1
|
Kawaharada Y, Sandal N, Gupta V, Jin H, Kawaharada M, Taniuchi M, Ruman H, Nadzieja M, Andersen KR, Schneeberger K, Stougaard J, Andersen SU. Natural variation identifies a Pxy gene controlling vascular organisation and formation of nodules and lateral roots in Lotus japonicus. THE NEW PHYTOLOGIST 2021; 230:2459-2473. [PMID: 33759450 DOI: 10.1111/nph.17356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/01/2021] [Indexed: 05/06/2023]
Abstract
Forward and reverse genetics using the model legumes Lotus japonicus and Medicago truncatula have been instrumental in identifying the essential genes governing legume-rhizobia symbiosis. However, little information is known about the effects of intraspecific variation on symbiotic signalling. Here, we use quantitative trait locus sequencing (QTL-seq) to investigate the genetic basis of the differentiated phenotypic responses shown by the Lotus accessions Gifu and MG20 to inoculation with the Mesorhizobium loti exoU mutant that produces truncated exopolysaccharides. We identified through genetic complementation the Pxy gene as a component of this differential exoU response. Lotus Pxy encodes a leucine-rich repeat receptor-like kinase similar to Arabidopsis thaliana PXY, which regulates stem vascular development. We show that Lotus pxy insertion mutants displayed defects in root and stem vascular organisation, as well as lateral root and nodule formation. Our work links Pxy to de novo organogenesis in the root, highlights the genetic overlap between regulation of lateral root and nodule formation, and demonstrates that natural variation in Pxy affects nodulation signalling.
Collapse
Affiliation(s)
- Yasuyuki Kawaharada
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Vikas Gupta
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Haojie Jin
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Maya Kawaharada
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
| | - Makoto Taniuchi
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
| | - Hafijur Ruman
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Korbinian Schneeberger
- Department for Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
2
|
Kankanala P, Nandety RS, Mysore KS. Genomics of Plant Disease Resistance in Legumes. FRONTIERS IN PLANT SCIENCE 2019; 10:1345. [PMID: 31749817 PMCID: PMC6842968 DOI: 10.3389/fpls.2019.01345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/27/2019] [Indexed: 05/15/2023]
Abstract
The constant interactions between plants and pathogens in the environment and the resulting outcomes are of significant importance for agriculture and agricultural scientists. Disease resistance genes in plant cultivars can break down in the field due to the evolution of pathogens under high selection pressure. Thus, the protection of crop plants against pathogens is a continuous arms race. Like any other type of crop plant, legumes are susceptible to many pathogens. The dawn of the genomic era, in which high-throughput and cost-effective genomic tools have become available, has revolutionized our understanding of the complex interactions between legumes and pathogens. Genomic tools have enabled a global view of transcriptome changes during these interactions, from which several key players in both the resistant and susceptible interactions have been identified. This review summarizes some of the large-scale genomic studies that have clarified the host transcriptional changes during interactions between legumes and their plant pathogens while highlighting some of the molecular breeding tools that are available to introgress the traits into breeding programs. These studies provide valuable insights into the molecular basis of different levels of host defenses in resistant and susceptible interactions.
Collapse
|
3
|
Liu H, Sandal N, Andersen KR, James EK, Stougaard J, Kelly S, Kawaharada Y. A genetic screen for plant mutants with altered nodulation phenotypes in response to rhizobial glycan mutants. THE NEW PHYTOLOGIST 2018; 220:526-538. [PMID: 29959893 DOI: 10.1111/nph.15293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/24/2018] [Indexed: 05/08/2023]
Abstract
Nodule primordia induced by rhizobial glycan mutants often remain uninfected. To identify processes involved in infection and organogenesis we used forward genetics to identify plant genes involved in perception and responses to bacterial glycans. To dissect the mechanisms underlying the negative plant responses to the Mesorhizobium loti R7AexoU and ML001cep mutants, a screen for genetic suppressors of the nodulation phenotypes was performed on a chemically mutagenized Lotus population. Two mutant lines formed infected nitrogen-fixing pink nodules, while five mutant lines developed uninfected large white nodules, presumably altered in processes controlling organogenesis. Genetic mapping identified a mutation in the cytokinin receptor Lhk1 resulting in an alanine to valine substitution adjacent to a coiled-coil motif in the juxta-membrane region of LHK1. This results in a spontaneous nodulation phenotype and increased ethylene production. The allele was renamed snf5, and segregation studies of snf5 together with complementation studies suggest that snf5 is a gain-of-function allele. This forward genetic approach to investigate the role of glycans in the pathway synchronizing infection and organogenesis shows that a combination of plant and bacterial genetics opens new possibilities to study glycan responses in plants as well as identification of mutant alleles affecting nodule organogenesis.
Collapse
Affiliation(s)
- Huijun Liu
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Yasuyuki Kawaharada
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8-Ueda, Morioka, Iwate, Japan
| |
Collapse
|
4
|
Phylogenetic relationships of ascomycetes and basidiomycetes based on comparative genomics analysis. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0595-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Impact of Molecular Technologies on Faba Bean (Vicia faba L.) Breeding Strategies. AGRONOMY-BASEL 2012. [DOI: 10.3390/agronomy2030132] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Hashiguchi M, Abe J, Aoki T, Anai T, Suzuki A, Akashi R. The National BioResource Project (NBRP) Lotus and Glycine in Japan. BREEDING SCIENCE 2012; 61:453-61. [PMID: 23136485 PMCID: PMC3406794 DOI: 10.1270/jsbbs.61.453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/30/2011] [Indexed: 05/21/2023]
Abstract
The objective of the National BioResource Project (NBRP) in Japan is to collect, conserve and distribute biological materials for life sciences research. The project consists of twenty-eight bioresources, including animal, plant, microorganism and DNA resources. NBRP Lotus and Glycine aims to support the development of legume research through the collection, conservation, and distribution of these bioresources. Lotus japonicus is a perennial legume that grows naturally throughout Japan and is widely used as a model plant for legumes because of such advantages as its small genome size and short life cycle. Soybean (Glycine max) has been cultivated as an important crop since ancient times, and numerous research programs have generated a large amount of basic research information and valuable bioresources for this crop. We have also developed a "LegumeBase" a specialized database for the genera Lotus and Glycine, and are maintaining this database as a part of the NBRP. In this paper we will provide an overview of the resources available from the NBRP Lotus and Glycine database site, called "LegumeBase".
Collapse
Affiliation(s)
- Masatsugu Hashiguchi
- Frontier Science Research Center, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Jun Abe
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita, Sapporo, Hokkaido 060-8589, Japan
| | - Toshio Aoki
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Toyoaki Anai
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Akihiro Suzuki
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Ryo Akashi
- Frontier Science Research Center, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki 889-2192, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
7
|
Ma H, Chen S, Yang J, Chen S, Liu H. Genetic linkage maps of barfin flounder (Verasper moseri) and spotted halibut (Verasper variegatus) based on AFLP and microsatellite markers. Mol Biol Rep 2010; 38:4749-64. [PMID: 21132532 DOI: 10.1007/s11033-010-0612-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
Abstract
Barfin flounder (Verasper moseri) and spotted halibut (Verasper variegatus) are two economically important marine fish species for aquaculture in China, Korea and Japan. Construction of genetic linkage maps is an interesting issue for molecular marker-assisted selection (MAS) and for better understanding the genome structure. In the present study, we constructed genetic linkage maps for both fish species using AFLP and microsatellite markers based on an interspecific F(1) hybrid family (female V. moseri and male V. variegatus). The female genetic map comprised 98 markers (58 AFLP markers and 40 microsatellite markers), distributing in 27 linkage groups, and spanning 637 cM with an average resolution of 8.9 cM. Whereas the male genetic map consisted of 86 markers (48 AFLP and 38 microsatellite markers) in 24 linkage groups, covering a length of 625 cM with an average marker spacing of 10 cM. The expected genome length was 1,128 cM in female and 1,115 cM in male, and the estimated coverage of genome was 56% for both genetic maps. Moreover, five microsatellite markers were observed to be common to both genetic maps. This is the first time to report the genetic linkage maps of V. moseri and V. variegatus that could serve as the basis for genetic improvement and selective breeding, candidate genes cloning, and genome structure research.
Collapse
Affiliation(s)
- Hongyu Ma
- Key Lab for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China
| | | | | | | | | |
Collapse
|
8
|
Papdi C, Joseph MP, Salamó IP, Vidal S, Szabados L. Genetic technologies for the identification of plant genes controlling environmental stress responses. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:696-720. [PMID: 32688681 DOI: 10.1071/fp09047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 06/11/2009] [Indexed: 06/11/2023]
Abstract
Abiotic conditions such as light, temperature, water availability and soil parameters determine plant growth and development. The adaptation of plants to extreme environments or to sudden changes in their growth conditions is controlled by a well balanced, genetically determined signalling system, which is still far from being understood. The identification and characterisation of plant genes which control responses to environmental stresses is an essential step to elucidate the complex regulatory network, which determines stress tolerance. Here, we review the genetic approaches, which have been used with success to identify plant genes which control responses to different abiotic stress factors. We describe strategies and concepts for forward and reverse genetic screens, conventional and insertion mutagenesis, TILLING, gene tagging, promoter trapping, activation mutagenesis and cDNA library transfer. The utility of the various genetic approaches in plant stress research we review is illustrated by several published examples.
Collapse
Affiliation(s)
- Csaba Papdi
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| | - Mary Prathiba Joseph
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| | - Imma Pérez Salamó
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| | - Sabina Vidal
- Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400, Montevideo, Uruguay
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| |
Collapse
|