/jsbbs.61.445] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/14/2011] [Indexed: 05/20/2023]
Abstract
Since the genome sequences of wild species may provide key information about the genetic elements involved in speciation and domestication, the undomesticated soybean (Glycine soja Sieb. and Zucc.), a wild relative of the current cultivated soybean (G. max), was sequenced. In contrast to the current hypothesis of soybean domestication, which holds that the current cultivated soybean was domesticated from G. soja, our previous work has suggested that soybean was domesticated from the G. soja/G. max complex that diverged from a common ancestor of these two species of Glycine. In this review, many structural genomic differences between the two genomes are described and a total of 705 genes are identified as structural variations (SVs) between G. max and G. soja. After protein families database of alignments and hidden Markov models IDs and gene ontology terms were assigned, many interesting genes are discussed in detail using four domestication related traits, such as flowering time, transcriptional factors, carbon metabolism and disease resistance. Soybean domestication history is explored by studying these SVs in genes. Analysis of SVs in genes at the population-level may clarify the domestication history of soybean.
Collapse
Affiliation(s)
- Moon Young Kim
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Kyujung Van
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Yang Jae Kang
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Kil Hyun Kim
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea
- Corresponding author (e-mail: )
| |
Collapse
|
11
|
Han F, Zhu B. Evolutionary analysis of three gibberellin oxidase genes in rice, Arabidopsis, and soybean. Gene 2011; 473:23-35. [PMID: 21056641 DOI: 10.1016/j.gene.2010.10.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/19/2010] [Accepted: 10/25/2010] [Indexed: 02/06/2023]
Abstract
GAs are plant hormones that play fundamental roles in plant growth and development. GA2ox, GA3ox, and GA20ox are three key enzymes in GA biosynthesis. These enzymes belong to the 2OG-Fe (II) oxygenase superfamily and are independently encoded by different gene families. To date, genome-wide comparative analyses of GA oxidases in plant species have not been thoroughly carried out. In the present work, 61 GA oxidase family genes from rice (Oryza sativa), Arabidopsis, and soybean (Glycine max) were identified and a full study of these genes including phylogenetic tree construction, gene structure, gene family expansion and analysis of functional motifs was performed. Based on phylogeny, most of the GA oxidases were divided into four subgroups that reflected functional classifications. Intron/intron average length of GA oxidase genes in rice analysis revealed that GA oxidase genes in rice experienced substantial evolutionary divergence. Segmental duplication events were mainly found in soybean genome. However, in rice and Arabidopsis, no single expansion pattern exhibited dominance, indicating that GA oxidase genes from these species might have been subjected to a more complex evolutionary mechanism. In addition, special functional motifs were discovered in GA20ox, GA3ox, and GA2ox, which suggested that different functional motifs are associated with differences in protein function. Taken together our results suggest that GA oxidase family genes have undergone divergent evolutionary routes, especially at the monocot-dicot split, with dynamic evolution occurring in Arabidopsis thaliana and soybean.
Collapse
Affiliation(s)
- Fengming Han
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
12
|
Zhang X, Feng Y, Cheng H, Tian D, Yang S, Chen JQ. Relative evolutionary rates of NBS-encoding genes revealed by soybean segmental duplication. Mol Genet Genomics 2011; 285:79-90. [PMID: 21080199 DOI: 10.1007/s00438-010-0587-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
It is well known that nucleotide binding site (NBS)-encoding genes are duplicate-rich and fast-evolving genes. However, there is little information on the relative importance of tandem and segmental NBS duplicates and their exact evolutionary rates. The two rounds of large-scale duplication that have occurred in soybean provide a unique opportunity to investigate these issues. Comparison of NBS and non-NBS genes on segments of syntenic homoeologs shows that NBS-encoding genes evolve at least 1.5-fold faster (~1.5-fold higher synonymous and approximately 2.3-fold higher nonsynonymous substitution rates) and lose their genes approximately twofold faster than the flanking non-NBS genes. Compared with segmental duplicates, tandem NBS duplicates are more abundant in soybean, suggesting that tandem duplication is the major driving force in the expansion of NBS genes. Notably, significant sequence exchanges along with significantly positive selection were detected in most tandem-duplicated NBS gene families. The results suggest that the rapid evolution of NBS genes may be due to the combined effects of diversifying selection and frequent sequence exchanges. Interestingly, TIR-NBS-LRR genes (TNLs) have a higher nucleotide substitution rate than non-TNLs, indicating that these types of NBS genes may have a rather different evolutionary pattern. It is important to determine the exact relative evolutionary rates of TNL, non-TNL, and non-NBS genes in order to understand how fast the host plant can adjust its response to rapidly evolving pathogens in a coevolutionary context.
Collapse
Affiliation(s)
- Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | |
Collapse
|
13
|
Yi H, Ravilious GE, Galant A, Krishnan HB, Jez JM. From sulfur to homoglutathione: thiol metabolism in soybean. Amino Acids 2010; 39:963-78. [PMID: 20364282 DOI: 10.1007/s00726-010-0572-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 03/16/2010] [Indexed: 12/11/2022]
Abstract
Sulfur is an essential plant nutrient and is metabolized into the sulfur-containing amino acids (cysteine and methionine) and into molecules that protect plants against oxidative and environmental stresses. Although studies of thiol metabolism in the model plant Arabidopsis thaliana (thale cress) have expanded our understanding of these dynamic processes, our knowledge of how sulfur is assimilated and metabolized in crop plants, such as soybean (Glycine max), remains limited in comparison. Soybean is a major crop used worldwide for food and animal feed. Although soybeans are protein-rich, they do not contain high levels of the sulfur-containing amino acids, cysteine and methionine. Ultimately, unraveling the fundamental steps and regulation of thiol metabolism in soybean is important for optimizing crop yield and quality. Here we review the pathways from sulfur uptake to glutathione and homoglutathione synthesis in soybean, the potential biotechnology benefits of understanding and modifying these pathways, and how information from the soybean genome may guide the next steps in exploring this biochemical system.
Collapse
Affiliation(s)
- Hankuil Yi
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|
14
|
Egan AN, Doyle J. A comparison of global, gene-specific, and relaxed clock methods in a comparative genomics framework: dating the polyploid history of soybean (Glycine max). Syst Biol 2010; 59:534-47. [PMID: 20705909 DOI: 10.1093/sysbio/syq041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is widely recognized that many genes and lineages do not adhere to a molecular clock, yet molecular clocks are commonly used to date divergences in comparative genomic studies. We test the application of a molecular clock across genes and lineages in a phylogenetic framework utilizing 12 genes linked in a 1-Mb region on chromosome 13 of soybean (Glycine max); homoeologous copies of these genes formed by polyploidy in Glycine; and orthologous copies in G. tomentella, Phaseolus vulgaris, and Medicago truncatula. We compare divergence dates estimated by two methods each in three frameworks: a global molecular clock with a single rate across genes and lineages using full and approximate likelihood methods based on synonymous substitutions, a gene-specific clock assuming rate constancy over lineages but allowing a different rate for each gene, and a relaxed molecular clock where rates may vary across genes and lineages estimated under penalized likelihood and Bayesian inference. We use the cumulative variance across genes as a means of quantifying precision. Our results suggest that divergence dating methods produce results that are correlated, but that older nodes are more variable and more difficult to estimate with precision and accuracy. We also find that models incorporating less rate heterogeneity estimate older dates of divergence than more complex models, as node age increases. A mixed model nested analysis of variance testing the effects of framework, method, and gene found that framework had a significant effect on the divergence date estimates but that most variation among dates is due to variation among genes, suggesting a need to further characterize and understand the evolutionary phenomena underlying rate variation within genomes, among genes, and across lineages.
Collapse
Affiliation(s)
- Ashley N Egan
- Department of Plant Biology, L.H. Bailey Hortorium, Cornell University, 412 Mann Library Building, Ithaca, NY 14853, USA.
| | | |
Collapse
|
15
|
Lin JY, Stupar RM, Hans C, Hyten DL, Jackson SA. Structural and functional divergence of a 1-Mb duplicated region in the soybean (Glycine max) genome and comparison to an orthologous region from Phaseolus vulgaris. THE PLANT CELL 2010; 22:2545-61. [PMID: 20729383 PMCID: PMC2947175 DOI: 10.1105/tpc.110.074229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 07/21/2010] [Accepted: 07/30/2010] [Indexed: 05/03/2023]
Abstract
Soybean (Glycine max) has undergone at least two rounds of polyploidization, resulting in a paleopolyploid genome that is a mosaic of homoeologous regions. To determine the structural and functional impact of these duplications, we sequenced two ~1-Mb homoeologous regions of soybean, Gm8 and Gm15, derived from the most recent ~13 million year duplication event and the orthologous region from common bean (Phaseolus vulgaris), Pv5. We observed inversions leading to major structural variation and a bias between the two chromosome segments as Gm15 experienced more gene movement (gene retention rate of 81% in Gm15 versus 91% in Gm8) and a nearly twofold increase in the deletion of long terminal repeat (LTR) retrotransposons via solo LTR formation. Functional analyses of Gm15 and Gm8 revealed decreases in gene expression and synonymous substitution rates for Gm15, for instance, a 38% increase in transcript levels from Gm8 relative to Gm15. Transcriptional divergence of homoeologs was found based on expression patterns among seven tissues and developmental stages. Our results indicate asymmetric evolution between homoeologous regions of soybean as evidenced by structural changes and expression variances of homoeologous genes.
Collapse
Affiliation(s)
- Jer-Young Lin
- Molecular and Evolutionary Genetics, Purdue University, West Lafayette, Indiana 47907
| | - Robert M. Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Christian Hans
- Molecular and Evolutionary Genetics, Purdue University, West Lafayette, Indiana 47907
| | - David L. Hyten
- Soybean Genomics and Improvement Lab, U.S. Department of Agriculture–Agricultural Research Service, Beltsville, Maryland 20705
| | - Scott A. Jackson
- Molecular and Evolutionary Genetics, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
16
|
Hand ML, Cogan NOI, Sawbridge TI, Spangenberg GC, Forster JW. Comparison of homoeolocus organisation in paired BAC clones from white clover (Trifolium repens L.) and microcolinearity with model legume species. BMC PLANT BIOLOGY 2010; 10:94. [PMID: 20492736 PMCID: PMC3095360 DOI: 10.1186/1471-2229-10-94] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 05/24/2010] [Indexed: 05/24/2023]
Abstract
BACKGROUND White clover (Trifolium repens L.) is an outbreeding allotetraploid species and an important forage legume in temperate grassland agriculture. Comparison of sub-genome architecture and study of nucleotide sequence diversity within allopolyploids provides insight into evolutionary divergence mechanisms, and is also necessary for the development of whole-genome sequencing strategies. This study aimed to evaluate the degree of divergence between the O and P' sub-genomes of white clover through sequencing of BAC clones containing paired homoeoloci. The microsyntenic relationships between the genomes of white clover and the model legumes Lotus japonicus and Medicago truncatula as well as Arabidopsis thaliana were also characterised. RESULTS A total of four paired homoeologous BACs were selected and sequenced to generate 173 kb of overlapping sequence between the O and P' sub-genomes. Equivalent gene content was generally observed, apart from small-scale deletions, in contrast to conservation of intergenic sequences, which varied between the four selected regions. Measurement of the number of synonymous substitutions between homoeologous genes led to estimation of a 4.2 million year divergence time between the two sub-genomes. Microsynteny was observed between the genomes of white clover and L. japonicus for all four targeted regions, but corresponding M. truncatula genomic regions were only identified for two BAC pairs. CONCLUSIONS This study describes the first analysis of sub-genome structural conservation across selected genomic regions in white clover. Although the high levels of sequence conservation between the O and P' sub-genomes would complicate efforts for whole genome sequence assembly, the conserved microsynteny with model legume genomes, especially that of L. japonicus, will be highly valuable for the future of white clover genomics and molecular breeding.
Collapse
Affiliation(s)
- Melanie L Hand
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
- Molecular Plant Breeding Cooperative Research Centre, Australia
- La Trobe University, Bundoora, Victoria 3086, Australia
| | - Noel OI Cogan
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
- Molecular Plant Breeding Cooperative Research Centre, Australia
| | - Timothy I Sawbridge
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
- Molecular Plant Breeding Cooperative Research Centre, Australia
- La Trobe University, Bundoora, Victoria 3086, Australia
| | - German C Spangenberg
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
- Molecular Plant Breeding Cooperative Research Centre, Australia
- La Trobe University, Bundoora, Victoria 3086, Australia
| | - John W Forster
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
- Molecular Plant Breeding Cooperative Research Centre, Australia
- La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
17
|
Kim DH, Kim KH, Van K, Kim MY, Lee SH. Fine mapping of a resistance gene to bacterial leaf pustule in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1443-50. [PMID: 20087567 DOI: 10.1007/s00122-010-1266-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/27/2009] [Indexed: 05/28/2023]
Abstract
Soybean bacterial leaf pustule (BLP) is a prevalent disease caused by Xanthomonas axonopodis pv. glycines. Fine mapping of the BLP resistant gene, rxp, is needed to select BLP resistant soybean cultivars by marker-assisted selection (MAS). We used a total of 227 recombinant inbred lines (RILs) derived from a cross between 'Taekwangkong' (BLP susceptible) and 'Danbaekkong' (BLP resistant) for rxp fine mapping and two different sets of near isogenic lines (NILs) from Hwangkeumkong x SS2-2 and Taekwangkong x SS2-2 were used for confirmation. Using sequences between Satt372 and Satt486 flanking rxp from soybean genome sequences, eight simple sequence repeats (SSR) and two single nucleotide polymorphism (SNP) markers were newly developed in a 6.2-cM interval. Linkage mapping with the RILs and NILs allowed us to map the rxp region with high resolution. The genetic order of all markers was completely consistent with their physical order. QTL analysis by comparison of the BLP phenotyping data with all markers showed rxp was located between SNUSSR17_9 and SNUSNP17_12. Gene annotation analysis of the 33 kb region between SNUSSR17_9 and SNUSNP17_12 suggested three predicted genes, two of which could be candidate genes of BLP resistance: membrane protein and zinc finger protein. Candidate genes showed high similarity with their paralogous genes, which were located on the duplicated regions obtaining BLP resistance QTLs. High-resolution map in rxp region with eight SSR and two SNP markers will be useful for not only MAS of BLP resistance but also characterization of rxp.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | | | | | | | | |
Collapse
|
18
|
Kim KD, Shin JH, Van K, Kim DH, Lee SH. Dynamic rearrangements determine genome organization and useful traits in soybean. PLANT PHYSIOLOGY 2009; 151:1066-76. [PMID: 19684227 PMCID: PMC2773080 DOI: 10.1104/pp.109.141739] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 08/10/2009] [Indexed: 05/08/2023]
Abstract
Soybean (Glycine max) is a paleopolyploid whose genome has gone through at least two rounds of polyploidy and subsequent diploidization events. Several studies have investigated the changes in genome structure produced by the relatively recent polyploidy event, but little is known about the ancient polyploidy due to the high frequency of gene loss after duplication. Our previous study, regarding a region responsible for bacterial leaf pustule, reported two homeologous Rxp regions produced by the recent whole-genome duplication event. In this study, we identified the full set of four homeologous Rxp regions (ranging from 1.96 to 4.60 Mb) derived from both the recent and ancient polyploidy events, and this supports the quadruplicated structure of the soybean genome. Among the predicted genes on chromosome 17 (linkage group D2), 71% of them were conserved in a recently duplicated region, while 21% and 24% of duplicated genes were retained in two homeologous regions formed by the ancient polyploidy. Furthermore, comparative analysis showed a 2:1 relationship between soybean and Medicago truncatula, since M. truncatula did not undergo the recent polyploidy event that soybean did. Unlike soybean, M. truncatula homeologous regions were highly fractionated and their synteny did not exist, revealing different rates of diploidization process between the two species. Our data show that extensive synteny remained in the four homeologous regions in soybean, even though the soybean genome experienced dynamic genome rearrangements following paleopolyploidy events. Moreover, multiple Rxp quantitative trait loci on different soybean chromosomes actually comprise homeologous regions produced by two rounds of polyploidy events.
Collapse
Affiliation(s)
| | | | | | | | - Suk-Ha Lee
- Department of Plant Science (K.D.K., J.H.S., K.V., D.H.K., S.-H.L.), Research Institute for Agriculture and Life Sciences (K.D.K., J.H.S., K.V., D.H.K., S.-H.L.), and Plant Genomics and Breeding Institute (S.-H.L.), Seoul National University, Seoul 151–921, Korea
| |
Collapse
|
19
|
Athinuwat D, Prathuangwong S, Cursino L, Burr T. Xanthomonas axonopodis pv. glycines soybean cultivar virulence specificity is determined by avrBs3 homolog avrXg1. PHYTOPATHOLOGY 2009; 99:996-1004. [PMID: 19594319 DOI: 10.1094/phyto-99-8-0996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Three races of Xanthomonas axonopodis pv. glycines were identified on pustule disease resistant and susceptible soybean cultivars based on virulence phenotype. For race 3, an avrBs3 homolog, avrXg1 was identified that conferred resistance expressed as a hypersensitive response on resistant cultivar Williams 82. Mutations in two predicted functional domains of avrXg1 resulted in gained virulence on Williams 82 and an increase in bacterial population number on susceptible cultivars. Expression of avrXg1 in race 1, that is predicted to confer a nonspecific HR, led to virulence on susceptible cultivars Spencer and PI 520733. Expression of avrXg1 in race 2, that is predicted of carrying avrBs3-like genes, resulted in gained virulence and fitness of pathogen on both resistant and susceptible cultivars. The results demonstrate multifunctions for avrXg1 dependent on pathogen and plant genetic backgrounds.
Collapse
Affiliation(s)
- Dusit Athinuwat
- Kasetsart University, Plant Pathology, Faculty of Agriculture, Bangkok, Thailand
| | | | | | | |
Collapse
|
20
|
Shin JH, Van K, Kim DH, Kim KD, Jang YE, Choi BS, Kim MY, Lee SH. The lipoxygenase gene family: a genomic fossil of shared polyploidy between Glycine max and Medicago truncatula. BMC PLANT BIOLOGY 2008; 8:133. [PMID: 19105811 PMCID: PMC2644698 DOI: 10.1186/1471-2229-8-133] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 12/23/2008] [Indexed: 05/04/2023]
Abstract
BACKGROUND Soybean lipoxygenases (Lxs) play important roles in plant resistance and in conferring the distinct bean flavor. Lxs comprise a multi-gene family that includes GmLx1, GmLx2 and GmLx3, and many of these genes have been characterized. We were interested in investigating the relationship between the soybean lipoxygenase isozymes from an evolutionary perspective, since soybean has undergone two rounds of polyploidy. Here we report the tetrad genome structure of soybean Lx regions produced by ancient and recent polyploidy. Also, comparative genomics with Medicago truncatula was performed to estimate Lxs in the common ancestor of soybean and Medicago. RESULTS Two Lx regions in Medicago truncatula showing synteny with soybean were analyzed. Differential evolutionary rates between soybean and Medicago were observed and the median Ks values of Mt-Mt, Gm-Mt, and Gm-Gm paralogs were determined to be 0.75, 0.62, and 0.46, respectively. Thus the comparison of Gm-Mt paralogs (Ks = 0.62) and Gm-Mt orthologs (Ks = 0.45) supports the ancient duplication of Lx regions in the common ancestor prior to the Medicago-Glycine split. After speciation, no Lx regions generated by another polyploidy were identified in Medicago. Instead tandem duplication of Lx genes was observed. On the other hand, a lineage-specific duplication occurred in soybean resulting in two pairs of Lx regions. Each pair of soybean regions was co-orthologous to one Lx region in Medicago. A total of 34 Lx genes (15 MtLxs and 19 GmLxs) were divided into two groups by phylogenetic analysis. Our study shows that the Lx gene family evolved from two distinct Lx genes in the most recent common ancestor. CONCLUSION This study analyzed two pairs of Lx regions generated by two rounds of polyploidy in soybean. Each pair of soybean homeologous regions is co-orthologous to one region of Medicago, demonstrating the quartet structure of the soybean genome. Differential evolutionary rates between soybean and Medicago were observed; thus optimized rates of Ks per year should be applied for accurate estimation of coalescence times to each case of comparison: soybean-soybean, soybean-Medicago, or Medicago-Medicago. In conclusion, the soybean Lx gene family expanded by ancient polyploidy prior to taxon divergence, followed by a soybean- specific duplication and tandem duplications, respectively.
Collapse
Affiliation(s)
- Jin Hee Shin
- Department of Plant Science, Seoul National University, Seoul 151-921, Korea
| | - Kyujung Van
- Department of Plant Science, Seoul National University, Seoul 151-921, Korea
| | - Dong Hyun Kim
- Department of Plant Science, Seoul National University, Seoul 151-921, Korea
| | - Kyung Do Kim
- Department of Plant Science, Seoul National University, Seoul 151-921, Korea
| | - Young Eun Jang
- Department of Plant Science, Seoul National University, Seoul 151-921, Korea
| | - Beom-Soon Choi
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul 151-921, Korea
| | - Moon Young Kim
- Department of Plant Science, Seoul National University, Seoul 151-921, Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Suk-Ha Lee
- Department of Plant Science, Seoul National University, Seoul 151-921, Korea
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul 151-921, Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
- Plant Genomic and Breeding Research Institute, Seoul National University, Seoul, 151-921, Korea
| |
Collapse
|
21
|
Innes RW, Ameline-Torregrosa C, Ashfield T, Cannon E, Cannon SB, Chacko B, Chen NWG, Couloux A, Dalwani A, Denny R, Deshpande S, Egan AN, Glover N, Hans CS, Howell S, Ilut D, Jackson S, Lai H, Mammadov J, Del Campo SM, Metcalf M, Nguyen A, O'Bleness M, Pfeil BE, Podicheti R, Ratnaparkhe MB, Samain S, Sanders I, Ségurens B, Sévignac M, Sherman-Broyles S, Thareau V, Tucker DM, Walling J, Wawrzynski A, Yi J, Doyle JJ, Geffroy V, Roe BA, Maroof MAS, Young ND. Differential accumulation of retroelements and diversification of NB-LRR disease resistance genes in duplicated regions following polyploidy in the ancestor of soybean. PLANT PHYSIOLOGY 2008; 148:1740-59. [PMID: 18842825 PMCID: PMC2593655 DOI: 10.1104/pp.108.127902] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Accepted: 10/06/2008] [Indexed: 05/18/2023]
Abstract
The genomes of most, if not all, flowering plants have undergone whole genome duplication events during their evolution. The impact of such polyploidy events is poorly understood, as is the fate of most duplicated genes. We sequenced an approximately 1 million-bp region in soybean (Glycine max) centered on the Rpg1-b disease resistance gene and compared this region with a region duplicated 10 to 14 million years ago. These two regions were also compared with homologous regions in several related legume species (a second soybean genotype, Glycine tomentella, Phaseolus vulgaris, and Medicago truncatula), which enabled us to determine how each of the duplicated regions (homoeologues) in soybean has changed following polyploidy. The biggest change was in retroelement content, with homoeologue 2 having expanded to 3-fold the size of homoeologue 1. Despite this accumulation of retroelements, over 77% of the duplicated low-copy genes have been retained in the same order and appear to be functional. This finding contrasts with recent analyses of the maize (Zea mays) genome, in which only about one-third of duplicated genes appear to have been retained over a similar time period. Fluorescent in situ hybridization revealed that the homoeologue 2 region is located very near a centromere. Thus, pericentromeric localization, per se, does not result in a high rate of gene inactivation, despite greatly accelerated retrotransposon accumulation. In contrast to low-copy genes, nucleotide-binding-leucine-rich repeat disease resistance gene clusters have undergone dramatic species/homoeologue-specific duplications and losses, with some evidence for partitioning of subfamilies between homoeologues.
Collapse
Affiliation(s)
- Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|