1
|
Lateef I, Katoch S, Katoch A, Badiyal A, Pathania A, Dhiman S, Nisa Q, Bashir A, Nabi A, Nabi N, Fayaz T, Gulzar G, Shah MD, Shikari AB, Dar ZA, Itoo H, Shah RA, Sofi TA, Sharma V, Sharma MK, Rathour R, Sharma PN, Padder BA. Fine mapping of a new common bean anthracnose resistance gene (Co-18) to the proximal end of Pv10 in Indian landrace KRC-5. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:32. [PMID: 38270625 DOI: 10.1007/s00122-023-04539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024]
Abstract
KEY MESSAGE Mapping and fine mapping of bean anthracnose resistance genes is a continuous process. We report fine mapping of anthracnose resistance gene Co-18 which is the first anthracnose gene mapped to Pv10. The discovery of resistance gene is a major gain in the bean anthracnose pathosystem research. Among the Indian common bean landraces, KRC-5 exhibit high levels of resistance to the bean anthracnose pathogen Colletotrichum lindemuthianum. To precisely map the anthracnose resistance gene, we used a Recombinant Inbred Line (F2:9 RIL) population (KRC-5 × Jawala). The inheritance test revealed that KRC-5 carries a dominant resistance gene temporarily designated as Co-18. We discovered two RAPD markers linked to Co-18 among 287 RAPD markers. These RAPD markers were eventually developed into SCARs (Sc-OPR15 and Sc-OPF6) and flank Co-18 on chromosome Pv10 at a distance of 5.3 and 4.2 cM, respectively. At 4.0-4.1 Mb on Pv10, we detected a SNP (single-nucleotide polymorphism) signal. We synthesized 58 SSRs and 83 InDels from a pool of 135 SSRs and 1134 InDels, respectively. Five SSRs, four InDels, and two SCARs were used to generate the high-density linkage map, which led to the identification of two SSRs (SSR24 and SSR36) that are tightly linked to Co-18. These two SSRs flank the Co-18 to 178 kb genomic region with 13 candidate genes including five NLR (nucleotide-binding and leucine-rich repeat) genes. The closely linked markers SSR24 and SSR36 will be used in cloning and pyramiding of the Co-18 gene with other R genes to develop durable resistant bean varieties.
Collapse
Affiliation(s)
- Irtifa Lateef
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Shabnam Katoch
- Department of Plant Pathology, CSK HP Agricultural University, Palampur, HP, 176062, India
| | - Abhishek Katoch
- University Institute of Agricultural Sciences, Chandigarh University, Ajitgarh, India
| | - Anila Badiyal
- Department of Plant Pathology, CSK HP Agricultural University, Palampur, HP, 176062, India
| | - Anju Pathania
- Faculty of Agriculture, DAV University, Jalandhar, Punjab, 144001, India
| | - Shiwali Dhiman
- Department of Plant Pathology, CSK HP Agricultural University, Palampur, HP, 176062, India
| | - Qadrul Nisa
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Adfar Bashir
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Aasiya Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Naziya Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Tabia Fayaz
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Gazala Gulzar
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Mehraj D Shah
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Asif B Shikari
- Division of Plant Breeding and Genetics, SKUAST-K, FoA, Wadura, Baramulla, Sopore, India
| | | | - Hamidullah Itoo
- Ambri Apple Research Center, Pahanoo, SKUAST-K, Shopian, 192303, India
| | - Rafiq A Shah
- Ambri Apple Research Center, Pahanoo, SKUAST-K, Shopian, 192303, India
| | - Tariq A Sofi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Vivek Sharma
- Department of Plant Pathology, CSK HP Agricultural University, Palampur, HP, 176062, India
| | - M K Sharma
- Division of Fruit Science, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Rajeev Rathour
- Department of Agricultural Biotechnology, CSK HP Agricultural University, Palampur, HP, 176062, India
| | - P N Sharma
- Department of Plant Pathology, CSK HP Agricultural University, Palampur, HP, 176062, India
| | - Bilal A Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India.
| |
Collapse
|
2
|
Zhou L, Gao G, Li X, Wang W, Tian S, Qin G. The pivotal ripening gene SlDML2 participates in regulating disease resistance in tomato. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2291-2306. [PMID: 37466912 PMCID: PMC10579708 DOI: 10.1111/pbi.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Fruit ripening and disease resistance are two essential biological processes for quality formation and maintenance. DNA methylation, in the form of 5-methylcytosine (5mC), has been elucidated to modulate fruit ripening, but its role in regulating fruit disease resistance remains poorly understood. In this study, we show that mutation of SlDML2, the DNA demethylase gene essential for fruit ripening, affects multiple developmental processes of tomato besides fruit ripening, including seed germination, leaf length and width and flower branching. Intriguingly, loss of SlDML2 function decreased the resistance of tomato fruits against the necrotrophic fungal pathogen Botrytis cinerea. Comparative transcriptomic analysis revealed an obvious transcriptome reprogramming caused by SlDML2 mutation during B. cinerea invasion. Among the thousands of differentially expressed genes, SlβCA3 encoding a β-carbonic anhydrase and SlFAD3 encoding a ω-3 fatty acid desaturase were demonstrated to be transcriptionally activated by SlDML2-mediated DNA demethylation and positively regulate tomato resistance to B. cinerea probably in the same genetic pathway with SlDML2. We further show that the pericarp tissue surrounding B. cinerea infection exhibited a delay in ripening with singnificant decrease in expression of ripening genes that are targeted by SlDML2 and increase in expression of SlβCA3 and SlFAD3. Taken together, our results uncover an essential layer of gene regulation mediated by DNA methylation upon B. cinerea infection and raise the possible that the DNA demethylase gene SlDML2, as a multifunctional gene, participates in modulating the trade-off between fruit ripening and disease resistance.
Collapse
Affiliation(s)
- Leilei Zhou
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Guangtong Gao
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaojing Li
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weihao Wang
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Ariza-Suarez D, Keller B, Spescha A, Aparicio JS, Mayor V, Portilla-Benavides AE, Buendia HF, Bueno JM, Studer B, Raatz B. Genetic analysis of resistance to bean leaf crumple virus identifies a candidate LRR-RLK gene. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:23-38. [PMID: 35574650 DOI: 10.1111/tpj.15810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Bean leaf crumple virus (BLCrV) is a novel begomovirus (family Geminiviridae, genus Begomovirus) infecting common bean (Phaseolus vulgaris L.), threatening bean production in Latin America. Genetic resistance is required to ensure yield stability and reduce the use of insecticides, yet the available resistance sources are limited. In this study, three common bean populations containing a total of 558 genotypes were evaluated in different yield and BLCrV resistance trials under natural infection in the field. A genome-wide association study identified the locus BLC7.1 on chromosome Pv07 at 3.31 Mbp, explaining 8 to 16% of the phenotypic variation for BLCrV resistance. In comparison, whole-genome regression models explained 51 to 78% of the variation and identified the same region on Pv07 to confer resistance. The most significantly associated markers were located within the gene model Phvul.007G040400, which encodes a leucine-rich repeat receptor-like kinase subfamily III member and is likely to be involved in the innate immune response against the virus. The allelic diversity within this gene revealed five different haplotype groups, one of which was significantly associated with BLCrV resistance. As the same genome region was previously reported to be associated with resistance against other geminiviruses affecting common bean, our study highlights the role of previous breeding efforts for virus resistance in the accumulation of positive alleles against newly emerging viruses. In addition, we provide novel diagnostic single-nucleotide polymorphism markers for marker-assisted selection to exploit BLC7.1 for breeding against geminivirus diseases in one of the most important food crops worldwide.
Collapse
Affiliation(s)
- Daniel Ariza-Suarez
- Bean Program, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Beat Keller
- Bean Program, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
- Crop Science, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Anna Spescha
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Johan Steven Aparicio
- Bean Program, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Victor Mayor
- Bean Program, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Hector Fabio Buendia
- Bean Program, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Juan Miguel Bueno
- Bean Program, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Bodo Raatz
- Bean Program, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
4
|
Zhang Q, Wang J, Zhang X, Deng Y, Li F. A Conserved, Serine-Rich Protein Plays Opposite Roles in N-Mediated Immunity against TMV and N-Triggered Cell Death. Viruses 2022; 15:26. [PMID: 36680066 PMCID: PMC9865399 DOI: 10.3390/v15010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Plant nucleotide-binding, leucine-rich, repeat-containing proteins (NLRs) play important roles in plant immunity. NLR expression and function are tightly regulated by multiple mechanisms. In this study, a conserved serine/arginine-rich protein (SR protein) was identified through the yeast one-hybrid screening of a tobacco cDNA library using DNA fragments from the N gene, an NLR that confers immunity to tobacco mosaic virus (TMV). This SR protein showed an interaction with a 3' genomic regulatory sequence (GRS) and has a potential role in regulating the alternative splicing of N. Thus, it was named SR regulator for N, abbreviated SR4N. Further study showed that SR4N plays a positive role in N-mediated cell death but a negative role in N protein accumulation. SR4N also promotes multiple virus replications in co-expression experiments, and this enhancement may not function through RNA silencing suppression, as it did not enhance 35S-GFP expression in co-infiltration experiments. Bioinformatic and molecular studies revealed that SR4N belongs to the SR2Z subtype of the SR protein family, which was conserved in both dicots and monocots, and its roles in repressing viral immunity and triggering cell death were also conserved. Our study revealed new roles for SR2Z family proteins in plant immunity against viruses.
Collapse
Affiliation(s)
| | | | | | | | - Feng Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Alvarez-Diaz JC, Laugé R, Delannoy E, Huguet S, Paysant-Le Roux C, Gratias A, Geffroy V. Genome-Wide Transcriptomic Analysis of the Effects of Infection with the Hemibiotrophic Fungus Colletotrichum lindemuthianum on Common Bean. PLANTS 2022; 11:plants11151995. [PMID: 35956473 PMCID: PMC9370732 DOI: 10.3390/plants11151995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
Bean anthracnose caused by the hemibiotrophic fungus Colletotrichum lindemuthianum is one of the most important diseases of common bean (Phaseolus vulgaris) in the world. In the present study, the whole transcriptome of common bean infected with C. lindemuthianum during compatible and incompatible interactions was characterized at 48 and 72 hpi, corresponding to the biotrophy phase of the infection cycle. Our results highlight the prominent role of pathogenesis-related (PR) genes from the PR10/Bet vI family as well as a complex interplay of different plant hormone pathways including Ethylene, Salicylic acid (SA) and Jasmonic acid pathways. Gene Ontology enrichment analysis reveals that infected common bean seedlings responded by down-regulation of photosynthesis, ubiquitination-mediated proteolysis and cell wall modifications. In infected common bean, SA biosynthesis seems to be based on the PAL pathway instead of the ICS pathway, contrarily to what is described in Arabidopsis. Interestingly, ~30 NLR were up-regulated in both contexts. Overall, our results suggest that the difference between the compatible and incompatible reaction is more a question of timing and strength, than a massive difference in differentially expressed genes between these two contexts. Finally, we used RT-qPCR to validate the expression patterns of several genes, and the results showed an excellent agreement with deep sequencing.
Collapse
Affiliation(s)
- Juan C. Alvarez-Diaz
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; (J.C.A.-D.); (E.D.); (S.H.); (C.P.-L.R.); (A.G.)
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Richard Laugé
- Université Paris-Saclay, INRAE UR 1290 BIOGER, Av. Lucien Bretignières, BP 01, 78850 Thiverval Grignon, France;
| | - Etienne Delannoy
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; (J.C.A.-D.); (E.D.); (S.H.); (C.P.-L.R.); (A.G.)
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Stéphanie Huguet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; (J.C.A.-D.); (E.D.); (S.H.); (C.P.-L.R.); (A.G.)
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; (J.C.A.-D.); (E.D.); (S.H.); (C.P.-L.R.); (A.G.)
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Ariane Gratias
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; (J.C.A.-D.); (E.D.); (S.H.); (C.P.-L.R.); (A.G.)
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Valérie Geffroy
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; (J.C.A.-D.); (E.D.); (S.H.); (C.P.-L.R.); (A.G.)
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
- Correspondence: ; Tel.: +33-1-69-15-33-65
| |
Collapse
|
6
|
Tirnaz S, Miyaji N, Takuno S, Bayer PE, Shimizu M, Akter MA, Edwards D, Batley J, Fujimoto R. Whole-Genome DNA Methylation Analysis in Brassica rapa subsp. perviridis in Response to Albugo candida Infection. FRONTIERS IN PLANT SCIENCE 2022; 13:849358. [PMID: 35812966 PMCID: PMC9261781 DOI: 10.3389/fpls.2022.849358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
DNA methylation is an epigenetic mark associated with several mechanisms in plants including immunity mechanisms. However, little is known about the regulatory role of DNA methylation in the resistance response of Brassica species against fungal diseases. White rust, caused by the fungus Albugo candida, is one of the most widespread and destructive diseases of all the cultivated Brassica species, particularly Brassica rapa L. and Brassica juncea (L.) Czern and Coss. Here, we investigate whole-genome DNA methylation modifications of B. rapa subsp. perviridis in response to white rust. As a result, 233 and 275 differentially methylated regions (DMRs) in the susceptible cultivar "Misugi" and the resistant cultivar "Nanane" were identified, respectively. In both cultivars, more than half of the DMRs were associated with genes (DMR-genes). Gene expression analysis showed that 13 of these genes were also differentially expressed between control and infected samples. Gene ontology enrichment analysis of DMR genes revealed their involvement in various biological processes including defense mechanisms. DMRs were unevenly distributed around genes in susceptible and resistant cultivars. In "Misugi," DMRs tended to be located within genes, while in "Nanane," DMRs tended to be located up and downstream of the genes. However, CG DMRs were predominantly located within genes in both cultivars. Transposable elements also showed association with all three sequence contexts of DMRs but predominantly with CHG and CHH DMRs in both cultivars. Our findings indicate the occurrence of DNA methylation modifications in B. rapa in response to white rust infection and suggest a potential regulatory role of DNA methylation modification in defense mechanisms which could be exploited to improve disease resistance.
Collapse
Affiliation(s)
- Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Naomi Miyaji
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Iwate Biotechnology Research Center, Kitakami, Japan
| | - Shohei Takuno
- Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Japan
| | - Philipp E. Bayer
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | | | - Mst. Arjina Akter
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
7
|
Si Z, Qiao Y, Zhang K, Ji Z, Han J. Genome-wide identification and characterization of NBS-encoding genes in the sweet potato wild ancestor Ipomoea trifida (H.B.K.). Open Life Sci 2022; 17:497-511. [PMID: 35647293 PMCID: PMC9102303 DOI: 10.1515/biol-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 11/15/2022] Open
Abstract
The most predominant type of resistance (R) genes contain nucleotide-binding sites and leucine-rich repeat (NBS-LRR) domains, characterization of which is helpful for plant resistance improvement. However, the NBS genes of Ipomoea trifida (H.B.K.) remain insufficient to date. In this study, a genome-wide analysis of the NBS-encoding gene in I. trifida (H.B.K.) was carried out. A total of 442 NBS encoding genes were identified, amounting to 1.37% of the total genes of I. trifida (H.B.K.). Based on the analysis of the domains, the identified ItfNBS genes were further classified into seven groups: CNL, NL, CN, N, TNL, TN, and RNL. Phylogenetic analysis showed that the I. trifida NBS genes clustered into three independent clades: RNL, TNL, and CNL. Chromosome location analysis revealed that the distribution of ItfNBS genes in chromosomes was uneven, with a number ranging from 3 to 45. Multiple stress-related regulatory elements were detected in the promoters of the NBS-encoding genes, and their expression profiles were obtained. The qRT-PCR analysis revealed that IbNBS10, IbNBS20, IbNBS258, and IbNBS88 responded to stem nematode infection. These results provide critical proof for further characterization and analysis of NBS-encoding genes with important functions.
Collapse
Affiliation(s)
- Zengzhi Si
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Yake Qiao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Zhixin Ji
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Jinling Han
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| |
Collapse
|
8
|
Nabi A, Lateef I, Nisa Q, Banoo A, Rasool RS, Shah MD, Ahmad M, Padder BA. Phaseolus vulgaris-Colletotrichum lindemuthianum Pathosystem in the Post-Genomic Era: An Update. Curr Microbiol 2022; 79:36. [PMID: 34982236 DOI: 10.1007/s00284-021-02711-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022]
Abstract
Phaseolus vulgaris-Colletotrichum lindemuthianum is one among the oldest host and pathogen interface. Researchers have taken painstaking efforts across the world for understanding the dialogue during early and late phases of interaction. Collectively, these efforts resulted in the deluge of information that helped the researchers to underpin the interface. The latest molecular biology techniques furnished novel detection methods for the anthracnose pathogen, refined the understanding of pathogen population dynamics, and provided the insights on co-evolutionary common bean resistance and C. lindemuthianum virulence dynamics. One of the important breakthroughs came when the Phaseolus vulgaris and its corresponding anthracnose pathogen (C. lindemuthianum) genomes were decoded in 2014 and 2017, respectively. Availability of both the genomes yielded a significant genomic information that helped bean communities to fine map the economically important traits and to identify the pathogenicity determinants and effector molecules. The interface is in a continuous development as knowledge of the anthracnose resistance genes, their precise physical locations, and the identification of effector proteins; the fungus arsenals are being routinely updated. Hence, we revisited the interface and tried to provide an overview of host pathogen dialogue in the genomic era. Additionally, we compiled the sporadic information on this pathosystem from India and provided its futuristic road map to shape its research in the world and northern India, the major dry bean area in the country.
Collapse
Affiliation(s)
- Aasiya Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Irtifa Lateef
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Qadrul Nisa
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Aqleema Banoo
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Rovidha S Rasool
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - M D Shah
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Mushtaq Ahmad
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Bilal A Padder
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India.
| |
Collapse
|
9
|
Hannan Parker A, Wilkinson SW, Ton J. Epigenetics: a catalyst of plant immunity against pathogens. THE NEW PHYTOLOGIST 2022; 233:66-83. [PMID: 34455592 DOI: 10.1111/nph.17699] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/20/2021] [Indexed: 05/11/2023]
Abstract
The plant immune system protects against pests and diseases. The recognition of stress-related molecular patterns triggers localised immune responses, which are often followed by longer-lasting systemic priming and/or up-regulation of defences. In some cases, this induced resistance (IR) can be transmitted to following generations. Such transgenerational IR is gradually reversed in the absence of stress at a rate that is proportional to the severity of disease experienced in previous generations. This review outlines the mechanisms by which epigenetic responses to pathogen infection shape the plant immune system across expanding time scales. We review the cis- and trans-acting mechanisms by which stress-inducible epigenetic changes at transposable elements (TEs) regulate genome-wide defence gene expression and draw particular attention to one regulatory model that is supported by recent evidence about the function of AGO1 and H2A.Z in transcriptional control of defence genes. Additionally, we explore how stress-induced mobilisation of epigenetically controlled TEs acts as a catalyst of Darwinian evolution by generating (epi)genetic diversity at environmentally responsive genes. This raises questions about the long-term evolutionary consequences of stress-induced diversification of the plant immune system in relation to the long-held dichotomy between Darwinian and Lamarckian evolution.
Collapse
Affiliation(s)
- Adam Hannan Parker
- Department of Animal and Plant Sciences, Institute for Sustainable Food, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| | - Samuel W Wilkinson
- Department of Animal and Plant Sciences, Institute for Sustainable Food, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jurriaan Ton
- Department of Animal and Plant Sciences, Institute for Sustainable Food, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
10
|
Alvarez-Diaz JC, Richard MMS, Thareau V, Teano G, Paysant-Le-Roux C, Rigaill G, Pflieger S, Gratias A, Geffroy V. Genome-Wide Identification of Key Components of RNA Silencing in Two Phaseolus vulgaris Genotypes of Contrasting Origin and Their Expression Analyses in Response to Fungal Infection. Genes (Basel) 2021; 13:genes13010064. [PMID: 35052407 PMCID: PMC8774654 DOI: 10.3390/genes13010064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
RNA silencing serves key roles in a multitude of cellular processes, including development, stress responses, metabolism, and maintenance of genome integrity. Dicer, Argonaute (AGO), double-stranded RNA binding (DRB) proteins, RNA-dependent RNA polymerase (RDR), and DNA-dependent RNA polymerases known as Pol IV and Pol V form core components to trigger RNA silencing. Common bean (Phaseolus vulgaris) is an important staple crop worldwide. In this study, we aimed to unravel the components of the RNA-guided silencing pathway in this non-model plant, taking advantage of the availability of two genome assemblies of Andean and Meso-American origin. We identified six PvDCLs, thirteen PvAGOs, 10 PvDRBs, 5 PvRDRs, in both genotypes, suggesting no recent gene amplification or deletion after the gene pool separation. In addition, we identified one PvNRPD1 and one PvNRPE1 encoding the largest subunits of Pol IV and Pol V, respectively. These genes were categorized into subgroups based on phylogenetic analyses. Comprehensive analyses of gene structure, genomic localization, and similarity among these genes were performed. Their expression patterns were investigated by means of expression models in different organs using online data and quantitative RT-PCR after pathogen infection. Several of the candidate genes were up-regulated after infection with the fungus Colletotrichum lindemuthianum.
Collapse
Affiliation(s)
- Juan C. Alvarez-Diaz
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France; (J.C.A.-D.); (M.M.S.R.); (V.T.); (G.T.); (C.P.-L.-R.); (G.R.); (S.P.); (A.G.)
- Université de Paris, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
| | - Manon M. S. Richard
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France; (J.C.A.-D.); (M.M.S.R.); (V.T.); (G.T.); (C.P.-L.-R.); (G.R.); (S.P.); (A.G.)
- Université de Paris, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Vincent Thareau
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France; (J.C.A.-D.); (M.M.S.R.); (V.T.); (G.T.); (C.P.-L.-R.); (G.R.); (S.P.); (A.G.)
- Université de Paris, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
| | - Gianluca Teano
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France; (J.C.A.-D.); (M.M.S.R.); (V.T.); (G.T.); (C.P.-L.-R.); (G.R.); (S.P.); (A.G.)
- Université de Paris, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
| | - Christine Paysant-Le-Roux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France; (J.C.A.-D.); (M.M.S.R.); (V.T.); (G.T.); (C.P.-L.-R.); (G.R.); (S.P.); (A.G.)
- Université de Paris, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
| | - Guillem Rigaill
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France; (J.C.A.-D.); (M.M.S.R.); (V.T.); (G.T.); (C.P.-L.-R.); (G.R.); (S.P.); (A.G.)
- Université de Paris, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
- Laboratoire de Mathématiques et Modélisation d’Evry, Université Paris-Saclay, CNRS, Université Evry, INRAE, 91037 Evry, France
| | - Stéphanie Pflieger
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France; (J.C.A.-D.); (M.M.S.R.); (V.T.); (G.T.); (C.P.-L.-R.); (G.R.); (S.P.); (A.G.)
- Université de Paris, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
| | - Ariane Gratias
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France; (J.C.A.-D.); (M.M.S.R.); (V.T.); (G.T.); (C.P.-L.-R.); (G.R.); (S.P.); (A.G.)
- Université de Paris, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
| | - Valérie Geffroy
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France; (J.C.A.-D.); (M.M.S.R.); (V.T.); (G.T.); (C.P.-L.-R.); (G.R.); (S.P.); (A.G.)
- Université de Paris, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
- Correspondence: ; Tel.: +33-1-69-15-33-65
| |
Collapse
|
11
|
Wisser RJ, Oppenheim SJ, Ernest EG, Mhora TT, Dumas MD, Gregory NF, Evans TA, Donofrio NM. Genome assembly of a Mesoamerican derived variety of lima bean: a foundational cultivar in the Mid-Atlantic USA. G3 GENES|GENOMES|GENETICS 2021; 11:6326801. [PMID: 34542584 PMCID: PMC8527486 DOI: 10.1093/g3journal/jkab207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022]
Abstract
Lima bean, Phaseolus lunatus, is closely related to common bean and is high in fiber and protein, with a low glycemic index. Lima bean is widely grown in the state of Delaware, where late summer and early fall weather are conducive to pod production. The same weather conditions also promote diseases such as pod rot and downy mildew, the latter of which has caused previous epidemics. A better understanding of the genes underlying resistance to this and other pathogens is needed to keep this industry thriving in the region. Our current study sought to sequence, assemble, and annotate a commercially available cultivar called Bridgeton, which could then serve as a reference genome, a basis of comparison to other Phaseolus taxa, and a resource for the identification of potential resistance genes. Combined efforts of sequencing, linkage, and comparative analysis resulted in a 623 Mb annotated assembly for lima bean, as well as a better understanding of an evolutionarily dynamic resistance locus in legumes.
Collapse
Affiliation(s)
- Randall J Wisser
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, INRAE, Univ. Montpellier, SupAgro, 34060 Montpellier, France
| | - Sara J Oppenheim
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Emmalea G Ernest
- Cooperative Extension, University of Delaware, Georgetown, DE 19947, USA
| | - Terence T Mhora
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Michael D Dumas
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nancy F Gregory
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Thomas A Evans
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nicole M Donofrio
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
12
|
Si Z, Qiao Y, Zhang K, Ji Z, Han J. Characterization of Nucleotide Binding -Site-Encoding Genes in Sweetpotato, Ipomoea batatas(L.) Lam., and Their Response to Biotic and Abiotic Stresses. Cytogenet Genome Res 2021; 161:257-271. [PMID: 34320507 DOI: 10.1159/000515834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 11/19/2022] Open
Abstract
Sweetpotato, Ipomoea batatas (L.) Lam., is an important and widely grown crop, yet its production is affected severely by biotic and abiotic stresses. The nucleotide binding site (NBS)-encoding genes have been shown to improve stress tolerance in several plant species. However, the characterization of NBS-encoding genes in sweetpotato is not well-documented to date. In this study, a comprehensive analysis of NBS-encoding genes has been conducted on this species by using bioinformatics and molecular biology methods. A total of 315 NBS-encoding genes were identified, and 260 of them contained all essential conserved domains while 55 genes were truncated. Based on domain architectures, the 260 NBS-encoding genes were grouped into 6 distinct categories. Phylogenetic analysis grouped these genes into 3 classes: TIR, CC (I), and CC (II). Chromosome location analysis revealed that the distribution of NBS-encoding genes in chromosomes was uneven, with a number ranging from 1 to 34. Multiple stress-related regulatory elements were detected in the promoters, and the NBS-encoding genes' expression profiles under biotic and abiotic stresses were obtained. According to the bioinformatics analysis, 9 genes were selected for RT-qPCR analysis. The results revealed that IbNBS75, IbNBS219, and IbNBS256 respond to stem nematode infection; Ib-NBS240, IbNBS90, and IbNBS80 respond to cold stress, while IbNBS208, IbNBS71, and IbNBS159 respond to 30% PEG treatment. We hope these results will provide new insights into the evolution of NBS-encoding genes in the sweetpotato genome and contribute to the molecular breeding of sweetpotato in the future.
Collapse
Affiliation(s)
- Zengzhi Si
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yake Qiao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Zhixin Ji
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jinling Han
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
13
|
Multifaceted Chromatin Structure and Transcription Changes in Plant Stress Response. Int J Mol Sci 2021; 22:ijms22042013. [PMID: 33670556 PMCID: PMC7922328 DOI: 10.3390/ijms22042013] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/06/2023] Open
Abstract
Sessile plants are exposed throughout their existence to environmental abiotic and biotic stress factors, such as cold, heat, salinity, drought, dehydration, submergence, waterlogging, and pathogen infection. Chromatin organization affects genome stability, and its dynamics are crucial in plant stress responses. Chromatin dynamics are epigenetically regulated and are required for stress-induced transcriptional regulation or reprogramming. Epigenetic regulators facilitate the phenotypic plasticity of development and the survival and reproduction of plants in unfavorable environments, and they are highly diversified, including histone and DNA modifiers, histone variants, chromatin remodelers, and regulatory non-coding RNAs. They contribute to chromatin modifications, remodeling and dynamics, and constitute a multilayered and multifaceted circuitry for sophisticated and robust epigenetic regulation of plant stress responses. However, this complicated epigenetic regulatory circuitry creates challenges for elucidating the common or differential roles of chromatin modifications for transcriptional regulation or reprogramming in different plant stress responses. Particularly, interacting chromatin modifications and heritable stress memories are difficult to identify in the aspect of chromatin-based epigenetic regulation of transcriptional reprogramming and memory. Therefore, this review discusses the recent updates from the three perspectives—stress specificity or dependence of transcriptional reprogramming, the interplay of chromatin modifications, and transcriptional stress memory in plants. This helps solidify our knowledge on chromatin-based transcriptional reprogramming for plant stress response and memory.
Collapse
|
14
|
Garcia T, Duitama J, Zullo SS, Gil J, Ariani A, Dohle S, Palkovic A, Skeen P, Bermudez-Santana CI, Debouck DG, Martínez-Castillo J, Gepts P, Chacón-Sánchez MI. Comprehensive genomic resources related to domestication and crop improvement traits in Lima bean. Nat Commun 2021; 12:702. [PMID: 33514713 PMCID: PMC7846787 DOI: 10.1038/s41467-021-20921-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023] Open
Abstract
Lima bean (Phaseolus lunatus L.), one of the five domesticated Phaseolus bean crops, shows a wide range of ecological adaptations along its distribution range from Mexico to Argentina. These adaptations make it a promising crop for improving food security under predicted scenarios of climate change in Latin America and elsewhere. In this work, we combine long and short read sequencing technologies with a dense genetic map from a biparental population to obtain the chromosome-level genome assembly for Lima bean. Annotation of 28,326 gene models show high diversity among 1917 genes with conserved domains related to disease resistance. Structural comparison across 22,180 orthologs with common bean reveals high genome synteny and five large intrachromosomal rearrangements. Population genomic analyses show that wild Lima bean is organized into six clusters with mostly non-overlapping distributions and that Mesomerican landraces can be further subdivided into three subclusters. RNA-seq data reveal 4275 differentially expressed genes, which can be related to pod dehiscence and seed development. We expect the resources presented here to serve as a solid basis to achieve a comprehensive view of the degree of convergent evolution of Phaseolus species under domestication and provide tools and information for breeding for climate change resiliency.
Collapse
Affiliation(s)
- Tatiana Garcia
- grid.10689.360000 0001 0286 3748Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia ,grid.17088.360000 0001 2150 1785Present Address: Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA
| | - Jorge Duitama
- grid.7247.60000000419370714Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Stephanie Smolenski Zullo
- grid.27860.3b0000 0004 1936 9684Department of Plant Sciences/MS1, University of California, Davis, CA USA
| | - Juanita Gil
- grid.7247.60000000419370714Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia ,grid.411017.20000 0001 2151 0999Present Address: Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR USA
| | - Andrea Ariani
- grid.27860.3b0000 0004 1936 9684Department of Plant Sciences/MS1, University of California, Davis, CA USA ,Present Address: BASF BBCC - Innovation Center, Gent, Belgium
| | - Sarah Dohle
- grid.27860.3b0000 0004 1936 9684Department of Plant Sciences/MS1, University of California, Davis, CA USA
| | - Antonia Palkovic
- grid.27860.3b0000 0004 1936 9684Department of Plant Sciences/MS1, University of California, Davis, CA USA
| | - Paola Skeen
- grid.10689.360000 0001 0286 3748Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia ,Present Address: Nunhems USA, Vegetable Seeds BASF, Acampo, CA USA
| | - Clara Isabel Bermudez-Santana
- grid.10689.360000 0001 0286 3748Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Daniel G. Debouck
- grid.418348.20000 0001 0943 556XCentro Internacional de Agricultura Tropical, Cali, Colombia
| | - Jaime Martínez-Castillo
- grid.418270.80000 0004 0428 7635Centro de Investigación Científica de Yucatán, Yucatán, Mexico
| | - Paul Gepts
- grid.27860.3b0000 0004 1936 9684Department of Plant Sciences/MS1, University of California, Davis, CA USA
| | - Maria Isabel Chacón-Sánchez
- grid.10689.360000 0001 0286 3748Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
15
|
Cambiagno DA, Torres JR, Alvarez ME. Convergent Epigenetic Mechanisms Avoid Constitutive Expression of Immune Receptor Gene Subsets. FRONTIERS IN PLANT SCIENCE 2021; 12:703667. [PMID: 34557212 PMCID: PMC8452986 DOI: 10.3389/fpls.2021.703667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 05/14/2023]
Abstract
The gene pool encoding PRR and NLR immune receptors determines the ability of a plant to resist microbial infections. Basal expression of these genes is prevented by diverse mechanisms since their hyperactivity can be harmful. To approach the study of epigenetic control of PRR/NLR genes we here analyzed their expression in mutants carrying abnormal repressive 5-methyl cytosine (5-mC) and histone 3 lysine 9 dimethylation (H3K9me2) marks, due to lack of MET1, CMT3, MOM1, SUVH4/5/6, or DDM1. At optimal growth conditions, none of the mutants showed basal expression of the defense gene marker PR1, but all of them had greater resistance to Pseudomonas syringae pv. tomato than wild type plants, suggesting they are primed to stimulate immune cascades. Consistently, analysis of available transcriptomes indicated that all mutants showed activation of particular PRR/NLR genes under some growth conditions. Under low defense activation, 37 PRR/NLR genes were expressed in these plants, but 29 of them were exclusively activated in specific mutants, indicating that MET1, CMT3, MOM1, SUVH4/5/6, and DDM1 mediate basal repression of different subsets of genes. Some epigenetic marks present at promoters, but not gene bodies, could explain the activation of these genes in the mutants. As expected, suvh4/5/6 and ddm1 activated genes carrying 5-mC and H3K9me2 marks in wild type plants. Surprisingly, all mutants expressed genes harboring promoter H2A.Z/H3K27me3 marks likely affected by the chromatin remodeler PIE1 and the histone demethylase REF6, respectively. Therefore, MET1, CMT3, MOM1, SUVH4/5/6, and DDM1, together with REF6, seemingly contribute to the establishment of chromatin states that prevent constitutive PRR/NLR gene activation, but facilitate their priming by modulating epigenetic marks at their promoters.
Collapse
Affiliation(s)
- Damián Alejandro Cambiagno
- Unidad de Estudios Agropecuarios (UDEA), INTA-CONICET, Córdoba, Argentina
- *Correspondence: Damián Alejandro Cambiagno,
| | - José Roberto Torres
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Elena Alvarez
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- María Elena Alvarez,
| |
Collapse
|
16
|
Xue JY, Takken FLW, Nepal MP, Maekawa T, Shao ZQ. Editorial: Evolution and Functional Mechanisms of Plant Disease Resistance. Front Genet 2020; 11:593240. [PMID: 33133173 PMCID: PMC7573559 DOI: 10.3389/fgene.2020.593240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jia-Yu Xue
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.,College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Frank L W Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Takaki Maekawa
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Zhu-Qing Shao
- School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Banoo A, Nabi A, Rasool RS, Mahiya-Farooq, Shah MD, Ahmad M, Sofi PA, Aasiya-Nabi, Itoo H, Sharma PN, Padder BA. North-Western Himalayan Common Beans: Population Structure and Mapping of Quantitative Anthracnose Resistance Through Genome Wide Association Study. FRONTIERS IN PLANT SCIENCE 2020; 11:571618. [PMID: 33123180 PMCID: PMC7573075 DOI: 10.3389/fpls.2020.571618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/04/2020] [Indexed: 08/31/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is an important legume crop of north-western (NW) Himalayan region and the major disease that causes catastrophic loss to the crop is anthracnose, which is caused by Colletotrichum lindemuthianum. The pathogen is highly diverse and most of the commercial cultivars are susceptible to different races prevalent in the region. The lack of information on the genomic regions associated with anthracnose resistance in NW Himalayan common bean population prompted us to dissect Quantitative Resistance Loci (QRLs) against major anthracnose races. In this study, 188 common bean landraces collected from NW region were screened against five important anthracnose races and 113 bean genotypes showed resistance to one or multiple races. Genotyping by sequencing (GBS) was performed on a panel of 192 bean lines (4 controls plus 188 Indian beans) and 22,589 SNPs were obtained that are evenly distributed. Population structure analysis of 192 bean genotypes categorized 188 Indian beans into two major clusters representing Andean and Mesoamerican gene pools with obvious admixtures. Many QRLs associated with anthracnose resistance to Indian C. lindemuthianum virulences (race 3, 87, and 503) are located at Pv04 within the gene models that encode typical resistance gene signatures. The QRLs associated with race 73 are located on Pv08 and overlaps with Co-4 anthracnose resistance gene. A SNP located at distal end of Pv11 in a gene model Phvul.011G202300 which encodes a LRR with a typical NB-ARC domain showed association with race 73 resistance. Common bean genomic regions located at Pv03, Pv09, and Pv11 showed association with resistance to anthracnose race 2047. The present study showed presence of many novel bean genomic regions associated with anthracnose resistance. The presence of Co-4 and Co-2 genes in our material is encouraging for breeding durable anthracnose resistant cultivars for the region.
Collapse
Affiliation(s)
- Aqleema Banoo
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Srinagar, India
| | - Asha Nabi
- Directorate of Extension, SKUAST-Kashmir, Srinagar, India
| | - Rovidha S. Rasool
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Srinagar, India
| | - Mahiya-Farooq
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Srinagar, India
| | - Mehraj D. Shah
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Srinagar, India
| | - Mushtaq Ahmad
- Directorate of Extension, SKUAST-Kashmir, Srinagar, India
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, India
| | - Aasiya-Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Srinagar, India
| | - Hamidullah Itoo
- Ambri Apple Research Centre, SKUAST-Kashmir, Srinagar, India
| | - P. N. Sharma
- Department of Plant Pathology, CSK HPKV, Palampur, India
| | - Bilal A. Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Srinagar, India
| |
Collapse
|
18
|
Foucher J, Ruh M, Préveaux A, Carrère S, Pelletier S, Briand M, Serre RF, Jacques MA, Chen NWG. Common bean resistance to Xanthomonas is associated with upregulation of the salicylic acid pathway and downregulation of photosynthesis. BMC Genomics 2020; 21:566. [PMID: 32811445 DOI: 10.21203/rs.3.rs-17010/v3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/05/2020] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Common bacterial blight (CBB) caused by Xanthomonas phaseoli pv. phaseoli and Xanthomonas citri pv. fuscans is one of the major threats to common bean crops (Phaseolus vulgaris L.). Resistance to CBB is particularly complex as 26 quantitative resistance loci to CBB have been described so far. To date, transcriptomic studies after CBB infection have been very scarce and the molecular mechanisms underlying susceptibility or resistance are largely unknown. RESULTS We sequenced and annotated the genomes of two common bean genotypes being either resistant (BAT93) or susceptible (JaloEEP558) to CBB. Reciprocal BLASTp analysis led to a list of 20,787 homologs between these genotypes and the common bean reference genome (G19833), which provides a solid dataset for further comparative analyses. RNA-Seq after inoculation with X. phaseoli pv. phaseoli showed that the susceptible genotype initiated a more intense and diverse biological response than the resistant genotype. Resistance was linked to upregulation of the salicylic acid pathway and downregulation of photosynthesis and sugar metabolism, while susceptibility was linked to downregulation of resistance genes and upregulation of the ethylene pathway and of genes involved in cell wall modification. CONCLUSIONS This study helps better understanding the mechanisms occurring during the early colonization phase of common bean by Xanthomonas and unveils new actors potentially important for resistance and susceptibility to CBB. We discuss the potential link between the pathways induced during bean colonization and genes induced by transcription activator-like effectors (TALEs), as illustrated in other Xanthomonas pathovars.
Collapse
Affiliation(s)
- Justine Foucher
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Mylène Ruh
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Anne Préveaux
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Sébastien Carrère
- CNRS, UMR 2594, Laboratoire des Interactions Plantes-Microorganismes (LIPM), F-31326, Castanet-Tolosan, France
| | - Sandra Pelletier
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Martial Briand
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | | | - Marie-Agnès Jacques
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Nicolas W G Chen
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France.
| |
Collapse
|
19
|
Foucher J, Ruh M, Préveaux A, Carrère S, Pelletier S, Briand M, Serre RF, Jacques MA, Chen NWG. Common bean resistance to Xanthomonas is associated with upregulation of the salicylic acid pathway and downregulation of photosynthesis. BMC Genomics 2020; 21:566. [PMID: 32811445 PMCID: PMC7437933 DOI: 10.1186/s12864-020-06972-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Background Common bacterial blight (CBB) caused by Xanthomonas phaseoli pv. phaseoli and Xanthomonas citri pv. fuscans is one of the major threats to common bean crops (Phaseolus vulgaris L.). Resistance to CBB is particularly complex as 26 quantitative resistance loci to CBB have been described so far. To date, transcriptomic studies after CBB infection have been very scarce and the molecular mechanisms underlying susceptibility or resistance are largely unknown. Results We sequenced and annotated the genomes of two common bean genotypes being either resistant (BAT93) or susceptible (JaloEEP558) to CBB. Reciprocal BLASTp analysis led to a list of 20,787 homologs between these genotypes and the common bean reference genome (G19833), which provides a solid dataset for further comparative analyses. RNA-Seq after inoculation with X. phaseoli pv. phaseoli showed that the susceptible genotype initiated a more intense and diverse biological response than the resistant genotype. Resistance was linked to upregulation of the salicylic acid pathway and downregulation of photosynthesis and sugar metabolism, while susceptibility was linked to downregulation of resistance genes and upregulation of the ethylene pathway and of genes involved in cell wall modification. Conclusions This study helps better understanding the mechanisms occurring during the early colonization phase of common bean by Xanthomonas and unveils new actors potentially important for resistance and susceptibility to CBB. We discuss the potential link between the pathways induced during bean colonization and genes induced by transcription activator-like effectors (TALEs), as illustrated in other Xanthomonas pathovars.
Collapse
Affiliation(s)
- Justine Foucher
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Mylène Ruh
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Anne Préveaux
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Sébastien Carrère
- CNRS, UMR 2594, Laboratoire des Interactions Plantes-Microorganismes (LIPM), F-31326, Castanet-Tolosan, France
| | - Sandra Pelletier
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Martial Briand
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | | | - Marie-Agnès Jacques
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Nicolas W G Chen
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France.
| |
Collapse
|
20
|
Kong W, Xia X, Wang Q, Liu LW, Zhang S, Ding L, Liu A, La H. Impact of DNA Demethylases on the DNA Methylation and Transcription of Arabidopsis NLR Genes. Front Genet 2020; 11:460. [PMID: 32528522 PMCID: PMC7264425 DOI: 10.3389/fgene.2020.00460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/14/2020] [Indexed: 11/17/2022] Open
Abstract
Active DNA demethylation is an important epigenetic process that plays a key role in maintaining normal gene expression. In plants, active DNA demethylation is mediated by DNA demethylases, including ROS1, DME, DML2, and DML3. In this study, the available bisulfite sequencing and mRNA sequencing data from ros1 and rdd mutants were analyzed to reveal how the active DNA demethylation process shapes the DNA methylation patterns of Arabidopsis nucleotide-binding leucine-rich repeat (NLR) genes, a class of important plant disease resistance genes. We demonstrate that the CG methylation levels of three NLR genes (AT5G49140, AT5G35450, and AT5G36930) are increased in the ros1 mutants relative to the wild-type plants, whereas the CG methylation level of AT2G17050 is decreased. We also observed increased CG methylation levels of AT4G11170 and AT5G47260 and decreased CG methylation levels of AT5G38350 in rdd mutants. We further found that the expression of three NLR genes (AT1G12280, AT1G61180, and AT4G19520) was activated in both ros1 and rdd mutants, whereas the expression of another three NLR genes (AT1G58602, AT1G59620, and AT1G62630) was repressed in these two mutants. Quantitative reverse transcriptase–polymerase chain reaction detection showed that the expression levels of AT1G58602.1, AT4G19520.3, AT4G19520.4, and AT4G19520.5 were decreased in the ros1 mutant; AT3G50950.1 and AT3G50950.2 in the rdd mutant were also decreased in expression compared to Col-0, whereas AT1G57630.1, AT1G58602.2, and AT5G45510.1 were upregulated in the rdd mutant relative to Col-0. These results indicate that some NLR genes are regulated by DNA demethylases. Our study demonstrates that each DNA demethylase (ROS1, DML2, and DML3) exerts a specific effect on the DNA methylation of the NLR genes, and active DNA demethylation is part of the regulation of DNA methylation and transcriptional activity of some Arabidopsis NLR genes.
Collapse
Affiliation(s)
- Weiwen Kong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xue Xia
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qianqian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Li-Wei Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shengwei Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Li Ding
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Aixin Liu
- Department of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Honggui La
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Foria S, Copetti D, Eisenmann B, Magris G, Vidotto M, Scalabrin S, Testolin R, Cipriani G, Wiedemann-Merdinoglu S, Bogs J, Di Gaspero G, Morgante M. Gene duplication and transposition of mobile elements drive evolution of the Rpv3 resistance locus in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:529-542. [PMID: 31571285 DOI: 10.1111/tpj.14551] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 05/08/2023]
Abstract
A wild grape haplotype (Rpv3-1) confers resistance to Plasmopara viticola. We mapped the causal factor for resistance to an interval containing a TIR-NB-LRR (TNL) gene pair that originated 1.6-2.6 million years ago by a tandem segmental duplication. Transient coexpression of the TNL pair in Vitis vinifera leaves activated pathogen-induced necrosis and reduced sporulation compared with control leaves. Even though transcripts of the TNL pair from the wild haplotype appear to be partially subject to nonsense-mediated mRNA decay, mature mRNA levels in a homozygous resistant genotype were individually higher than the mRNA trace levels observed for the orthologous single-copy TNL in sensitive genotypes. Allelic expression imbalance in a resistant heterozygote confirmed that cis-acting regulatory variation promotes expression in the wild haplotype. The movement of transposable elements had a major impact on the generation of haplotype diversity, altering the DNA context around similar TNL coding sequences and the GC-content in their proximal 5'-intergenic regions. The wild and domesticated haplotypes also diverged in conserved single-copy intergenic DNA, but the highest divergence was observed in intraspecific and not in interspecific comparisons. In this case, introgression breeding did not transgress the genetic boundaries of the domesticated species, because haplotypes present in modern varieties sometimes predate speciation events between wild and cultivated species.
Collapse
Affiliation(s)
- Serena Foria
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | - Dario Copetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
- Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Birgit Eisenmann
- State Education and Research Center of Viticulture, Horticulture and Rural Development, Breitenweg 71, 67435, Neustadt an der Weinstraße, Germany
- Centre for Organismal Studies Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany
| | - Gabriele Magris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| | - Michele Vidotto
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | - Simone Scalabrin
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| | - Raffaele Testolin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | - Guido Cipriani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | | | - Jochen Bogs
- State Education and Research Center of Viticulture, Horticulture and Rural Development, Breitenweg 71, 67435, Neustadt an der Weinstraße, Germany
- Technische Hochschule Bingen, 55411, Bingen am Rhein, Germany
| | | | - Michele Morgante
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| |
Collapse
|
22
|
Tirnaz S, Batley J. DNA Methylation: Toward Crop Disease Resistance Improvement. TRENDS IN PLANT SCIENCE 2019; 24:1137-1150. [PMID: 31604599 DOI: 10.1016/j.tplants.2019.08.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 05/23/2023]
Abstract
Crop diseases, in conjunction with climate change, are a major threat to global crop production. DNA methylation is an epigenetic mark and is involved in plants' biological processes, including development, stress adaptation, and genome evolution. By providing a new source of variation, DNA methylation introduces novel direction to both scientists and breeders with its potential in disease resistance enhancement. Here, we discuss the impact of pathogen-induced DNA methylation modifications on a host's transcriptome reprogramming and genome stability, as part of the plant's defense mechanisms. We also highlight the knowledge gaps that need to be investigated for understanding the entire role of DNA methylation in plant pathogen interactions. This will ultimately assist breeders toward improving resistance and decreasing yield losses.
Collapse
Affiliation(s)
- Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
23
|
Jang YJ, Seo M, Hersh CP, Rhee SJ, Kim Y, Lee GP. An evolutionarily conserved non-synonymous SNP in a leucine-rich repeat domain determines anthracnose resistance in watermelon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:473-488. [PMID: 30446794 DOI: 10.1007/s00122-018-3235-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
A non-synonymous SNP of CC-NBS-LRR was firstly mapped to confer resistance to anthracnose in watermelon. Newly proposed LRR domain harboring the SNP is evolutionary conserved in the Cucurbitaceae and Fabaceae. Anthracnose disease caused by Colletotrichum devastates many plants. Despite the importance of the disease, the mechanisms of resistance against it are poorly understood. Here, we identified a non-synonymous single-nucleotide polymorphism (SNP) located in a leucine-rich repeat domain as a marker for resistance to anthracnose race 1 in watermelon, using a combination of genetic analyses. We validated this SNP in segregating populations and 59 watermelon accessions using high-resolution melting assays and Sanger sequencing. We demonstrated that the resulting arginine-to-lysine substitution is particularly conserved among the Cucurbitaceae and Fabaceae. We identified a conserved motif, IxxLPxSxxxLYNLQTLxL, found in 1007 orthologues/paralogues from 89 plant species, and discovered that residue 18 of this motif could determine resistance to disease caused by external invaders. This study provides a step forward in understanding anthracnose resistance in watermelon, as well as functional and evolutionary insight into leucine-rich repeat proteins.
Collapse
Affiliation(s)
- Yoon Jeong Jang
- Department of Integrative Plant Science, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Minseok Seo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Sun-Ju Rhee
- Department of Plant Sciences, The University of Cambridge, Cambridge, CB2 3EA, UK
| | - Yongjae Kim
- Partner Seeds Co., Ltd., Anseong, 17601, Republic of Korea
| | - Gung Pyo Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
24
|
Kuźnicki D, Meller B, Arasimowicz-Jelonek M, Braszewska-Zalewska A, Drozda A, Floryszak-Wieczorek J. BABA-Induced DNA Methylome Adjustment to Intergenerational Defense Priming in Potato to Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2019; 10:650. [PMID: 31214209 PMCID: PMC6554679 DOI: 10.3389/fpls.2019.00650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/30/2019] [Indexed: 05/21/2023]
Abstract
We provide evidence that alterations in DNA methylation patterns contribute to the regulation of stress-responsive gene expression for an intergenerational resistance of β-aminobutyric acid (BABA)-primed potato to Phytophthora infestans. Plants exposed to BABA rapidly modified their methylation capacity toward genome-wide DNA hypermethylation. De novo induced DNA methylation (5-mC) correlated with the up-regulation of Chromomethylase 3 (CMT3), Domains rearranged methyltransferase 2 (DRM2), and Repressor of silencing 1 (ROS1) genes in potato. BABA transiently activated DNA hypermethylation in the promoter region of the R3a resistance gene triggering its downregulation in the absence of the oomycete pathogen. However, in the successive stages of priming, an excessive DNA methylation state changed into demethylation with the active involvement of potato DNA glycosylases. Interestingly, the 5-mC-mediated changes were transmitted into the next generation in the form of intergenerational stress memory. Descendants of the primed potato, which derived from tubers or seeds carrying the less methylated R3a promoter, showed a higher transcription of R3a that associated with an augmented intergenerational resistance to virulent P. infestans when compared to the inoculated progeny of unprimed plants. Furthermore, our study revealed that enhanced transcription of some SA-dependent genes (NPR1, StWRKY1, and PR1) was not directly linked with DNA methylation changes in the promoter region of these genes, but was a consequence of methylation-dependent alterations in the transcriptional network.
Collapse
Affiliation(s)
- Daniel Kuźnicki
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Barbara Meller
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Agnieszka Braszewska-Zalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, The University of Silesia in Katowice, Katowice, Poland
| | - Andżelika Drozda
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Jolanta Floryszak-Wieczorek
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
- *Correspondence: Jolanta Floryszak-Wieczorek,
| |
Collapse
|
25
|
Richard MMS, Gratias A, Meyers BC, Geffroy V. Molecular mechanisms that limit the costs of NLR-mediated resistance in plants. MOLECULAR PLANT PATHOLOGY 2018; 19:2516-2523. [PMID: 30011120 PMCID: PMC6638094 DOI: 10.1111/mpp.12723] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 05/25/2023]
Abstract
Crop diseases cause significant yield losses, and the use of resistant cultivars can effectively mitigate these losses and control many plant diseases. Most plant resistance (R) genes encode immune receptors composed of nucleotide-binding and leucine-rich repeat (NLR) domains. These proteins mediate the specific recognition of pathogen avirulence effectors to induce defence responses. However, NLR-triggered immunity can be associated with a reduction in growth and yield, so-called 'fitness costs'. Recent data have shown that plants use an elaborate interplay of different mechanisms to control NLR gene transcript levels, as well as NLR protein abundance and activity, to avoid the associated cost of resistance in the absence of a pathogen. In this review, we discuss the different levels of NLR regulation (transcriptional, post-transcriptional and at the protein level). We address the apparent need for plants to maintain diverse modes of regulation. A recent model suggesting an equilibrium 'ON/OFF state' of NLR proteins, in the absence of a pathogen, provides the context for our discussion.
Collapse
Affiliation(s)
- Manon M. S. Richard
- Molecular Plant PathologySILS, University of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| | - Ariane Gratias
- Institute of Plant Sciences Paris‐Saclay IPS2, CNRS, INRA, Université Paris‐Saclay, Université Paris‐Sud, Université Evry, Université Paris‐Diderot, Sorbonne Paris‐CitéBâtiment 63091405OrsayFrance
| | - Blake C. Meyers
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
- Division of Plant Sciences52 Agriculture LabUniversity of MissouriColumbiaMO65211USA
| | - Valérie Geffroy
- Institute of Plant Sciences Paris‐Saclay IPS2, CNRS, INRA, Université Paris‐Saclay, Université Paris‐Sud, Université Evry, Université Paris‐Diderot, Sorbonne Paris‐CitéBâtiment 63091405OrsayFrance
| |
Collapse
|
26
|
Borrelli GM, Mazzucotelli E, Marone D, Crosatti C, Michelotti V, Valè G, Mastrangelo AM. Regulation and Evolution of NLR Genes: A Close Interconnection for Plant Immunity. Int J Mol Sci 2018; 19:E1662. [PMID: 29867062 PMCID: PMC6032283 DOI: 10.3390/ijms19061662] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/12/2022] Open
Abstract
NLR (NOD-like receptor) genes belong to one of the largest gene families in plants. Their role in plants' resistance to pathogens has been clearly described for many members of this gene family, and dysregulation or overexpression of some of these genes has been shown to induce an autoimmunity state that strongly affects plant growth and yield. For this reason, these genes have to be tightly regulated in their expression and activity, and several regulatory mechanisms are described here that tune their gene expression and protein levels. This gene family is subjected to rapid evolution, and to maintain diversity at NLRs, a plethora of genetic mechanisms have been identified as sources of variation. Interestingly, regulation of gene expression and evolution of this gene family are two strictly interconnected aspects. Indeed, some examples have been reported in which mechanisms of gene expression regulation have roles in promotion of the evolution of this gene family. Moreover, co-evolution of the NLR gene family and other gene families devoted to their control has been recently demonstrated, as in the case of miRNAs.
Collapse
Affiliation(s)
- Grazia M Borrelli
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 673, km 25.2, 71122 Foggia, Italy.
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Daniela Marone
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 673, km 25.2, 71122 Foggia, Italy.
| | - Cristina Crosatti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Vania Michelotti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy.
| | - Anna M Mastrangelo
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, via Stezzano 24, 24126 Bergamo, Italy.
| |
Collapse
|
27
|
Chen NWG, Thareau V, Ribeiro T, Magdelenat G, Ashfield T, Innes RW, Pedrosa-Harand A, Geffroy V. Common Bean Subtelomeres Are Hot Spots of Recombination and Favor Resistance Gene Evolution. FRONTIERS IN PLANT SCIENCE 2018; 9:1185. [PMID: 30154814 PMCID: PMC6102362 DOI: 10.3389/fpls.2018.01185] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/24/2018] [Indexed: 05/10/2023]
Abstract
Subtelomeres of most eukaryotes contain fast-evolving genes usually involved in adaptive processes. In common bean (Phaseolus vulgaris), the Co-2 anthracnose resistance (R) locus corresponds to a cluster of nucleotide-binding-site leucine-rich-repeat (NL) encoding sequences, the prevalent class of plant R genes. To study the recent evolution of this R gene cluster, we used a combination of sequence, genetic and cytogenetic comparative analyses between common bean genotypes from two distinct gene pools (Andean and Mesoamerican) that diverged 0.165 million years ago. Co-2 is a large subtelomeric cluster on chromosome 11 comprising from 32 (Mesoamerican) to 52 (Andean) NL sequences embedded within khipu satellite repeats. Since the recent split between Andean and Mesoamerican gene pools, the Co-2 cluster has experienced numerous gene-pool specific NL losses, leading to distinct NL repertoires. The high proportion of solo-LTR retrotransposons indicates that the Co-2 cluster is located in a hot spot of unequal intra-strand homologous recombination. Furthermore, we observe large segmental duplications involving both Non-Homologous End Joining and Homologous Recombination double-strand break repair pathways. Finally, the identification of a Mesoamerican-specific subtelomeric sequence reveals frequent interchromosomal recombinations between common bean subtelomeres. Altogether, our results highlight that common bean subtelomeres are hot spots of recombination and favor the rapid evolution of R genes. We propose that chromosome ends could act as R gene incubators in many plant genomes.
Collapse
Affiliation(s)
- Nicolas W. G. Chen
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot Sorbonne Paris Cité, Orsay, France
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR 4207 QUASAV, Beaucouzé, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot Sorbonne Paris Cité, Orsay, France
| | - Tiago Ribeiro
- Laboratory of Plant Cytogenetics, Federal University of Pernambuco, Recife, Brazil
| | - Ghislaine Magdelenat
- Genoscope/Commissariat à l’Energie Atomique-Centre National de Séquençage, Evry, France
| | - Tom Ashfield
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - Roger W. Innes
- Department of Biology, Indiana University, Bloomington, IN, United States
| | | | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot Sorbonne Paris Cité, Orsay, France
- *Correspondence: Valérie Geffroy,
| |
Collapse
|