1
|
Wu S, Dou T, Wang K, Yuan S, Yan S, Xu Z, Liu Y, Jian Z, Zhao J, Zhao R, Wu H, Gu D, Liu L, Li Q, Wu DD, Ge C, Su Z, Jia J. Artificial selection footprints in indigenous and commercial chicken genomes. BMC Genomics 2024; 25:428. [PMID: 38689225 PMCID: PMC11061962 DOI: 10.1186/s12864-024-10291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Although many studies have been done to reveal artificial selection signatures in commercial and indigenous chickens, a limited number of genes have been linked to specific traits. To identify more trait-related artificial selection signatures and genes, we re-sequenced a total of 85 individuals of five indigenous chicken breeds with distinct traits from Yunnan Province, China. RESULTS We found 30 million non-redundant single nucleotide variants and small indels (< 50 bp) in the indigenous chickens, of which 10 million were not seen in 60 broilers, 56 layers and 35 red jungle fowls (RJFs) that we compared with. The variants in each breed are enriched in non-coding regions, while those in coding regions are largely tolerant, suggesting that most variants might affect cis-regulatory sequences. Based on 27 million bi-allelic single nucleotide polymorphisms identified in the chickens, we found numerous selective sweeps and affected genes in each indigenous chicken breed and substantially larger numbers of selective sweeps and affected genes in the broilers and layers than previously reported using a rigorous statistical model. Consistent with the locations of the variants, the vast majority (~ 98.3%) of the identified selective sweeps overlap known quantitative trait loci (QTLs). Meanwhile, 74.2% known QTLs overlap our identified selective sweeps. We confirmed most of previously identified trait-related genes and identified many novel ones, some of which might be related to body size and high egg production traits. Using RT-qPCR, we validated differential expression of eight genes (GHR, GHRHR, IGF2BP1, OVALX, ELF2, MGARP, NOCT, SLC25A15) that might be related to body size and high egg production traits in relevant tissues of relevant breeds. CONCLUSION We identify 30 million single nucleotide variants and small indels in the five indigenous chicken breeds, 10 million of which are novel. We predict substantially more selective sweeps and affected genes than previously reported in both indigenous and commercial breeds. These variants and affected genes are good candidates for further experimental investigations of genotype-phenotype relationships and practical applications in chicken breeding programs.
Collapse
Affiliation(s)
- Siwen Wu
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Tengfei Dou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Kun Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sisi Yuan
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Shixiong Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhiqiang Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yong Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zonghui Jian
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jingying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Rouhan Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hao Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dahai Gu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lixian Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qihua Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Changrong Ge
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Junjing Jia
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Pan R, Qi L, Xu Z, Zhang D, Nie Q, Zhang X, Luo W. Weighted single-step GWAS identified candidate genes associated with carcass traits in a Chinese yellow-feathered chicken population. Poult Sci 2024; 103:103341. [PMID: 38134459 PMCID: PMC10776626 DOI: 10.1016/j.psj.2023.103341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Carcass traits in broiler chickens are complex traits that are influenced by multiple genes. To gain deeper insights into the genetic mechanisms underlying carcass traits, here we conducted a weighted single-step genome-wide association study (wssGWAS) in a population of Chinese yellow-feathered chicken. The objective was to identify genomic regions and candidate genes associated with carcass weight (CW), eviscerated weight with giblets (EWG), eviscerated weight (EW), breast muscle weight (BMW), drumstick weight (DW), abdominal fat weight (AFW), abdominal fat percentage (AFP), gizzard weight (GW), and intestine length (IL). A total of 1,338 broiler chickens with phenotypic and pedigree information were included in this study. Of these, 435 chickens were genotyped using a 600K single nucleotide polymorphism chip for association analysis. The results indicate that the most significant regions for 9 traits explained 2.38% to 5.09% of the phenotypic variation, from which the region of 194.53 to 194.63Mb on chromosome 1 with the gene RELT and FAM168A identified on it was significantly associated with CW, EWG, EW, BMW, and DW. Meanwhile, the 5 traits have a strong genetic correlation, indicating that the region and the genes can be used for further research. In addition, some candidate genes associated with skeletal muscle development, fat deposition regulation, intestinal repair, and protection were identified. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses suggested that the genes are involved in processes such as vascular development (CD34, FGF7, FGFR3, ITGB1BP1, SEMA5A, LOXL2), bone formation (FGFR3, MATN1, MEF2D, DHRS3, SKI, STC1, HOXB1, HOXB3, TIPARP), and anatomical size regulation (ADD2, AKT1, CFTR, EDN3, FLII, HCLS1, ITGB1BP1, SEMA5A, SHC1, ULK1, DSTN, GSK3B, BORCS8, GRIP2). In conclusion, the integration of phenotype, genotype, and pedigree information without creating pseudo-phenotype will facilitate the genetic improvement of carcass traits in chickens, providing valuable insights into the genetic architecture and potential candidate genes underlying carcass traits, enriching our understanding and contributing to the breeding of high-quality broiler chickens.
Collapse
Affiliation(s)
- Rongyang Pan
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Xugang Yellow Poultry Seed Industry Group Co., Ltd, Jiangmen City, Guangdong Province, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Qi
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenqiang Xu
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dexiang Zhang
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Rachman MP, Bamidele O, Dessie T, Smith J, Hanotte O, Gheyas AA. Genomic analysis of Nigerian indigenous chickens reveals their genetic diversity and adaptation to heat-stress. Sci Rep 2024; 14:2209. [PMID: 38278850 PMCID: PMC10817956 DOI: 10.1038/s41598-024-52569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
Indigenous poultry breeds from Africa can survive in harsh tropical environments (such as long arid seasons, excessive rain and humidity, and extreme heat) and are resilient to disease challenges, but they are not productive compared to their commercial counterparts. Their adaptive characteristics are in response to natural selection or to artificial selection for production traits that have left selection signatures in the genome. Identifying these signatures of positive selection can provide insight into the genetic bases of tropical adaptations observed in indigenous poultry and thereby help to develop robust and high-performing breeds for extreme tropical climates. Here, we present the first large-scale whole-genome sequencing analysis of Nigerian indigenous chickens from different agro-climatic conditions, investigating their genetic diversity and adaptation to tropical hot climates (extreme arid and extreme humid conditions). The study shows a large extant genetic diversity but low level of population differentiation. Using different selection signature analyses, several candidate genes for adaptation were detected, especially in relation to thermotolerance and immune response (e.g., cytochrome P450 2B4-like, TSHR, HSF1, CDC37, SFTPB, HIF3A, SLC44A2, and ILF3 genes). These results have important implications for conserving valuable genetic resources and breeding improvement of chickens for thermotolerance.
Collapse
Affiliation(s)
- Mifta P Rachman
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK.
| | - Oladeji Bamidele
- African Chicken Genetic Gains (ACGG), Department of Animal Sciences, Obafemi Awolowo University, Ile Ife, 220282, Nigeria
| | - Tadelle Dessie
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Jacqueline Smith
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Olivier Hanotte
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia.
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Almas A Gheyas
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
4
|
Summers KM. Genetic models of fibrillinopathies. Genetics 2024; 226:iyad189. [PMID: 37972149 PMCID: PMC11021029 DOI: 10.1093/genetics/iyad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
The fibrillinopathies represent a group of diseases in which the 10-12 nm extracellular microfibrils are disrupted by genetic variants in one of the genes encoding fibrillin molecules, large glycoproteins of the extracellular matrix. The best-known fibrillinopathy is Marfan syndrome, an autosomal dominant condition affecting the cardiovascular, ocular, skeletal, and other systems, with a prevalence of around 1 in 3,000 across all ethnic groups. It is caused by variants of the FBN1 gene, encoding fibrillin-1, which interacts with elastin to provide strength and elasticity to connective tissues. A number of mouse models have been created in an attempt to replicate the human phenotype, although all have limitations. There are also natural bovine models and engineered models in pig and rabbit. Variants in FBN2 encoding fibrillin-2 cause congenital contractural arachnodactyly and mouse models for this condition have also been produced. In most animals, including birds, reptiles, and amphibians, there is a third fibrillin, fibrillin-3 (FBN3 gene) for which the creation of models has been difficult as the gene is degenerate and nonfunctional in mice and rats. Other eukaryotes such as the nematode C. elegans and zebrafish D. rerio have a gene with some homology to fibrillins and models have been used to discover more about the function of this family of proteins. This review looks at the phenotype, inheritance, and relevance of the various animal models for the different fibrillinopathies.
Collapse
Affiliation(s)
- Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia
| |
Collapse
|
5
|
Mountford J, Gheyas A, Vervelde L, Smith J. Genetic variation in chicken interferon signalling pathway genes in research lines showing differential viral resistance. Anim Genet 2022; 53:640-656. [PMID: 35739459 PMCID: PMC9544680 DOI: 10.1111/age.13233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 01/10/2023]
Abstract
Avian viruses of economic interest are a significant burden on the poultry industry, affecting production traits and resulting in mortality. Furthermore, the zoonosis of avian viruses risks pandemics developing in humans. Vaccination is the most common method of controlling viruses; however current vaccines often lack cross-protection against multiple strains of each virus. The mutagenicity of these viruses has also led to virulent strains emerging that can overcome the protection offered by vaccines. Breeding chickens with a more robust innate immune response may help in tackling current and emerging viruses. Understanding the genetic evolution of different lines will thus provide a useful tool in helping the host in the fight against pathogens. This study focuses on the interferon genes and their receptors in different chicken lines that are known to be more resistant or susceptible to particular avian viruses. Comparing genotypic differences in these core immune genes between the chicken lines may explain the phenotypic differences observed and aid the identification of causative variations. The relative resistance/susceptibility of each line to viruses of interest (Marek's disease virus, infectious bursal disease, infectious bronchitis virus and avian influenza virus) has previously been determined. Here we identify single nucleotide polymorphisms in interferons and downstream genes. Functional prediction tools were used to identify variants that may be affecting protein structure, mRNA secondary structure or transcription factor and micro-RNA binding sites. These variants were then considered in the context of the research lines and their distribution between phenotypes. We highlight 60 variants of interest in the interferon pathway genes that may account for susceptibility/resistance to viral pathogens.
Collapse
Affiliation(s)
- Joshua Mountford
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Almas Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
6
|
Vallejo-Trujillo A, Kebede A, Lozano-Jaramillo M, Dessie T, Smith J, Hanotte O, Gheyas AA. Ecological niche modelling for delineating livestock ecotypes and exploring environmental genomic adaptation: The example of Ethiopian village chicken. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.866587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In evolutionary ecology, an “ecotype” is a population that is genetically adapted to specific environmental conditions. Environmental and genetic characterisation of livestock ecotypes can play a crucial role in conservation and breeding improvement, particularly to achieve climate resilience. However, livestock ecotypes are often arbitrarily defined without a detailed characterisation of their agro-ecologies. In this study, we employ a novel integrated approach, combining ecological niche modelling (ENM) with genomics, to delineate ecotypes based on environmental characterisation of population habitats and unravel the signatures of adaptive selection in the ecotype genomes. The method was applied on 25 Ethiopian village chicken populations representing diverse agro-climatic conditions. ENM identified six key environmental drivers of adaptation and delineated 12 ecotypes. Within-ecotype selection signature analyses (using Hp and iHS methods) identified 1,056 candidate sweep regions (SRs) associated with diverse biological processes. While most SRs are ecotype-specific, the biological pathways perturbed by overlapping genes are largely shared among ecotypes. A few biological pathways were shared amongst most ecotypes and the genes involved showed functions important for scavenging chickens, e.g., neuronal development/processes, immune response, vision development, and learning. Genotype-environment association using redundancy analysis (RDA) allowed for correlating ∼33% of the SRs with major environmental drivers. Inspection of some strong candidate genes from selection signature analysis and RDA showed highly relevant functions in relation to the major environmental drivers of corresponding ecotypes. This integrated approach offers a powerful tool to gain insight into the complex processes of adaptive evolution including the genotype × environment (G × E) interactions.
Collapse
|
7
|
Rare and population-specific functional variation across pig lines. Genet Sel Evol 2022; 54:39. [PMID: 35659233 PMCID: PMC9164375 DOI: 10.1186/s12711-022-00732-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/17/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND It is expected that functional, mainly missense and loss-of-function (LOF), and regulatory variants are responsible for most phenotypic differences between breeds and genetic lines of livestock species that have undergone diverse selection histories. However, there is still limited knowledge about the existing missense and LOF variation in commercial livestock populations, in particular regarding population-specific variation and how it can affect applications such as across-breed genomic prediction. METHODS We re-sequenced the whole genome of 7848 individuals from nine commercial pig lines (average sequencing coverage: 4.1×) and imputed whole-genome genotypes for 440,610 pedigree-related individuals. The called variants were categorized according to predicted functional annotation (from LOF to intergenic) and prevalence level (number of lines in which the variant segregated; from private to widespread). Variants in each category were examined in terms of their distribution along the genome, alternative allele frequency, per-site Wright's fixation index (FST), individual load, and association to production traits. RESULTS Of the 46 million called variants, 28% were private (called in only one line) and 21% were widespread (called in all nine lines). Genomic regions with a low recombination rate were enriched with private variants. Low-prevalence variants (called in one or a few lines only) were enriched for lower allele frequencies, lower FST, and putatively functional and regulatory roles (including LOF and deleterious missense variants). On average, individuals carried fewer private deleterious missense alleles than expected compared to alleles with other predicted consequences. Only a small subset of the low-prevalence variants had intermediate allele frequencies and explained small fractions of phenotypic variance (up to 3.2%) of production traits. The significant low-prevalence variants had higher per-site FST than the non-significant ones. These associated low-prevalence variants were tagged by other more widespread variants in high linkage disequilibrium, including intergenic variants. CONCLUSIONS Most low-prevalence variants have low minor allele frequencies and only a small subset of low-prevalence variants contributed detectable fractions of phenotypic variance of production traits. Accounting for low-prevalence variants is therefore unlikely to noticeably benefit across-breed analyses, such as the prediction of genomic breeding values in a population using reference populations of a different genetic background.
Collapse
|
8
|
Zhang Y, Cai W, Li Q, Wang Y, Wang Z, Zhang Q, Xu L, Xu L, Hu X, Zhu B, Gao X, Chen Y, Gao H, Li J, Zhang L. Transcriptome Analysis of Bovine Rumen Tissue in Three Developmental Stages. Front Genet 2022; 13:821406. [PMID: 35309117 PMCID: PMC8928727 DOI: 10.3389/fgene.2022.821406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/21/2022] [Indexed: 01/23/2023] Open
Abstract
Rumen development is a crucial physiological challenge for ruminants. However, the molecular mechanism regulating rumen development has not been clearly elucidated. In this study, we investigated genes involved in rumen development in 13 rumen tissues from three developmental stages (birth, youth, and adult) using RNA sequencing. We identified that 6,048 genes were differentially expressed among three developmental stages. Using weighted correlation network analysis, we found that 12 modules were significantly associated with developmental stages. Functional annotation and protein–protein interaction (PPI) network analysis revealed that CCNB1, CCNB2, IGF1, IGF2, HMGCL, BDH1, ACAT1, HMGCS2, and CREBBP involved in rumen development. Integrated transcriptome with GWAS information of carcass weight (CW), stomach weight (SW), marbling score (MS), backfat thickness (BFT), ribeye area (REA), and lean meat weight (LMW), we found that upregulated DEGs (fold change 0∼1) in birth–youth comparison were significantly enriched with GWAS signals of MS, downregulated DEGs (fold change >3) were significantly enriched with GWAS signals of SW, and fold change 0∼1 up/downregulated DEGs in birth–adult comparison were significantly enriched with GWAS signals of CW, LMW, REA, and BFT. Furthermore, we found that GWAS signals for CW, LMW, and REA were enriched in turquoise module, and GWAS signals for CW was enriched in lightgreen module. Our study provides novel insights into the molecular mechanism underlying rumen development in cattle and highlights an integrative analysis for illustrating the genetic architecture of beef complex traits.
Collapse
Affiliation(s)
- Yapeng Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Cai
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yahui Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zezhao Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Animal Husbandry and Veterinary Research, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xin Hu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Junya Li, ; Lupei Zhang,
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Junya Li, ; Lupei Zhang,
| |
Collapse
|
9
|
Gheyas A, Vallejo-Trujillo A, Kebede A, Dessie T, Hanotte O, Smith J. Whole genome sequences of 234 indigenous African chickens from Ethiopia. Sci Data 2022; 9:53. [PMID: 35165296 PMCID: PMC8844291 DOI: 10.1038/s41597-022-01129-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/15/2021] [Indexed: 11/15/2022] Open
Abstract
Indigenous chickens predominate poultry production in Africa. Although preferred for backyard farming because of their adaptability to harsh tropical environments, these populations suffer from relatively low productivity compared to commercial lines. Genome analyses can unravel the genetic potential of improvement of these birds for both production and resilience traits for the benefit of African poultry farming systems. Here we report whole-genome sequences of 234 indigenous chickens from 24 Ethiopian populations distributed under diverse agro-climatic conditions. The data represents over eight terabytes of paired-end sequences from the Ilumina HiSeqX platform with an average coverage of about 57X. Almost 99% of the sequence reads could be mapped against the chicken reference genome (GRCg6a), confirming the high quality of the data. Variant calling detected around 15 million SNPs, of which about 86% are known variants (i.e., present in public databases), providing further confidence on the data quality. The dataset provides an excellent resource for investigating genetic diversity and local environmental adaptations with important implications for breed improvement and conservation purposes. Measurement(s) | genome | Technology Type(s) | DNA sequencing | Factor Type(s) | animal population | Sample Characteristic - Organism | Gallus gallus | Sample Characteristic - Location | Ethiopia |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.16999891
Collapse
|
10
|
van der Zwan H, van der Sluis R. Polly Wants a Genome: The Lack of Genetic Testing for Pet Parrot Species. Genes (Basel) 2021; 12:1097. [PMID: 34356113 PMCID: PMC8307168 DOI: 10.3390/genes12071097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/04/2022] Open
Abstract
Parrots are considered the third most popular pet species, after dogs and cats, in the United States of America. Popular birds include budgerigars, lovebirds and cockatiels and are known for their plumage and vocal learning abilities. Plumage colour variation remains the main driving force behind breeder selection. Despite the birds' popularity, only two molecular genetic tests-bird sexing and pathogen screening-are commercially available to breeders. For a limited number of species, parentage verification tests are available, but are mainly used in conservation and not for breeding purposes. No plumage colour genotyping test is available for any of the species. Due to the fact that there isn't any commercial plumage genotype screening or parentage verification tests available, breeders mate close relatives to ensure recessive colour alleles are passed to the next generation. This, in turn, leads to inbreeding depression and decreased fertility, lower hatchability and smaller clutch sizes, all important traits in commercial breeding systems. This review highlights the research carried out in the field of pet parrot genomics and points out the areas where future research can make a vital contribution to understanding how parrot breeding can be improved to breed healthy, genetically diverse birds.
Collapse
Affiliation(s)
- Henriëtte van der Zwan
- Focus Area for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
| | | |
Collapse
|
11
|
Zou A, Nadeau K, Wang PW, Lee JY, Guttman DS, Sharif S, Korver DR, Brumell JH, Parkinson J. Accumulation of genetic variants associated with immunity in the selective breeding of broilers. BMC Genet 2020; 21:5. [PMID: 31952471 PMCID: PMC6969402 DOI: 10.1186/s12863-020-0807-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Background To satisfy an increasing demand for dietary protein, the poultry industry has employed genetic selection to increase the growth rate of broilers by over 400% in the past 50 years. Although modern broilers reach a marketable weight of ~ 2 kg in a short span of 35 days, a speed twice as fast as a broiler 50 years ago, the expedited growth has been associated with several negative detrimental consequences. Aside from heart and musculoskeletal problems, which are direct consequences of additional weight, the immune response is also thought to be altered in modern broilers. Results Given that identifying the underlying genetic basis responsible for a less sensitive innate immune response would be economically beneficial for poultry breeding, we decided to compare the genomes of two unselected meat control strains that are representative of broilers from 1957 and 1978, and a current commercial broiler line. Through analysis of genetic variants, we developed a custom prioritization strategy to identify genes and pathways that have accumulated genetic changes and are biologically relevant to immune response and growth performance. Our results highlight two genes, TLR3 and PLIN3, with genetic variants that are predicted to enhance growth performance at the expense of immune function. Conclusions Placing these new genomes in the context of other chicken lines, reveal genetic changes that have specifically arisen in selective breeding programs that were implemented in the last 50 years.
Collapse
Affiliation(s)
- Angela Zou
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, ON, Canada.,Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Kerry Nadeau
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Pauline W Wang
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks Street, Toronto, M5S 3G5, ON, Canada
| | - Jee Yeon Lee
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks Street, Toronto, M5S 3G5, ON, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks Street, Toronto, M5S 3G5, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3G5, ON, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Doug R Korver
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - John H Brumell
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada.,Program in Cell Biology, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - John Parkinson
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, ON, Canada. .,Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada.
| |
Collapse
|
12
|
D'Alessandro E, Sottile G, Sardina MT, Criscione A, Bordonaro S, Sutera AM, Zumbo A, Portolano B, Mastrangelo S. Genome-wide analyses reveal the regions involved in the phenotypic diversity in Sicilian pigs. Anim Genet 2019; 51:101-105. [PMID: 31793034 DOI: 10.1111/age.12887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/26/2019] [Accepted: 11/10/2019] [Indexed: 12/22/2022]
Abstract
Nero Siciliano (Sicilian Black, SB) is a local pig breed generally of uniform black color. In addition to this officially recognized breed, there are animals showing morphological characteristics resembling the SB but with gray hair (Sicilian Grey, SG). The SG, compared with the SB, also shows a more compact structure with greater transverse diameters, higher average daily gains and lower thickness of the back fat. In this study, using the Illumina PorcineSNP60 BeadChip, we run genome-wide analyses to identify regions that may explain the phenotypic differences between SB (n = 21) and SG (n = 27) individuals. Combining the results of the two case-control approaches (GWAS and FST ), we identified two significant regions, one on SSC5 (95 401 083 bp) and one on SSC15 (55 051 435 bp), which contains several candidate genes related to growth traits in pig. The results of the Bayesian population differentiation approach identified a marker near the MGAT4C, a gene associated with average daily gain in pigs. Finally, scanning the genome for runs of homozygosity islands, we found that the two groups have different runs of homozygosity islands, with several candidate genes involved in coat color (in SG) or related to different pig performance traits (in SB). In summary, the two analyzed groups differed for several phenotypic traits, and genes involved in these traits (growth, meat traits and coat color) were detected. This study provided another contribution to the identification of genomic regions involved in phenotypic variability in local pig populations.
Collapse
Affiliation(s)
- E D'Alessandro
- Dipartimento Scienze Veterinarie, University of Messina, 98168, Messina, Italy
| | - G Sottile
- Dipartimento Scienze Economiche, Aziendali e Statistiche, University of Palermo, 90128, Palermo, Italy
| | - M T Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128, Palermo, Italy
| | - A Criscione
- Dipartimento di Agricoltura, Alimentazione, Ambiente, University of Catania, Catania, 95123, Italy
| | - S Bordonaro
- Dipartimento di Agricoltura, Alimentazione, Ambiente, University of Catania, Catania, 95123, Italy
| | - A M Sutera
- Dipartimento Scienze Veterinarie, University of Messina, 98168, Messina, Italy
| | - A Zumbo
- Dipartimento Scienze Veterinarie, University of Messina, 98168, Messina, Italy
| | - B Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128, Palermo, Italy
| | - S Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128, Palermo, Italy
| |
Collapse
|
13
|
Freem L, Summers KM, Gheyas AA, Psifidi A, Boulton K, MacCallum A, Harne R, O’Dell J, Bush SJ, Hume DA. Analysis of the Progeny of Sibling Matings Reveals Regulatory Variation Impacting the Transcriptome of Immune Cells in Commercial Chickens. Front Genet 2019; 10:1032. [PMID: 31803225 PMCID: PMC6870463 DOI: 10.3389/fgene.2019.01032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/25/2019] [Indexed: 01/05/2023] Open
Abstract
There is increasing recognition that the underlying genetic variation contributing to complex traits influences transcriptional regulation and can be detected at a population level as expression quantitative trait loci. At the level of an individual, allelic variation in transcriptional regulation of individual genes can be detected by measuring allele-specific expression in RNAseq data. We reasoned that extreme variants in gene expression could be identified by analysis of inbred progeny with shared grandparents. Commercial chickens have been intensively selected for production traits. Selection is associated with large blocks of linkage disequilibrium with considerable potential for co-selection of closely linked "hitch-hiker alleles" affecting traits unrelated to the feature being selected, such as immune function, with potential impact on the productivity and welfare of the animals. To test this hypothesis that there is extreme allelic variation in immune-associated genes we sequenced a founder population of commercial broiler and layer birds. These birds clearly segregated genetically based upon breed type. Each genome contained numerous candidate null mutations, protein-coding variants predicted to be deleterious and extensive non-coding polymorphism. We mated selected broiler-layer pairs then generated cohorts of F2 birds by sibling mating of the F1 generation. Despite the predicted prevalence of deleterious coding variation in the genomic sequence of the founders, clear detrimental impacts of inbreeding on survival and post-hatch development were detected in only one F2 sibship of 15. There was no effect on circulating leukocyte populations in hatchlings. In selected F2 sibships we performed RNAseq analysis of the spleen and isolated bone marrow-derived macrophages (with and without lipopolysaccharide stimulation). The results confirm the predicted emergence of very large differences in expression of individual genes and sets of genes. Network analysis of the results identified clusters of co-expressed genes that vary between individuals and suggested the existence of trans-acting variation in the expression in macrophages of the interferon response factor family that distinguishes the parental broiler and layer birds and influences the global response to lipopolysaccharide. This study shows that the impact of inbreeding on immune cell gene expression can be substantial at the transcriptional level, and potentially opens a route to accelerate selection using specific alleles known to be associated with desirable expression levels.
Collapse
Affiliation(s)
- Lucy Freem
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Almas A. Gheyas
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Androniki Psifidi
- Department of Clinical Sciences and Services, Royal Veterinary College, University of London, London, United Kingdom
| | - Kay Boulton
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Amanda MacCallum
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rakhi Harne
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jenny O’Dell
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
14
|
Hume DA, Gutowska‐Ding MW, Garcia‐Morales C, Kebede A, Bamidele O, Trujillo AV, Gheyas AA, Smith J. Functional evolution of the colony‐stimulating factor 1 receptor (CSF1R) and its ligands in birds. J Leukoc Biol 2019; 107:237-250. [DOI: 10.1002/jlb.6ma0519-172r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- David A. Hume
- Mater Research Institute‐University of Queensland Translational Research Institute Woolloongabba QLD 4102 Australia
| | | | - Carla Garcia‐Morales
- Department Biotecnologia Universidad Automona del Estado de Mexico Toluca Area Mexico
| | - Adebabay Kebede
- Department of Microbial, Cellular and Molecular Biology Addis Ababa University Addis Ababa Ethiopia
- Amhara Regional Agricultural Research Institute Bahir Dar Ethiopia
- International Livestock Research Institution (ILRI) Addis Ababa Ethiopia
| | - Oladeji Bamidele
- African Chicken Genetic Gains Project‐Nigeria The International Livestock Research Institute (ILRI) Addis Ababa Ethiopia
| | - Adriana Vallejo Trujillo
- Cells, Organisms and Molecular Genetics, School of Life Sciences University of Nottingham Nottingham United Kingdom
| | - Almas A. Gheyas
- The Roslin Institute University of Edinburgh Midlothian United Kingdom
- Centre for Tropical Livestock Genetics and Health University of Edinburgh Midlothian United Kingdom
| | - Jacqueline Smith
- The Roslin Institute University of Edinburgh Midlothian United Kingdom
- Centre for Tropical Livestock Genetics and Health University of Edinburgh Midlothian United Kingdom
| |
Collapse
|
15
|
A survey of functional genomic variation in domesticated chickens. Genet Sel Evol 2018; 50:17. [PMID: 29661130 PMCID: PMC5902831 DOI: 10.1186/s12711-018-0390-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deleterious genetic variation can increase in frequency as a result of mutations, genetic drift, and genetic hitchhiking. Although individual effects are often small, the cumulative effect of deleterious genetic variation can impact population fitness substantially. In this study, we examined the genome of commercial purebred chicken lines for deleterious and functional variations, combining genotype and whole-genome sequence data. RESULTS We analysed over 22,000 animals that were genotyped on a 60 K SNP chip from four purebred lines (two white egg and two brown egg layer lines) and two crossbred lines. We identified 79 haplotypes that showed a significant deficit in homozygous carriers. This deficit was assumed to stem from haplotypes that potentially harbour lethal recessive variations. To identify potentially deleterious mutations, a catalogue of over 10 million variants was derived from 250 whole-genome sequenced animals from three purebred white-egg layer lines. Out of 4219 putative deleterious variants, 152 mutations were identified that likely induce embryonic lethality in the homozygous state. Inferred deleterious variation showed evidence of purifying selection and deleterious alleles were generally overrepresented in regions of low recombination. Finally, we found evidence that mutations, which were inferred to be evolutionally intolerant, likely have positive effects in commercial chicken populations. CONCLUSIONS We present a comprehensive genomic perspective on deleterious and functional genetic variation in egg layer breeding lines, which are under intensive selection and characterized by a small effective population size. We show that deleterious variation is subject to purifying selection and that there is a positive relationship between recombination rate and purging efficiency. In addition, multiple putative functional coding variants were discovered in selective sweep regions, which are likely under positive selection. Together, this study provides a unique molecular perspective on functional and deleterious variation in commercial egg-laying chickens, which can enhance current genomic breeding practices to lower the frequency of undesirable variants in the population.
Collapse
|
16
|
The effects of recent changes in breeding preferences on maintaining traditional Dutch chicken genomic diversity. Heredity (Edinb) 2018; 121:564-578. [PMID: 29588508 DOI: 10.1038/s41437-018-0072-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 11/08/2022] Open
Abstract
Traditional Dutch chicken breeds are marginalised breeds of ornamental and cultural-historical importance. In the last decades, miniaturising of existing breeds (so called neo-bantam) has become popular and resulted in alternatives to original large breeds. However, while backcrossing is increasing the neo-bantams homozygosity, genetic exchange between breeders may increase their genetic diversity. We use the 60 K SNP array to characterise the genetic diversity, demographic history, and level of inbreeding of Dutch heritage breeds, and particularly of neo-bantams. Commercial white layers are used to contrast the impact of management strategy on genetic diversity and demography. A high proportion of alleles was found to be shared between large fowls and neo-bantams, suggesting gene flow during neo-bantams development. Population admixture analysis supports these findings, in addition to revealing introgression from neo-bantams of the same breed and of phenotypically similar breeds. The prevalence of long runs of homozygosity (ROH) confirms the importance of recent inbreeding. A high diversity in management, carried out in small breeding units explains the high heterogeneity in diversity and ROH profile displayed by traditional breeds compared to commercial lines. Population bottlenecks may explain the long ROHs in large fowls, while repetitive backcrossing for phenotype selection may account for them in neo-bantams. Our results highlight the importance of using markers to inform breeding programmes on potentially harmful homozygosity to prevent loss of genetic diversity. We conclude that bantamisation has generated unique and identifiable genetic diversity. However, this diversity can only be preserved in the near future through structured breeding programmes.
Collapse
|
17
|
Boschiero C, Moreira GCM, Gheyas AA, Godoy TF, Gasparin G, Mariani PDSC, Paduan M, Cesar ASM, Ledur MC, Coutinho LL. Genome-wide characterization of genetic variants and putative regions under selection in meat and egg-type chicken lines. BMC Genomics 2018; 19:83. [PMID: 29370772 PMCID: PMC5785814 DOI: 10.1186/s12864-018-4444-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
Background Meat and egg-type chickens have been selected for several generations for different traits. Artificial and natural selection for different phenotypes can change frequency of genetic variants, leaving particular genomic footprints throghtout the genome. Thus, the aims of this study were to sequence 28 chickens from two Brazilian lines (meat and white egg-type) and use this information to characterize genome-wide genetic variations, identify putative regions under selection using Fst method, and find putative pathways under selection. Results A total of 13.93 million SNPs and 1.36 million INDELs were identified, with more variants detected from the broiler (meat-type) line. Although most were located in non-coding regions, we identified 7255 intolerant non-synonymous SNPs, 512 stopgain/loss SNPs, 1381 frameshift and 1094 non-frameshift INDELs that may alter protein functions. Genes harboring intolerant non-synonymous SNPs affected metabolic pathways related mainly to reproduction and endocrine systems in the white-egg layer line, and lipid metabolism and metabolic diseases in the broiler line. Fst analysis in sliding windows, using SNPs and INDELs separately, identified over 300 putative regions of selection overlapping with more than 250 genes. For the first time in chicken, INDEL variants were considered for selection signature analysis, showing high level of correlation in results between SNP and INDEL data. The putative regions of selection signatures revealed interesting candidate genes and pathways related to important phenotypic traits in chicken, such as lipid metabolism, growth, reproduction, and cardiac development. Conclusions In this study, Fst method was applied to identify high confidence putative regions under selection, providing novel insights into selection footprints that can help elucidate the functional mechanisms underlying different phenotypic traits relevant to meat and egg-type chicken lines. In addition, we generated a large catalog of line-specific and common genetic variants from a Brazilian broiler and a white egg layer line that can be used for genomic studies involving association analysis with phenotypes of economic interest to the poultry industry. Electronic supplementary material The online version of this article (10.1186/s12864-018-4444-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Biotechnology Laboratory, Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil. .,Noble Reserch Institute, 2510 Sam Noble Parkway, Ardmore, Oklahoma, 73401, USA.
| | - Gabriel Costa Monteiro Moreira
- Animal Biotechnology Laboratory, Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | - Almas Ara Gheyas
- Department of Genetics and Genomics, The Roslin Institute and Royal School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Thaís Fernanda Godoy
- Animal Biotechnology Laboratory, Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | - Gustavo Gasparin
- Animal Biotechnology Laboratory, Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | - Pilar Drummond Sampaio Corrêa Mariani
- Animal Biotechnology Laboratory, Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | - Marcela Paduan
- Animal Biotechnology Laboratory, Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | - Aline Silva Mello Cesar
- Animal Biotechnology Laboratory, Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | | | - Luiz Lehmann Coutinho
- Animal Biotechnology Laboratory, Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
18
|
Deciphering signature of selection affecting beef quality traits in Angus cattle. Genes Genomics 2017; 40:63-75. [PMID: 29892901 DOI: 10.1007/s13258-017-0610-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022]
Abstract
Artificial selection towards a desired phenotype/trait has modified the genomes of livestock dramatically that generated breeds that greatly differ in morphology, production and environmental adaptation traits. Angus cattle are among the famous cattle breeds developed for superior beef quality. This paper aimed at exploring genomic regions under selection in Angus cattle that are associated with meat quality traits and other associated phenotypes. The whole genome of 10 Angus cattle was compared with 11 Hanwoo (A-H) and 9 Jersey (A-J) cattle breeds using a cross-population composite likelihood ratio (XP-CLR) statistical method. The top 1% of the empirical distribution was taken as significant and annotated using UMD3.1. As a result, 255 and 210 genes were revealed under selection from A-H and A-J comparisons, respectively. The WebGestalt gene ontology analysis resulted in sixteen (A-H) and five (A-J) significantly enriched KEGG pathways. Several pathways associated with meat quality traits (insulin signaling, type II diabetes mellitus pathway, focal adhesion pathway, and ECM-receptor interaction), and feeding efficiency (olfactory transduction, tight junction, and metabolic pathways) were enriched. Genes affecting beef quality traits (e.g., FABP3, FTO, DGAT2, ACS, ACAA2, CPE, TNNI1), stature and body size (e.g., PLAG1, LYN, CHCHD7, RPS20), fertility and dystocia (e.g., ESR1, RPS20, PPP2R1A, GHRL, PLAG1), feeding efficiency (e.g., PIK3CD, DNAJC28, DNAJC3, GHRL, PLAG1), coat color (e.g., MC1-R) and genetic disorders (e.g., ITGB6, PLAG1) were found to be under positive selection in Angus cattle. The study identified genes and pathways that are related to meat quality traits and other phenotypes of Angus cattle. The findings in this study, after validation using additional or independent dataset, will provide useful information for the study of Angus cattle in particular and beef cattle in general.
Collapse
|
19
|
Moyers BT, Morrell PL, McKay JK. Genetic Costs of Domestication and Improvement. J Hered 2017; 109:103-116. [DOI: 10.1093/jhered/esx069] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Brook T Moyers
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN (Morrell)
| | - John K McKay
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO
| |
Collapse
|
20
|
Pengelly RJ, Gheyas AA, Kuo R, Mossotto E, Seaby EG, Burt DW, Ennis S, Collins A. Commercial chicken breeds exhibit highly divergent patterns of linkage disequilibrium. Heredity (Edinb) 2016; 117:375-382. [PMID: 27381324 DOI: 10.1038/hdy.2016.47] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/10/2016] [Accepted: 05/19/2016] [Indexed: 02/06/2023] Open
Abstract
The analysis of linkage disequilibrium (LD) underpins the development of effective genotyping technologies, trait mapping and understanding of biological mechanisms such as those driving recombination and the impact of selection. We apply the Malécot-Morton model of LD to create additive LD maps that describe the high-resolution LD landscape of commercial chickens. We investigated LD in chickens (Gallus gallus) at the highest resolution to date for broiler, white egg and brown egg layer commercial lines. There is minimal concordance between breeds of fine-scale LD patterns (correlation coefficient <0.21), and even between discrete broiler lines. Regions of LD breakdown, which may align with recombination hot spots, are enriched near CpG islands and transcription start sites (P<2.2 × 10-16), consistent with recent evidence described in finches, but concordance in hot spot locations between commercial breeds is only marginally greater than random. As in other birds, functional elements in the chicken genome are associated with recombination but, unlike evidence from other bird species, the LD landscape is not stable in the populations studied. The development of optimal genotyping panels for genome-led selection programmes will depend on careful analysis of the LD structure of each line of interest. Further study is required to fully elucidate the mechanisms underlying highly divergent LD patterns found in commercial chickens.
Collapse
Affiliation(s)
- R J Pengelly
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - A A Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - R Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - E Mossotto
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - E G Seaby
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - D W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - S Ennis
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - A Collins
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
21
|
Ishige T, Hara H, Hirano T, Kono T, Hanzawa K. Characterization and expression of non-polymorphic liver expressed antimicrobial peptide 2: LEAP-2 in the Japanese quail, Coturnix japonica. Anim Sci J 2016; 87:1182-7. [DOI: 10.1111/asj.12643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/06/2016] [Accepted: 03/01/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Taichiro Ishige
- NODAI Genome Research Center; Tokyo University of Agriculture; Tokyo Japan
| | - Hiromi Hara
- Department of Animal Science; Tokyo University of Agriculture; Atsugi Japan
| | - Takashi Hirano
- Department of Animal Science; Tokyo University of Agriculture; Atsugi Japan
| | - Tomohiro Kono
- NODAI Genome Research Center; Tokyo University of Agriculture; Tokyo Japan
- Department of Bioscience; Tokyo University of Agriculture; Tokyo Japan
| | - Kei Hanzawa
- Department of Animal Science; Tokyo University of Agriculture; Atsugi Japan
| |
Collapse
|
22
|
Sempéré G, Philippe F, Dereeper A, Ruiz M, Sarah G, Larmande P. Gigwa-Genotype investigator for genome-wide analyses. Gigascience 2016; 5:25. [PMID: 27267926 PMCID: PMC4897896 DOI: 10.1186/s13742-016-0131-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/16/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Exploring the structure of genomes and analyzing their evolution is essential to understanding the ecological adaptation of organisms. However, with the large amounts of data being produced by next-generation sequencing, computational challenges arise in terms of storage, search, sharing, analysis and visualization. This is particularly true with regards to studies of genomic variation, which are currently lacking scalable and user-friendly data exploration solutions. DESCRIPTION Here we present Gigwa, a web-based tool that provides an easy and intuitive way to explore large amounts of genotyping data by filtering it not only on the basis of variant features, including functional annotations, but also on genotype patterns. The data storage relies on MongoDB, which offers good scalability properties. Gigwa can handle multiple databases and may be deployed in either single- or multi-user mode. In addition, it provides a wide range of popular export formats. CONCLUSIONS The Gigwa application is suitable for managing large amounts of genomic variation data. Its user-friendly web interface makes such processing widely accessible. It can either be simply deployed on a workstation or be used to provide a shared data portal for a given community of researchers.
Collapse
Affiliation(s)
- Guilhem Sempéré
- UMR InterTryp (CIRAD), Campus International de Baillarguet, 34398, Montpellier, Cedex 5, France.
- South Green Bioinformatics Platform, 1000 Avenue Agropolis, 34934, Montpellier, Cedex 5, France.
| | - Florian Philippe
- UMR DIADE (IRD), 911 Avenue Agropolis, 34934, Montpellier, Cedex 5, France
| | - Alexis Dereeper
- South Green Bioinformatics Platform, 1000 Avenue Agropolis, 34934, Montpellier, Cedex 5, France
- UMR IPME (IRD), 911 Avenue Agropolis, 34394, Montpellier, Cedex 5, France
| | - Manuel Ruiz
- South Green Bioinformatics Platform, 1000 Avenue Agropolis, 34934, Montpellier, Cedex 5, France
- UMR AGAP, CIRAD, 34398, Montpellier, Cedex 5, France
- Institut de Biologie Computationnelle, Université de Montpellier, 860 Rue de St Priest, 34095, Montpellier, Cedex 5, France
- Agrobiodiversity Research Area, International Center for Tropical Agriculture (CIAT), 6713, Cali, Colombia
| | - Gautier Sarah
- South Green Bioinformatics Platform, 1000 Avenue Agropolis, 34934, Montpellier, Cedex 5, France
- INRA, UMR AGAP, 34398, Montpellier, Cedex 5, France
| | - Pierre Larmande
- South Green Bioinformatics Platform, 1000 Avenue Agropolis, 34934, Montpellier, Cedex 5, France
- UMR DIADE (IRD), 911 Avenue Agropolis, 34934, Montpellier, Cedex 5, France
- Institut de Biologie Computationnelle, Université de Montpellier, 860 Rue de St Priest, 34095, Montpellier, Cedex 5, France
- INRIA Zenith Team, LIRMM, 161 Rue Ada, 34095, Montpellier, Cedex 5, France
| |
Collapse
|
23
|
Fleming DS, Koltes JE, Markey AD, Schmidt CJ, Ashwell CM, Rothschild MF, Persia ME, Reecy JM, Lamont SJ. Genomic analysis of Ugandan and Rwandan chicken ecotypes using a 600 k genotyping array. BMC Genomics 2016; 17:407. [PMID: 27230772 PMCID: PMC4882793 DOI: 10.1186/s12864-016-2711-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Background Indigenous populations of animals have developed unique adaptations to their local environments, which may include factors such as response to thermal stress, drought, pathogens and suboptimal nutrition. The survival and subsequent evolution within these local environments can be the result of both natural and artificial selection driving the acquisition of favorable traits, which over time leave genomic signatures in a population. This study’s goals are to characterize genomic diversity and identify selection signatures in chickens from equatorial Africa to identify genomic regions that may confer adaptive advantages of these ecotypes to their environments. Results Indigenous chickens from Uganda (n = 72) and Rwanda (n = 100), plus Kuroilers (n = 24, an Indian breed imported to Africa), were genotyped using the Axiom® 600 k Chicken Genotyping Array. Indigenous ecotypes were defined based upon location of sampling within Africa. The results revealed the presence of admixture among the Ugandan, Rwandan, and Kuroiler populations. Genes within runs of homozygosity consensus regions are linked to gene ontology (GO) terms related to lipid metabolism, immune functions and stress-mediated responses (FDR < 0.15). The genes within regions of signatures of selection are enriched for GO terms related to health and oxidative stress processes. Key genes in these regions had anti-oxidant, apoptosis, and inflammation functions. Conclusions The study suggests that these populations have alleles under selective pressure from their environment, which may aid in adaptation to harsh environments. The correspondence in gene ontology terms connected to stress-mediated processes across the populations could be related to the similarity of environments or an artifact of the detected admixture. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2711-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - J E Koltes
- Iowa State University, Ames, IA, USA.,University of Arkansas, Fayetteville, AR, USA
| | | | | | - C M Ashwell
- North Carolina State University, Raleigh, NC, USA
| | | | - M E Persia
- Virginia Polytechnic University, Blacksburg, VA, USA
| | - J M Reecy
- Iowa State University, Ames, IA, USA
| | | |
Collapse
|
24
|
Pértille F, Guerrero-Bosagna C, Silva VHD, Boschiero C, Nunes JDRDS, Ledur MC, Jensen P, Coutinho LL. High-throughput and Cost-effective Chicken Genotyping Using Next-Generation Sequencing. Sci Rep 2016; 6:26929. [PMID: 27220827 PMCID: PMC4879531 DOI: 10.1038/srep26929] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
Chicken genotyping is becoming common practice in conventional animal breeding improvement. Despite the power of high-throughput methods for genotyping, their high cost limits large scale use in animal breeding and selection. In the present paper we optimized the CornellGBS, an efficient and cost-effective genotyping by sequence approach developed in plants, for its application in chickens. Here we describe the successful genotyping of a large number of chickens (462) using CornellGBS approach. Genomic DNA was cleaved with the PstI enzyme, ligated to adapters with barcodes identifying individual animals, and then sequenced on Illumina platform. After filtering parameters were applied, 134,528 SNPs were identified in our experimental population of chickens. Of these SNPs, 67,096 had a minimum taxon call rate of 90% and were considered 'unique tags'. Interestingly, 20.7% of these unique tags have not been previously reported in the dbSNP. Moreover, 92.6% of these SNPs were concordant with a previous Whole Chicken-genome re-sequencing dataset used for validation purposes. The application of CornellGBS in chickens showed high performance to infer SNPs, particularly in exonic regions and microchromosomes. This approach represents a cost-effective (~US$50/sample) and powerful alternative to current genotyping methods, which has the potential to improve whole-genome selection (WGS), and genome-wide association studies (GWAS) in chicken production.
Collapse
Affiliation(s)
- Fábio Pértille
- Animal Biotechnology Laboratory, Animal Science and Pastures Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Carlos Guerrero-Bosagna
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Vinicius Henrique da Silva
- Animal Biotechnology Laboratory, Animal Science and Pastures Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Clarissa Boschiero
- Animal Biotechnology Laboratory, Animal Science and Pastures Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - José de Ribamar da Silva Nunes
- Animal Biotechnology Laboratory, Animal Science and Pastures Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Mônica Corrêa Ledur
- Brazilian Agricultural Research Corporation (EMBRAPA) Swine &Poultry, Concórdia, Santa Catarina, Brazil
| | - Per Jensen
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Luiz Lehmann Coutinho
- Animal Biotechnology Laboratory, Animal Science and Pastures Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| |
Collapse
|
25
|
Nandi S, Whyte J, Taylor L, Sherman A, Nair V, Kaiser P, McGrew MJ. Cryopreservation of specialized chicken lines using cultured primordial germ cells. Poult Sci 2016; 95:1905-11. [PMID: 27099306 PMCID: PMC4988548 DOI: 10.3382/ps/pew133] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2016] [Indexed: 01/03/2023] Open
Abstract
Biosecurity and sustainability in poultry production requires reliable germplasm conservation. Germplasm conservation in poultry is more challenging in comparison to other livestock species. Embryo cryopreservation is not feasible for egg-laying animals, and chicken semen conservation has variable success for different chicken breeds. A potential solution is the cryopreservation of the committed diploid stem cell precursors to the gametes, the primordial germ cells ( PGCS: ). Primordial germ cells are the lineage-restricted cells found at early embryonic stages in birds and form the sperm and eggs. We demonstrate here, using flocks of partially inbred, lower-fertility, major histocompatibility complex- ( MHC-: ) restricted lines of chicken, that we can easily derive and cryopreserve a sufficient number of independent lines of male and female PGCs that would be sufficient to reconstitute a poultry breed. We demonstrate that germ-line transmission can be attained from these PGCs using a commercial layer line of chickens as a surrogate host. This research is a major step in developing and demonstrating that cryopreserved PGCs could be used for the biobanking of specialized flocks of birds used in research settings. The prospective application of this technology to poultry production will further increase sustainability to meet current and future production needs.
Collapse
Affiliation(s)
- S Nandi
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - J Whyte
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - L Taylor
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - A Sherman
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - V Nair
- Avian Oncogenic Virus Group, The Pirbright Institute, Ash Road, Woking, Guildford, Surrey, GU24 0NF, UK
| | - P Kaiser
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - M J McGrew
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| |
Collapse
|
26
|
Boschiero C, Gheyas AA, Ralph HK, Eory L, Paton B, Kuo R, Fulton J, Preisinger R, Kaiser P, Burt DW. Detection and characterization of small insertion and deletion genetic variants in modern layer chicken genomes. BMC Genomics 2015; 16:562. [PMID: 26227840 PMCID: PMC4563830 DOI: 10.1186/s12864-015-1711-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/22/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Small insertions and deletions (InDels) constitute the second most abundant class of genetic variants and have been found to be associated with many traits and diseases. The present study reports on the detection and characterisation of about 883 K high quality InDels from the whole-genome analysis of several modern layer chicken lines from diverse breeds. RESULTS To reduce the error rates seen in InDel detection, this study used the consensus set from two InDel-calling packages: SAMtools and Dindel, as well as stringent post-filtering criteria. By analysing sequence data from 163 chickens from 11 commercial and 5 experimental layer lines, this study detected about 883 K high quality consensus InDels with 93% validation rate and an average density of 0.78 InDels/kb over the genome. Certain chromosomes, viz, GGAZ, 16, 22 and 25 showed very low densities of InDels whereas the highest rate was observed on GGA6. In spite of the higher recombination rates on microchromosomes, the InDel density on these chromosomes was generally lower relative to macrochromosomes possibly due to their higher gene density. About 43-87% of the InDels were found to be fixed within each line. The majority of detected InDels (86%) were 1-5 bases and about 63% were non-repetitive in nature while the rest were tandem repeats of various motif types. Functional annotation identified 613 frameshift, 465 non-frameshift and 10 stop-gain/loss InDels. Apart from the frameshift and stopgain/loss InDels that are expected to affect the translation of protein sequences and their biological activity, 33% of the non-frameshift were predicted as evolutionary intolerant with potential impact on protein functions. Moreover, about 2.5% of the InDels coincided with the most-conserved elements previously mapped on the chicken genome and are likely to define functional elements. InDels potentially affecting protein function were found to be enriched for certain gene-classes e.g. those associated with cell proliferation, chromosome and Golgi organization, spermatogenesis, and muscle contraction. CONCLUSIONS The large catalogue of InDels presented in this study along with their associated information such as functional annotation, estimated allele frequency, etc. are expected to serve as a rich resource for application in future research and breeding in the chicken.
Collapse
Affiliation(s)
- Clarissa Boschiero
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK. .,Current Address: Departamento de Zootecnia, University of Sao Paulo/ESALQ, Piracicaba, SP, 13418-900, Brazil.
| | - Almas A Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Hannah K Ralph
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Lel Eory
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Bob Paton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Richard Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | | | | | - Pete Kaiser
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| |
Collapse
|
27
|
Schmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, Warren WC, Wood JMD, Wragg D, Zhou H. Third Report on Chicken Genes and Chromosomes 2015. Cytogenet Genome Res 2015; 145:78-179. [PMID: 26282327 PMCID: PMC5120589 DOI: 10.1159/000430927] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|