1
|
Lee AS, Kim Y, Hur HJ, Lee SH, Sung MJ. Chrysanthemum coronarium L. Extract Attenuates Homocysteine-Induced Vascular Inflammation in Vascular Smooth Muscle Cells. J Med Food 2023; 26:869-876. [PMID: 38010869 DOI: 10.1089/jmf.2023.k.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Hyperhomocysteinemia is a main risk factor for phenotypic modulation of vascular smooth muscle cells (VSMCs) and atherosclerosis. Phenotypic switching and proliferation of VSMCs are related to the progression of vascular inflammation. Chrysanthemum coronarium L. is a leafy vegetable with various biological functions, such as antioxidative, anti-inflammatory, and antiproliferative effects. In this study, we aimed to identify the mechanisms underlying the therapeutic and preventive effects of C. coronarium L. extract (CC) in regulating homocysteine (Hcy)-induced vascular inflammation in human aortic VSMCs. CC did not exhibit cytotoxicity and inhibited Hcy-stimulated VSMC proliferation and migration. In addition, CC promoted Hcy-induced expression of VSMC contractile phenotype proteins, including alpha-smooth muscle actin, calponin, and smooth muscle 22α. CC also decreased Hcy-induced accumulation of reactive oxygen species and expression of inflammatory markers nicotinamide adenine dinucleotide phosphate oxidase-4 and soluble epoxide hydrolase. These results showed that CC attenuates Hcy-induced inflammatory responses, highlighting its potential as a therapeutic or preventive target for Hcy-induced vascular inflammation.
Collapse
Affiliation(s)
- Ae Sin Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Yiseul Kim
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Haeng Jeon Hur
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Sang-Hee Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Mi Jeong Sung
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| |
Collapse
|
2
|
Stuart AKDC, Furuie JL, Cataldi TR, Stuart RM, Zawadneak MAC, Labate CA, Pimentel IC. Fungal consortium of two Beauveria bassiana strains increases their virulence, growth, and resistance to stress: A metabolomic approach. PLoS One 2022; 17:e0271460. [PMID: 35834517 PMCID: PMC9282594 DOI: 10.1371/journal.pone.0271460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
The use of two or more microorganisms in a microbial consortium has been increasingly applied in the biological control of diseases and pests. Beauveria bassiana is one of the most widely studied fungal species in biological control, yet little is known about its role in fungal consortiums. In a previous study, our group found that a consortium formed by two strains of B. bassiana had significantly greater biocontrol potential against the polyphagous caterpillars Duponchelia fovealis (Lepidoptera: Crambidae) than either strain on its own. In this study, we use GC-MS and LC-MS/MS to evaluate and discuss the metabolomics of the consortium. A total of 21 consortium biomarkers were identified, corresponding to 14 detected by LC-MS/MS and seven by GC-MS. Antioxidant and anti-inflammatory mechanisms are the main properties of the metabolites produced by the consortium. These metabolites can depress the insect’s immune system, increasing its vulnerability and, hence, the fungal virulence of the consortium. In light of these results, we propose an action model of insect mortality due to the metabolites secreted by the consortium. The model includes the inhibition of defense mechanisms such as pro-inflammatory interleukin secretion, cell migration, cell aggregation, Dif, Dorsal and Relish gene transcription, and JAK/STAT and JNK signaling pathways. It also promotes the cleaning of oxidative molecules, like ROS, NOS, and H2O2, and the induction of virulence factors.
Collapse
Affiliation(s)
- Andressa Katiski da Costa Stuart
- Departamento de Patologia Básica, Setor de Ciências Biológicas, Laboratório de Microbiologia e Biologia Molecular (LabMicro), Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- * E-mail:
| | - Jason Lee Furuie
- Departamento de Patologia Básica, Setor de Ciências Biológicas, Laboratório de Microbiologia e Biologia Molecular (LabMicro), Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Thais Regiani Cataldi
- Departamento de Genética, Laboratório de Genética de Plantas Max Feffer, Escola Superior de Agronomia Luiz de Queiroz – Esalq/USP, Piracicaba, São Paulo, Brazil
| | - Rodrigo Makowiecky Stuart
- Departamento de Patologia Básica, Setor de Ciências Biológicas, Laboratório de Microbiologia e Biologia Molecular (LabMicro), Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Maria Aparecida Cassilha Zawadneak
- Departamento de Patologia Básica, Setor de Ciências Biológicas, Laboratório de Microbiologia e Biologia Molecular (LabMicro), Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- Departamento de Fitotecnia e Fitossanitaríssimo, Programa de Pós-graduação em Agronomia Produção Vegetal, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Carlos Alberto Labate
- Departamento de Genética, Laboratório de Genética de Plantas Max Feffer, Escola Superior de Agronomia Luiz de Queiroz – Esalq/USP, Piracicaba, São Paulo, Brazil
| | - Ida Chapaval Pimentel
- Departamento de Patologia Básica, Setor de Ciências Biológicas, Laboratório de Microbiologia e Biologia Molecular (LabMicro), Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
3
|
Isochlorogenic acid (ICGA): natural medicine with potentials in pharmaceutical developments. Chin J Nat Med 2020; 18:860-871. [DOI: 10.1016/s1875-5364(20)60029-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Indexed: 01/11/2023]
|
4
|
Potue P, Maneesai P, Kukongviriyapan U, Prachaney P, Pakdeechote P. Cratoxylum Formosum extract exhibits antihypertensive effects via suppressing the renin-angiotensin cascade in hypertensive rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
5
|
Li C, He J, Zhong X, Gan H, Xia Y. CX3CL1/CX3CR1 Axis Contributes to Angiotensin II-Induced Vascular Smooth Muscle Cell Proliferation and Inflammatory Cytokine Production. Inflammation 2018; 41:824-834. [PMID: 29356931 DOI: 10.1007/s10753-018-0736-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Angiotensin II (Ang II) dysregulation has been determined in many diseases. The CX3CL1/CX3CR1 axis, which has a key role in cardiovascular diseases, is involved in the proliferation and inflammatory cytokine production of vascular smooth muscle cells (VSMCs). In this study, we aim to explore whether Ang II has a role in the expression of CX3CL1/CX3CR1, thus contributing to the proliferation and pro-inflammatory status of VSMCs. Cultured mouse aortic VSMCs were stimulated with 100 nmol/L of Ang II, and the expression of CX3CR1 was assessed by western blot. The results demonstrated that Ang II significantly up-regulated CX3CR1 expression in VSMCs and induced the production of reactive oxygen species (ROS) and the phosphorylation of p38 MAPK. Inhibitors of NADPH oxidase, ROS, and AT1 receptor significantly reduced Ang II-induced CX3CR1 expression. Targeted disruption of CX3CR1 by transfection with siRNA significantly attenuated Ang II-induced VSMC proliferation as well as down-regulated the expression of proliferating cell nuclear antigen (PCNA). Furthermore, CX3CR1-siRNA suppressed the effect of Ang II on stimulating Akt phosphorylation. Besides, the use of CX3CR1-siRNA decreased inflammatory cytokine production induced by Ang II treatment. Our results indicate that Ang II up-regulates CX3CR1 expression in VSMCs via NADPH oxidase/ROS/p38 MAPK pathway and that CX3CL1/CX3CR1 axis contributes to the proliferative and pro-inflammatory effects of Ang II in VSMCs.
Collapse
Affiliation(s)
- Chengsheng Li
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jin He
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaoyi Zhong
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yunfeng Xia
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
6
|
Yu S, Chen Y, Chen S, Ye N, Li Y, Sun Y. Klotho Inhibits Proliferation and Migration of Angiotensin II-Induced Vascular Smooth Muscle Cells (VSMCs) by Modulating NF-κB p65, Akt, and Extracellular Signal Regulated Kinase (ERK) Signaling Activities. Med Sci Monit 2018; 24:4851-4860. [PMID: 30004089 PMCID: PMC6069467 DOI: 10.12659/msm.908038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background It has been proven that phenotype shifting, from the contractile phenotype to the synthetic phenotype, of vascular smooth muscle cells (VSMCs), plays an important role in vascular diseases such as atherosclerosis, restenosis, and hypertension. Recently, accumulating evidence suggests that Klotho is associated with many cardiovascular diseases or damage. Through the estimation of the proliferation and migration of Ang II-induced VSMCs and the related intracellular signal transduction pathways, we researched the effects of Klotho on phenotype modulation in this study. Material/Methods A rat vascular smooth muscle cell line was grown in vitro with or without Ang II or Klotho, and cell proliferation and migration were evaluated. Results The dose-dependent inhibition of Ang II-induced proliferation and migration by Klotho was shown in VSMCs. The phenotype modulation was inhibited by Klotho co-treatment; this co-treatment promoted the expression of contractile phenotype marker proteins, including SM22α, and also the proliferation phenotype marker protein PCNA compared with Ang II alone, which was suppressed, and activated VSMCs. Furthermore, by reducing the expression of G0/G1-specific regulatory proteins such as cyclin D1, cyclin-dependent kinase (CDK) 4, cyclin E, and CDK2, cell cycle arrest was induced by Klotho at G0/G1 phase. Although Ang II strongly stimulated NF-κB, p65, Akt, and ERK phosphorylation, these activation events were diminished by co-treatment with Ang II and Klotho. Conclusions Phenotype modulation of Ang II-induced VSMCs and stimulation of the NF-κB, p65, Akt, and ERK signaling pathways were inhibited by Klotho, which suggests that Klotho may play an important role in the phenotype modulation of VSMCs.
Collapse
Affiliation(s)
- Shasha Yu
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yintao Chen
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Shuang Chen
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ning Ye
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yan Li
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yingxian Sun
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
7
|
Caffeoylquinic Acid Derivatives Extract of Erigeron multiradiatus Alleviated Acute Myocardial Ischemia Reperfusion Injury in Rats through Inhibiting NF-KappaB and JNK Activations. Mediators Inflamm 2016; 2016:7961940. [PMID: 27516722 PMCID: PMC4969545 DOI: 10.1155/2016/7961940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/13/2016] [Accepted: 06/05/2016] [Indexed: 12/01/2022] Open
Abstract
Erigeron multiradiatus (Lindl.) Benth. has been used in Tibet folk medicine to treat various inflammatory diseases. The aim of this study was to investigate antimyocardial ischemia and reperfusion (I/R) injury effect of caffeoylquinic acids derivatives of E. multiradiatus (AE) in vivo and to explain underling mechanism. AE was prepared using the whole plant of E. multiradiatus and contents of 6 caffeoylquinic acids determined through HPLC analysis. Myocardial I/R was induced by left anterior descending coronary artery occlusion for 30 minutes followed by 24 hours of reperfusion in rats. AE administration (10, 20, and 40 mg/kg) inhibited I/R-induced injury as indicated by decreasing myocardial infarct size, reducing of CK and LDH activities, and preventing ST-segment depression in dose-dependent manner. AE decreased cardiac tissue levels of proinflammatory factors TNF-α and IL-6 and attenuated leukocytes infiltration. AE was further demonstrated to significantly inhibit I-κB degradation, nuclear translocation of p-65 and phosphorylation of JNK. Our results suggested that cardioprotective effect of AE could be due to suppressing myocardial inflammatory response and blocking NF-κB and JNK activation pathway. Thus, caffeoylquinic acids might be the active compounds in E. multiradiatus on myocardial ischemia and be a potential natural drug for treating myocardial I/R injury.
Collapse
|
8
|
Zhang CM, Huang X, Lu HL, Meng XM, Liu DH, Kim YC, Xu WX. Up-regulation of the Ang II/AT1 receptor may compensate for the loss of gastric antrum ICC via the PI3k/Akt signaling pathway in STZ-induced diabetic mice. Mol Cell Endocrinol 2016; 423:77-86. [PMID: 26773730 DOI: 10.1016/j.mce.2016.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/05/2015] [Accepted: 01/06/2016] [Indexed: 12/26/2022]
Abstract
The classic renin-angiotensin system (RAS) is a complex system in which angiotensin II (Ang II) has been identified as an important endogenous regulator that influences both smooth muscle contraction and cell growth. Although a local RAS is known to exist in the gastrointestinal tract, it is unclear whether Ang II is involved in the loss of gastric interstitial cells of Cajal (ICC) in diabetic mice. The present study was designed to investigate the effect of Ang II on ICC survival in streptozotocin (STZ)-induced diabetic mice. Western blot, immunofluorescence, isometric muscle recording, enzyme-linked immunosorbent assay (ELISA) and a cell counting kit-8 were used in this research. Our results demonstrate that the c-Kit and membrane-bound stem cell factor (mSCF) protein expression levels in gastric smooth muscle were decreased in STZ-induced diabetic mice. However, the angiotensin receptor type 1 (AT1R) expression levels in gastric smooth muscle and angiotensin-converting enzyme (ACE) expression levels in gastric mucosa were increased. The effect of Ang II on the tonic contraction of gastric smooth muscle was potentiated in diabetic mice, and the plasma Ang II level was enhanced. Ang II increased mSCF expression, cell proliferation, and Akt-Ser473 phosphorylation in cultured gastric smooth muscle cells (GSMCs). These effects were reduced by specific inhibitors ZD7155 (an AT1R antagonist) and LY294002 (a PI3-kinase inhibitor). Our results suggest that Ang II increases mSCF expression and cell proliferation in cultured GSMCs in a PI3K/Akt signaling-dependent manner. ACE and AT1R up-regulation in the stomach may help compensate for ICC loss in STZ-induced diabetic mice.
Collapse
Affiliation(s)
- C M Zhang
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, 200240, China
| | - X Huang
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, 200240, China
| | - H L Lu
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, 200240, China
| | - X M Meng
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, 200240, China
| | - D H Liu
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, 200240, China
| | - Young-Chul Kim
- Department of Physiology, Chungbuk National University College of Medicine, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - W X Xu
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, 200240, China.
| |
Collapse
|
9
|
Andrographolide inhibits nuclear factor-κB activation through JNK-Akt-p65 signaling cascade in tumor necrosis factor-α-stimulated vascular smooth muscle cells. ScientificWorldJournal 2014; 2014:130381. [PMID: 25114952 PMCID: PMC4121194 DOI: 10.1155/2014/130381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/30/2014] [Indexed: 11/24/2022] Open
Abstract
Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs) exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α). Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK), Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.
Collapse
|
10
|
Zhang D, Ma C, Li S, Ran Y, Chen J, Lu P, Shi S, Zhu D. Effect of Mitofusin 2 on smooth muscle cells proliferation in hypoxic pulmonary hypertension. Microvasc Res 2012; 84:286-96. [PMID: 22771393 DOI: 10.1016/j.mvr.2012.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/25/2012] [Accepted: 06/25/2012] [Indexed: 12/28/2022]
Abstract
Mitofusin 2 (Mfn2) is an important mitochondrial protein in maintaining mitochondrial network and bioenergetics. Recently, Mfn2 has been reported to have a potential role in regulating cell proliferation, apoptosis, and differentiation in many cell types. In this study, we performed immunohistochemistry, pulmonary artery smooth muscle cells (PASMCs) DNA analysis, proliferating cell nuclear antigen expression and cell cycle analysis to determine the role of Mfn2 in hypoxia-induced pulmonary vascular remodeling. Our results showed that hypoxia promoted the proliferation of pulmonary artery smooth muscle cells, including regulating more cells at G(2)/M+S phase, increasing proliferating cell nuclear antigen and Cyclin A expression, whereas all these effects of hypoxia were suppressed after the cells were treated with siRNA against Mfn2. Our results also proved that PI3K/Akt signaling pathway was involved in Mfn2-induced smooth muscle cell proliferation. Thus, these results indicate that Mfn2 mediates PASMC proliferation in hypoxic pulmonary hypertension via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, Heilongjiang Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Anton K, Banerjee D, Glod J. Macrophage-associated mesenchymal stem cells assume an activated, migratory, pro-inflammatory phenotype with increased IL-6 and CXCL10 secretion. PLoS One 2012; 7:e35036. [PMID: 22496888 PMCID: PMC3319627 DOI: 10.1371/journal.pone.0035036] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 03/08/2012] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells (MSCs) exhibit tropism for sites of tissue injury and tumors. However, the influence of the microenvironment on MSC phenotype and localization remains incompletely characterized. In this study, we begin to define a macrophage-induced MSC phenotype. These MSCs secrete interleukin-6 (IL-6), CCL5, and interferon gamma-induced protein-10 (CXCL10) and exhibit increased mobility in response to multiple soluble factors produced by macrophages including IL-8, CCL2, and CCL5. The pro-migratory phenotype is dependent on activation of a c-Jun N-terminal kinase (JNK) pathway. This work begins to identify the influence of macrophages on MSC biology. These interactions are likely to play an important role in the tissue inflammatory response and may provide insight into the migratory potential of MSCs in inflammation and tissue injury.
Collapse
Affiliation(s)
- Kevin Anton
- Department of Pharmacology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
| | - Debabrata Banerjee
- Department of Pharmacology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Medicine, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
| | - John Glod
- Department of Pharmacology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Pediatrics, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United State of America
- * E-mail:
| |
Collapse
|
12
|
Li XC, Tong GX, Zhang Y, Liu SX, Jin QH, Chen HH, Chen P. Neferine inhibits angiotensin II-stimulated proliferation in vascular smooth muscle cells through heme oxygenase-1. Acta Pharmacol Sin 2010; 31:679-86. [PMID: 20523338 DOI: 10.1038/aps.2010.57] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AIM To explore the effect of neferine on angiotensin II (Ang II)-induced vascular smooth muscle cell (VSMC) proliferation. METHODS Human umbilical vein smooth muscle cells (HUVSMCs) were used. Cell proliferation was determined by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry analysis. Heme oxygenase (HO)-1 protein expression was tested by Western blot analysis. Extracellular signal-regulated protein kinase 1/2 (ERK1/2) activation was determined by using immunoblotting. RESULTS Pre-incubation of HUVSMCs with neferine (0.1, 0.5, 1.0, and 5.0 micromol/L) significantly inhibited Ang II-induced cell proliferation in a concentration-dependent manner and neferine 5.0 micromol/L increased HO-1 expression by 259% compared with control. The antiproliferative effect of neferine was significantly attenuated by coapplication of zinc protoporphyrin IX (ZnPP IX, an HO-1 inhibitor) with neferine. Ang II-enhanced ERK1/2 phosphorylation was markedly reversed by neferine. By inhibiting HO-1 activity with ZnPP IX, the inhibitive effect of neferine on ERK1/2 phosphorylation was significantly attenuated. Cobalt-protoporphyrin (CoPP), an HO-1 inducer, significantly decreased Ang II-induced ERK1/2 phosphorylation and inhibited Ang II-induced cell proliferation. The ERK1/2 pathway inhibitor PD98059 significantly blocked Ang II-enhanced ERK1/2 phosphorylation and inhibited cell proliferation. CONCLUSION These findings suggest that neferine can inhibit Ang II-induced HUVSMC proliferation by upregulating HO-1, leading to the at least partial downregulation of ERK1/2 phosphorylation.
Collapse
|