1
|
Akhtar MA. Anti-Inflammatory Medicinal Plants of Bangladesh—A Pharmacological Evaluation. Front Pharmacol 2022; 13:809324. [PMID: 35401207 PMCID: PMC8987533 DOI: 10.3389/fphar.2022.809324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory diseases are considered major threats to human health worldwide. In Bangladesh, a number of medicinal plants have been used in traditional medicine from time immemorial in the treatment of diverse diseases, including inflammatory disorders. This assignment aims at providing the status of the medicinal plants of Bangladesh which are traditionally used in the management of inflammatory disorders and are investigated for their anti-inflammatory prospects using different preclinical studies and future research directions. The information of medicinal plants assembled in this review was obtained from a literature search of electronic databases such as Google Scholar, PubMed, Scopus, Web of Science and ScienceDirect up to December, 2020 from publications on plants investigated for their anti-inflammatory activities, in which the place of plant sample collection was identified as Bangladesh. Keywords for primary searches were “anti-inflammatory,” “Bangladeshi,” and “medicinal plants.” Criteria followed to include plant species were plants that showed significant anti-inflammatory activities in 1) two or more sets of experiments in a single report, 2) same or different sets of experiments in two or more reports, and, 3) plants which are traditionally used in the treatment of inflammation and inflammatory disorders. In this study, 48 species of medicinal plants have been reviewed which have been used in traditional healing practices to manage inflammatory disorders in Bangladesh. The mechanistic pathways of the in vivo and in vitro study models used for the evaluation of anti-inflammatory properties of plant samples have been discussed. Selected plants were described in further detail for their habitat, anti-inflammatory studies conducted in countries other than Bangladesh, and anti-inflammatory active constituents isolated from these plants if any. Medicinal plants of Bangladesh have immense significance for anti-inflammatory activity and have potential to contribute toward the discovery and development of novel therapeutic approaches to combat diseases associated with inflammation. However, the plants reviewed in this article had chiefly undergone preliminary screening and require substantial investigations including identification of active molecules, understanding the mechanism of action, and evaluation for safety and efficacy to be followed by the formulation of safe and effective drug products.
Collapse
|
2
|
Liana D, Rungsihirunrat K. Phytochemical screening, antimalarial activities, and genetic relationship of 16 indigenous Thai Asteraceae medicinal plants: A combinatorial approach using phylogeny and ethnobotanical bioprospecting in antimalarial drug discovery. J Adv Pharm Technol Res 2021; 12:254-260. [PMID: 34345604 PMCID: PMC8300331 DOI: 10.4103/japtr.japtr_238_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022] Open
Abstract
Emergence of artemisinin resistance leads the people to discover the new candidate for antimalarial drug. Combinatorial phylogeny and ethnobotanical approach may be useful to minimize the expenditure and time in laboratory testing. Seven hundred and thirty-three ethnomedicinal plants were listed from literature search. Obtained 340 internal transcribed spacer (ITS) sequences of plant list which met criteria were retrieved from GenBank NCBI and analyzed by MUSCLE and maximum likelihood phylogenetic test to generate the phylogenetic tree. Interactive phylogenetic tree was generated by Interactive Tree of Life (ITOL, https://itol.embl.de) and showed strong clustered pattern on Asteraceae. Afterward, 16 species of Asteraceae were selected to investigate the antimalarial activity, phytochemical, and genetic diversity. The presence of phytochemical was determined by standard method. DNA fluorescence-based assay was performed to determine the antimalarial activity against 3D7 Plasmodium falciparum. IC50μg/mL was used to categorize antimalarial activity. On the other hand, ITS universal primer was used to amplify and sequence the obtained extracted DNA of tested plant by cetyltrimethylammonium bromide method. Phylogenetic analyses were performed by MAFFT and RAxML with automatic bootstrapping. ITOL and Adobe Illustrator were used to generate interactive phylogenetic tree. All species tested showed the presence of phenolics and flavonoids, whereas alkaloids and terpenoids were shown vary among tested extracts. Among 16 species tested, 1 species exhibited good-moderate (Sphaeranthus indicus, IC506.59 μg/mL), 4 weak (Artemisia chinensis, Artemisia vulgaris, Tridax procumbens, and Blumea balsamifera), and 3 very weak (Eupatorium capillifolium, Wedelia trilobata, and Vernonia cinerea). Generated phylogenetic tree by ITS data was able to separate the tested species into their tribal classification. In addition, new medicinal properties of A. chinensis were discovered. Combining phylogeny approach with ethnobotanical data is useful to narrow down the selection of antimalarial plants candidate.
Collapse
Affiliation(s)
- Desy Liana
- Department of Public Health Sciences, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kanchana Rungsihirunrat
- Department of Public Health Sciences, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Mahalakshmi R, Priyanga J, Vedha Hari BN, Bhakta-Guha D, Guha G. Hexavalent chromium-induced autophagic death of WRL-68 cells is mitigated by aqueous extract of Cuminum cyminum L. seeds. 3 Biotech 2020; 10:191. [PMID: 32269896 DOI: 10.1007/s13205-020-02184-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, we assessed the potential of aqueous extract (CSEaq) of Cuminum cyminum L. (cumin) seeds in protecting WRL-68 cells from hexavalent chromium [Cr(VI)]-induced oxidative injury. Cells exposed to Cr(VI) (10 μM CrO3) for 24 h demonstrated a twofold increase in ROS, which, in turn, led to extensive oxidative stress, consequently causing colossal decline in cell viability (by 58.82 ± 9.79%) and proliferation (as was evident from a reduced expression of Ki-67, a proliferation marker). Immunofluorescence studies showed that Cr(VI) diminished the expressions of mTOR and survivin in WRL-68 cells. It also led to a substantial elevation of BECN1 expression, which suggested autophagy. Overall, our results indicated that 24 h exposure of WRL-68 cells to Cr(VI) caused oxidative stress-induced autophagic cell death. CSEaq was found to protect WRL-68 cells from the same fate by refurbishing their viability and proliferation in a dose-dependent manner. The extract reduced ROS in these cells, which consequently decreased the degree of autophagic cell death by restoring expressions of mTOR, survivin and BECN1 to their respective normal levels. Biochemical assays revealed that CSEaq is rich in phenolic constituents. Total phenolic content of CSEaq demonstrated positive correlations with (i) its antioxidant potential, (ii) its alleviation of cellular oxidative stress and (iii) its cytoprotective efficacy in Cr(VI)-treated WRL-68 cells. We also identified the major phenolic constituents of CSEaq. Our study suggested that polyphenols in CSEaq might be responsible for protecting WRL-68 cells from Cr(VI)-governed oxidative assault that would have otherwise led to survivin/mTOR-mediated autophagic death.
Collapse
|
4
|
Tariq A, Sadia S, Pan K, Ullah I, Mussarat S, Sun F, Abiodun OO, Batbaatar A, Li Z, Song D, Xiong Q, Ullah R, Khan S, Basnet BB, Kumar B, Islam R, Adnan M. A systematic review on ethnomedicines of anti-cancer plants. Phytother Res 2017; 31:202-264. [DOI: 10.1002/ptr.5751] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Akash Tariq
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Sehrish Sadia
- College of life sciences; Beijing Normal University; Beijing China
| | - Kaiwen Pan
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
| | - Ihteram Ullah
- Center for Agricultural Resources Research, Chinese Academy of Sciences; Shijiazhuang; Hebei China
| | - Sakina Mussarat
- Department of Botany; Kohat University of Science and Technology; Kohat Pakistan
| | - Feng Sun
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Olatunji Olusanya Abiodun
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
- Department of Botany; Obafemi Awolowo University; Ile-Ife Osun State Nigeria
| | | | - Zilong Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Dagang Song
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Qinli Xiong
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Riaz Ullah
- Department of Chemistry; Government College Ara Khel; Frontier Region Kohat Pakistan
| | - Suliman Khan
- Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan China
| | - Buddha Bahadur Basnet
- State Key Laboratory of Mycology, Institute of Microbiology; Chinese Academy of Sciences; Beijing China
- Central Department of Biotechnology; Tribhuvan University; Kathmandu Nepal
| | - Brawin Kumar
- Institute of Zoology; Chinese Academy of Sciences; Beijing China
| | - Rabiul Islam
- Department of Crop Physiology and Ecology; Hajee Mohammad Danesh Science and Technology University; Dinajpur Bangladesh
- Wuhan Botanical Garden; Chinese Academy of Sciences; Wuhan China
| | - Muhammad Adnan
- Department of Botany; Kohat University of Science and Technology; Kohat Pakistan
| |
Collapse
|
5
|
Kumar RS, Narasingappa RB, Joshi CG, Girish TK, Prasada Rao UJ, Danagoudar A. Evaluation of Cassia tora Linn. against Oxidative Stress-induced DNA and Cell Membrane Damage. J Pharm Bioallied Sci 2017; 9:33-43. [PMID: 28584491 PMCID: PMC5450468 DOI: 10.4103/0975-7406.206215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy.
Collapse
Affiliation(s)
- R Sunil Kumar
- Department of Biotechnology, College of Agriculture, University of Agricultural Sciences, Hassan, Bengaluru, Karnataka, India
| | - Ramesh Balenahalli Narasingappa
- Department of Biotechnology, College of Agriculture, University of Agricultural Sciences, Hassan, Bengaluru, Karnataka, India
| | - Chandrashekar G Joshi
- Department of Studies and Research in Biochemistry, P.G Centre, Mangalore University, Chikka Aluvara, Kodagu, Karnataka, India
| | - Talakatta K Girish
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Ummiti Js Prasada Rao
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Ananda Danagoudar
- Department of Studies and Research in Biochemistry, P.G Centre, Mangalore University, Chikka Aluvara, Kodagu, Karnataka, India
| |
Collapse
|
6
|
Antibacterial activity of Vitex parviflora A. Juss. and Cyanthillium cinereum (L.) H. Rob. against human pathogens. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61173-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
George VC, Kumar DRN, Suresh PK, Kumar RA. Antioxidant, DNA protective efficacy and HPLC analysis of Annona muricata (soursop) extracts. Journal of Food Science and Technology 2014; 52:2328-35. [PMID: 25829616 DOI: 10.1007/s13197-014-1289-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/29/2013] [Accepted: 02/10/2014] [Indexed: 11/27/2022]
Abstract
Annona muricata is a naturally occurring edible plant with wide array of therapeutic potentials. In India, it has a long history of traditional use in treating various ailments. The present investigation was carried out to characterize the phytochemicals present in the methanolic and aqueous leaf extracts of A. muricata, followed by validation of its radical scavenging and DNA protection activities. The extracts were also analyzed for its total phenolic contents and subjected to HPLC analysis to determine its active metabolites. The radical scavenging activities were premeditated by various complementary assays (DRSA, FRAP and HRSA). Further, its DNA protection efficacy against H2O2 induced toxicity was evaluated using pBR322 plasmid DNA. The results revealed that the extracts were highly rich in various phytochemicals including luteolin, homoorientin, tangeretin, quercetin, daidzein, epicatechin gallate, emodin and coumaric acid. Both the extracts showed significant (p < 0.05) radical scavenging activities, while methanolic extract demonstrated improved protection against H2O2-induced DNA damage when compared to aqueous extract. A strong positive correlation was observed for the estimated total phenolic contents and radical scavenging potentials of the extracts. Further HPLC analysis of the phyto-constituents of the extracts provides a sound scientific basis for compound isolation.
Collapse
Affiliation(s)
- V Cijo George
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - D R Naveen Kumar
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - P K Suresh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - R Ashok Kumar
- Department of Zoology, Government Arts College, Dharmapuri, 636705 Tamil Nadu India
| |
Collapse
|
8
|
Dhar P, Bajpai PK, Tayade AB, Chaurasia OP, Srivastava RB, Singh SB. Chemical composition and antioxidant capacities of phytococktail extracts from trans-Himalayan cold desert. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:259. [PMID: 24098968 PMCID: PMC3854071 DOI: 10.1186/1472-6882-13-259] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/23/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Himalayan plants are widely used in traditional system of medicine both as prophylactics and therapeutics for high altitude maladies. Our aim was to evaluate the antioxidant capacities and bioactive compounds of methanol and n-hexane extracts of the phytococktail comprising of sea buckthorn (Hippophae rhamnoides), apricot (Prunus armeniaca) and roseroot (Rhodiola imbricata) from trans-Himalaya. METHODS The 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and nitric oxide (NO) radical scavenging capacities and lipid peroxidation inhibition (LPI) property of the extracts were determined. Total antioxidant power was determined by ferric reducing/antioxidant power (FRAP) assay. Total polyphenol, flavonoid, flavonol, proanthocyanidin and carotenoid were also estimated for both extracts. We have identified and quantified the phyto-chemotypes present in the methanol and n-hexane extracts by hyphenated gas chromatography/mass spectrometry (GC/MS) technique. RESULTS Antioxidant capacity assays using DPPH, ABTS, NO, LPI and FRAP exhibited analogous results where the phytococktail showed high antioxidant action. The phytococktail was also found to possess high quantity of total polyphenol, flavonoid, flavonol and carotenoid. A significant and linear correlation was found between the antioxidant capacities and bioactive principles. A total of 32 phyto-chemotypes were identified from these extracts by GC/MS chemometric fingerprinting. Major phyto-chemotypes identified by GC/MS were glycosides, phenylpropanoids and derivatives, terpenoids, alkaloids, phytosterols, fatty acids and esters, alkaloids and derivatives, organic acid esters and aromatic ethers with positive biological and pharmacological actions. CONCLUSION The phytococktail extracts were found to contain considerable amount of diverse bioactive compounds with high antioxidant capacities. The presence of hydrophilic and lipophilic antioxidants in the phytococktail could have contributed to the higher antioxidant values. Hence, the phytococktail could be used as natural source of antioxidants to ameliorate disorders associated with oxidative stress.
Collapse
Affiliation(s)
- Priyanka Dhar
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir, Pin 901205, India
| | - Prabodh Kumar Bajpai
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir, Pin 901205, India
| | - Amol Bapurao Tayade
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir, Pin 901205, India
| | - Om Prakash Chaurasia
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir, Pin 901205, India
| | - Ravi Bihari Srivastava
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir, Pin 901205, India
| | - Shashi Bala Singh
- Defence Institute of Physiology and Allied Sciences, Defence Research & Development Organisation, Lucknow Road, Timarpur, Delhi, Pin 110054, India
| |
Collapse
|
9
|
Toyang NJ, Verpoorte R. A review of the medicinal potentials of plants of the genus Vernonia (Asteraceae). JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:681-723. [PMID: 23395623 DOI: 10.1016/j.jep.2013.01.040] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Vernonia genus has about one thousand species and members of the genus are widely used as food and medicine. The aim of this review is to analyze published data on the ethnomedicinal, ethnoveterinary and zoopharmacognostic uses of plants of the Vernonia genus. This will help to identify the state of ethnopharmacological knowledge in regard to this genus and to propose future research priorities. MATERIALS AND METHODS The major scientific databases including SciFinder, Sciencedirect, Medline and Google Scholar were queried for information on Vernonia genus using various keyword combinations. The International Plant Name Index was also used to verify the names of species and authors. RESULTS A total of 109 Vernonia species were reported in the literature to have medicinal properties. One hundred and five (105) plants were linked to the treatment or management of 44 human diseases or health conditions. Plants of the genus also feature in ethnoveterinary and zoopharmacognostic practices. A total of 12 vernonia species were identified to be used in ethnoveterinary medicine while 2 species are used in self medication practices by chimpanzees and gorillas. In vitro and in vivo research studies reporting the validation of the medicinal properties of some species were also reviewed. One hundred and three bioactive compounds isolated from various Vernonia species were also identified. Vernonia amygdalina was identified as the most frequently used member of the Vernonia genus. The Vernolides, a class of sesquiterpene lactone were identified as the most studied compounds from the genus and show interesting bioactivity in antiplasmodial, antileishmanial, antischistosomial, cytotoxicity, antimicrobial and anti-inflammatory assays. CONCLUSION On the basis of results from a combination of in vitro and in vivo efficacy and toxicity studies reported, Vernonia amygdalina holds the most promise for development into a nutraceutical against diabetes and malaria while Vernonia cinerea has potential against cancer and inflammatory conditions. Vernolide A is so far the most promising single agent from a Vernonia species that has potential for development into an anticancer agent. The other Vernonia species and isolated compounds require further studies to ascertain their medicinal potentials.
Collapse
Affiliation(s)
- Ngeh J Toyang
- Virgin Botanicals & Biotech Inc. Columbia, MD, USA; Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | |
Collapse
|