1
|
Chu L, Bi C, Wang C, Zhou H. The Relationship between Complements and Age-Related Macular Degeneration and Its Pathogenesis. J Ophthalmol 2024; 2024:6416773. [PMID: 38205100 PMCID: PMC10776198 DOI: 10.1155/2024/6416773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/08/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Age-related macular degeneration is a retinal disease that causes permanent loss of central vision in people over the age of 65. Its pathogenesis may be related to mitochondrial dysfunction, inflammation, apoptosis, autophagy, complement, intestinal flora, and lipid disorders. In addition, the patient's genes, age, gender, cardiovascular disease, unhealthy diet, and living habits may also be risk factors for this disease. Complement proteins are widely distributed in serum and tissue fluid. In the early 21st century, a connection was found between the complement cascade and age-related macular degeneration. However, little is known about the effect of complement factors on the pathogenesis of age-related macular degeneration. This article reviews the factors associated with age-related macular degeneration, the relationship between each factor and complement, the related functions, and variants and provides new ideas for the treatment of this disease.
Collapse
Affiliation(s)
- Liyuan Chu
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Chaoran Bi
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Caiming Wang
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyan Zhou
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Nowakowski P, Markiewicz-Żukowska R, Bielecka J, Mielcarek K, Grabia M, Socha K. Treasures from the forest: Evaluation of mushroom extracts as anti-cancer agents. Biomed Pharmacother 2021; 143:112106. [PMID: 34482165 DOI: 10.1016/j.biopha.2021.112106] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
Mushrooms provide a reliable source of bioactive compounds and have numerous nutritional values, which is one of the reasons why they are widely used for culinary purposes. They may also be a remedy for several medical conditions, including cancer diseases. Given the constantly increasing number of cancer incidents, the great anticancer potential of mushrooms has unsurprisingly become an object of interest to researchers. Therefore, this review aimed to collect and summarize all the available scientific data on the anti-cancer activity of mushroom extracts. Our research showed that mushroom extracts from 92 species, prepared using 12 different solvents, could reduce the viability of 38 various cancers. Additionally, we evaluated different experimental models: in vitro (cell model), in vivo (mice and rat model, case studies and randomized controlled trials), and in silico. Breast cancer proved to be sensitive to the highest number of mushroom extracts. The curative mechanisms of the studied mushrooms consisted in: inhibition of cancer cell proliferation, unregulated proportion of cells in cell cycle phases, induction of autophagy and phagocytosis, improved response of the immune system, and induction of apoptotic death of cells via upregulation of pro-apoptotic factors and downregulation of anti-apoptotic genes. The processes mainly involved the expression of caspases -3, -8, -9, AKT, p27, p53, BAX, and BCL2. The quoted results could lead to the classification of mushrooms as nutraceuticals used to prevent a variety of disorders or to support treatment of cancer diseases.
Collapse
Affiliation(s)
- Patryk Nowakowski
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland.
| | - Renata Markiewicz-Żukowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Joanna Bielecka
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Konrad Mielcarek
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Monika Grabia
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| |
Collapse
|
3
|
Hou J, Yang Y, Zhang T, Zhu C, Lv K. The Effects of P53 in the Globular Heads of the C1q Receptor in Gastric Carcinoma Cell Apoptosis Are Exerted via a Mitochondrial-Dependent Pathway. DOKL BIOCHEM BIOPHYS 2021; 500:376-384. [PMID: 34697746 DOI: 10.1134/s1607672921050100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023]
Abstract
The globular heads of the C1q receptor (gC1qR), located in the B cell cytoplasm, perform important roles in many cellular processes. A recent studies reported a major role of mitochondrial apoptosis in several cancers, but there has been no report on gastric carcinoma (GC). In this study, the mechanism by which cell apoptosis is induced by gC1qR in GC was explored. Western blot showed that gC1qR and P53 protein levels were lower in GC tissues than in normal tissues. Cytotoxicity was dynamically increased in gC1qR-overexpressing GC cells compared to the control. CCK8 assay indicated that overexpression of gC1qR induced GC cell apoptosis, increased reactive oxygen species (ROS) production, decreased the mitochondrial transmembrane potential and promoted mitochondrial apoptosis. Moreover, the P53 level increased in response to gC1qR. The viability, migration, and mitochondrial transmembrane potential of GC cells increased in association with decreased levels of ROS and mitochondrial apoptosis in the P53-silenced group. Collectively, our findings indicate that apoptosis of GC cells is enhanced when gC1qR overexpression is induced by P53-mediated mitochondrial apoptosis.
Collapse
Affiliation(s)
- Jinjun Hou
- Department of Clinical Laboratory, Qixia District Maternal and Child Health Care Hospital, 210028, Nanjing, China.
| | - Yang Yang
- Department of Clinical Laboratory, Qixia District Maternal and Child Health Care Hospital, 210028, Nanjing, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Qixia District Maternal and Child Health Care Hospital, 210028, Nanjing, China
| | - Chenghai Zhu
- Department of Gastroenterology, Qixia District Maternal and Child Health Care Hospital, 210028, Nanjing, China
| | - Kangtai Lv
- Department of Ultrasonography, Qixia District Maternal and Child Health Care Hospital, 210028, Nanjing, China.
| |
Collapse
|
4
|
Anticancer Effects of Plasma-Activated Medium Produced by a Microwave-Excited Atmospheric Pressure Argon Plasma Jet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4205640. [PMID: 32802265 PMCID: PMC7415084 DOI: 10.1155/2020/4205640] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Cold atmospheric plasma (CAP) has been reported to have strong anticancer effects in vitro and in vivo. CAP has been known to induce apoptosis in most cancer cells by treatment to cells using direct and indirect treatment methods. There are many reports of apoptosis pathways induced by CAP, but for indirect treatment, there is still a lack of fundamental research on how CAP can cause apoptosis in cancer cells. In this study, we applied an indirect treatment method to determine how CAP can induce cancer cell death. First, plasma-activated medium (PAM) was produced by a 2.45 GHz microwave-excited atmospheric pressure plasma jet (ME-APPJ). Next, the amounts of various reactive species in the PAM were estimated using colorimetric methods. The concentration of NO2– and H2O2 in PAM cultured with cancer cells was measured, and intracellular reactive oxidative stress (ROS) changes were observed using flow cytometry. When PAM was incubated with A549 lung cancer cells, there was little change in NO2– concentration, but the concentration of H2O2 gradually decreased after 30 min. While the intracellular ROS of A549 cells was rapidly increased at 2 hours, there was no significant change in that of PAM-treated normal cells. Furthermore, PAM had a significant cytotoxic effect on A549 cells but had little effect on normal cell viability. In addition, using flow cytometry, we confirmed that apoptosis of A549 cells occurred following flow cytometry and western blot analysis. These results suggest that among various reactive species produced by PAM, hydrogen peroxide plays a key role in inducing cancer cell apoptosis.
Collapse
|
5
|
Wang Y, Luo YH, Piao XJ, Shen GN, Meng LQ, Zhang Y, Wang JR, Li JQ, Wang H, Xu WT, Liu Y, Zhang Y, Zhang T, Wang SN, Sun HN, Han YH, Jin MH, Zang YQ, Zhang DJ, Jin CH. Novel 1,4‑naphthoquinone derivatives induce reactive oxygen species‑mediated apoptosis in liver cancer cells. Mol Med Rep 2018; 19:1654-1664. [PMID: 30592276 PMCID: PMC6390020 DOI: 10.3892/mmr.2018.9785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
Derivatives of 1,4-naphthoquinone have excellent anti-cancer effects, but their use has been greatly limited due to their serious side effects. To develop compounds with decreased side effects and improved anti-cancer activity, two novel types of 1,4-naphthoquinone derivatives, 2,3-dihydro-2,3-epoxy-2-propylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone (EPDMNQ) and 2,3-dihydro-2,3-epoxy-2-nonylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone (ENDMNQ) were synthesized and their anti-tumor activities were investigated. The effects of EPDMNQ and ENDMNQ on cell viability, apoptosis and accumulation of reactive oxygen species (ROS) in liver cancer cells were determined by MTT cell viability assay and flow cytometry. The expression levels of mitochondrial, mitogen activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathway-associated proteins in Hep3B liver cancer cells were analyzed by western blot analysis. The results demonstrated that EPDMNQ and ENDMNQ inhibited the proliferation of liver cancer Hep3B, HepG2, and Huh7 cell lines but not that of normal liver L-02, normal lung IMR-90 and stomach GES-1 cell lines. The number of apoptotic cells and ROS levels were significantly increased following treatment with EPDMNQ and ENDMNQ, and these effects were blocked by the ROS inhibitor N-acetyl-L-cysteine (NAC) in Hep3B cells. EPDMNQ and ENDMNQ induced apoptosis by upregulating the protein expression of p38 MAPK and c-Jun N-terminal kinase and downregulating extracellular signal-regulated kinase and STAT3; these effects were inhibited by NAC. The results of the present study demonstrated that EPDMNQ and ENDMNQ induced apoptosis through ROS-modulated MAPK and STAT3 signaling pathways in Hep3B cells. Therefore, these novel 1,4-naphthoquinone derivatives may be useful as anticancer agents for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yue Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Xian-Ji Piao
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Gui-Nan Shen
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ling-Qi Meng
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jin-Qian Li
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Shi-Nong Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hu-Nan Sun
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hao Han
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Mei-Hua Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yan-Qing Zang
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Dong-Jie Zhang
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
6
|
Shimizu T, Kawai J, Ouchi K, Kikuchi H, Osima Y, Hidemi R. Agarol, an ergosterol derivative from Agaricus blazei, induces caspase-independent apoptosis in human cancer cells. Int J Oncol 2016; 48:1670-8. [PMID: 26893131 DOI: 10.3892/ijo.2016.3391] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/12/2016] [Indexed: 11/06/2022] Open
Abstract
Agaricus blazei (A. blazei) is a mushroom with many biological effects and active ingredients. We purified a tumoricidal substance from A. blazei, an ergosterol derivative, and named it 'Agarol'. Cytotoxic effects of Agarol were determined by the MTT assay using A549, MKN45, HSC-3, and HSC-4 human carcinoma cell lines treated with Agarol. Apoptosis was detected by flow cytometry analysis. Reactive oxygen species (ROS) levels and mitochondria membrane potential (∆ψm) were also determined by flow cytometry. Western blot analysis was used to quantify the expression of apoptosis-related proteins. Agarol predominantly induced apoptosis in two p53-wild cell lines (A549 and MKN45) compared to the other p53-mutant cell lines (HSC-3 and HSC-4). Further mechanistic studies revealed that induction of apoptosis is associated with increased generation of ROS, reduced ∆ψm, release of apoptosis-inducing factor (AIF) from the mitochondria to the cytosol, upregulation of Bax, and downregulation of Bcl-2. Caspase-3 activities did not increase, and z-VAD-fmk, a caspase inhibitor, did not inhibit the Agarol-induced apoptosis. These findings indicate that Agarol induces caspase-independent apoptosis in human carcinoma cells through a mitochondrial pathway. The in vivo anticancer activity of Agarol was confirmed in a xenograft murine model. This study suggests a molecular mechanism by which Agarol induces apoptosis in human carcinoma cells and indicates the potential use of Agarol as an anticancer agent.
Collapse
Affiliation(s)
- Takamitsu Shimizu
- Mushroom Research Laboratory, Hokuto Corporation, Nagano 381-0008, Japan
| | - Junya Kawai
- Mushroom Research Laboratory, Hokuto Corporation, Nagano 381-0008, Japan
| | - Kenji Ouchi
- Mushroom Research Laboratory, Hokuto Corporation, Nagano 381-0008, Japan
| | - Haruhisa Kikuchi
- Laboratory of Natural Product Chemistry, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Yoshiteru Osima
- Laboratory of Natural Product Chemistry, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Rikiishi Hidemi
- Department of Microbiology and Immunology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| |
Collapse
|
7
|
Longato GB, Fiorito GF, Vendramini-Costa DB, de Oliveira Sousa IM, Tinti SV, Ruiz ALTG, de Almeida SMV, Padilha RJR, Foglio MA, de Carvalho JE. Different cell death responses induced by eupomatenoid-5 in MCF-7 and 786-0 tumor cell lines. Toxicol In Vitro 2015; 29:1026-33. [PMID: 25882683 DOI: 10.1016/j.tiv.2015.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 11/15/2022]
Abstract
Natural products remain an important source of new drugs, including anticancer drugs. Recently, our group reported the anticancer activity of eupomatenoid-5 (eup-5), a neolignan isolated from Piper regnellii (Miq.) C. DC. var. regnellii leaves. In vitro studies demonstrated that MCF-7 (breast) and 786-0 (kidney) were among the cancer cell lines most sensitive to eup-5 treatment. The current results demonstrate that mitochondrial membrane depolarization and generation of reactive oxygen species are implicated in eup-5-mediated cytotoxic effects on these cancer cells lines. In MCF-7 cells, eup-5 led to phosphatidylserine externalization and caspase activation, whereas the same did not occur in 786-0 cells. Scanning electron microscopy revealed a reduction of microvilli density, as well as cell morphology alterations. Moreover, treated MCF-7 cells exhibited well-characterized apoptosis alterations, while treated 786-0 cells exhibited characteristics of programmed necroptosis process. These findings support the possibility that different mechanisms may be targeted by eup-5 in cell death response.
Collapse
Affiliation(s)
- Giovanna Barbarini Longato
- Programa de Pós-graduação em Biologia Celular e Estrutural, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-872, SP, Brazil; Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas 13083-970, SP, Brazil.
| | - Giovanna Francisco Fiorito
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas 13083-970, SP, Brazil
| | - Débora Barbosa Vendramini-Costa
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas 13083-970, SP, Brazil
| | | | - Sirlene Valério Tinti
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas 13083-970, SP, Brazil
| | - Ana Lúcia Tasca Gois Ruiz
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas 13083-970, SP, Brazil
| | - Sinara Mônica Vitalino de Almeida
- Laboratório de Imunopatologia Keizo Asami (LIKA) e Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil; Faculdade de Ciências, Educação e Tecnologia de Garanhuns (FACETEG), Universidade de Pernambuco (UPE), Garanhuns 55290-000, PE, Brazil
| | - Rafael José Ribeiro Padilha
- Laboratório de Imunopatologia Keizo Asami (LIKA) e Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| | - Mary Ann Foglio
- Divisão de Fitoquímica, CPQBA, UNICAMP, Campinas 13083-970, SP, Brazil
| | - João Ernesto de Carvalho
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas 13083-970, SP, Brazil; Faculdade de Ciências Farmacêuticas, UNICAMP, Campinas 13083-872, SP, Brazil
| |
Collapse
|
8
|
Tsubone H, Makimura Y, Hanafusa M, Yamamoto Y, Tsuru Y, Motoi M, Amano S. Agaricus brasiliensis KA21 Improves Circulatory Functions in Spontaneously Hypertensive Rats. J Med Food 2014; 17:295-301. [DOI: 10.1089/jmf.2013.2934] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hirokazu Tsubone
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yukitoshi Makimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masakazu Hanafusa
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yukiko Yamamoto
- Life Science Laboratory, Primetech Corporation, Bunkyo-ku, Tokyo, Japan
| | - Yoshiharu Tsuru
- Life Science Laboratory, Primetech Corporation, Bunkyo-ku, Tokyo, Japan
| | - Masuro Motoi
- Non-Profit Organization for Traditional Pre-Disease Medicine, Tokyo, Japan
| | - Sho Amano
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
9
|
van Griensven LJ, Verhoeven HA. Phellinus linteus polysaccharide extracts increase the mitochondrial membrane potential and cause apoptotic death of THP-1 monocytes. Chin Med 2013; 8:25. [PMID: 24344650 PMCID: PMC3878362 DOI: 10.1186/1749-8546-8-25] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 12/08/2013] [Indexed: 12/05/2022] Open
Abstract
Background The differentiation resp. death of human monocytic THP-1 cells induced by polysaccharide extracts of the medicinal mushrooms Phellinus linteus, Agaricus bisporus and Agaricus brasiliensis have been studied. This study aims to identify leads for the causal effects of these mushroom components on cell differentiation and death. Methods THP-1 cells were treated with different polysaccharide extracts of mushrooms and controls. Morphological effects were observed by light microscopy. Flow cytometry was applied to follow the cell differentiation by cell cycle shifts after staining with propidium iodide, changes of mitochondrial membrane potential after incubation with JC-1, and occurrence of intracellular reactive oxygen species after incubation with hydroethidine. Principal component analysis of the data was performed to evaluate the cellular effects of the different treatments. Results P. linteus polysaccharide extracts induced dose-dependent apoptosis of THP-1 cells within 24 h, while A. bisporus and A. brasiliensis polysaccharide extracts caused differentiation into macrophages. A pure P. linteus polysaccharide had no effect. Apoptosis was inhibited by preincubating THP-1 cells with human serum. The principal component analysis revealed that P. linteus, A. bisporus and A. brasiliensis polysaccharide extracts increased reactive oxygen species production. Both A. bisporus and A. brasiliensis polysaccharide extracts decreased the mitochondrial membrane potential, while this was increased by P. linteus polysaccharide extracts. Conclusions P. linteus polysaccharide extracts caused apoptosis of THP-1 monocytes while A. bisporus and A. brasiliensis polysaccharide extracts caused these cells to differentiate into macrophages. The protective effects of human serum suggested that P. linteus polysaccharide extract induced apoptosis by extrinsic pathway, i.e. by binding to the TRAIL receptor. The mitochondrial membrane potential together with reactive oxygen species seems to play an important role in cell differentiation and cell death.
Collapse
Affiliation(s)
- Leo Jld van Griensven
- Department of Bioscience, Plant Research International, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen 6700AA, The Netherlands.
| | | |
Collapse
|
10
|
Wu JY, Chen CH, Chang WH, Chung KT, Liu YW, Lu FJ, Chen CH. Anti-Cancer Effects of Protein Extracts from Calvatia lilacina, Pleurotus ostreatus and Volvariella volvacea. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:982368. [PMID: 21792367 PMCID: PMC3139501 DOI: 10.1093/ecam/neq057] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 04/20/2010] [Indexed: 12/20/2022]
Abstract
Calvatia lilacina (CL), Pleurotus ostreatus (PO) and Volvariella volvacea (VV) are widely distributed worldwide and commonly eaten as mushrooms. In this study, cell viabilities were evaluated for a human colorectal adenocarcinoma cell line (SW480 cells) and a human monocytic leukemia cell line (THP-1 cells). Apoptotic mechanisms induced by the protein extracts of PO and VV were evaluated for SW480 cells. The viabilities of THP-1 and SW480 cells decreased in a concentration-dependent manner after 24 h of treatment with the protein extracts of CL, PO or VV. Apoptosis analysis revealed that the percentage of SW480 cells in the SubG1 phase (a marker of apoptosis) was increased upon PO and VV protein-extract treatments, indicating that oligonucleosomal DNA fragmentation existed concomitantly with cellular death. The PO and VV protein extracts induced reactive oxygen species (ROS) production, glutathione (GSH) depletion and mitochondrial transmembrane potential (ΔΨm) loss in SW480 cells. Pretreatment with N-acetylcysteine, GSH or cyclosporine A partially prevented the apoptosis induced by PO protein extracts, but not that induced by VV extracts, in SW480 cells. The protein extracts of CL, PO and VV exhibited therapeutic efficacy against human colorectal adenocarcinoma cells and human monocytic leukemia cells. The PO protein extracts induced apoptosis in SW480 cells partially through ROS production, GSH depletion and mitochondrial dysfunction. Therefore, the protein extracts of these mushrooms could be considered an important source of new anti-cancer drugs.
Collapse
Affiliation(s)
- Jin-Yi Wu
- Graduate Institute of Biomedical and Biopharmaceutical Sciences, College of Life Sciences, National Chiayi University, A25-303 Room, Life Sciences Hall, 300 Syuefu Road, Chiayi 60004, Taiwan
| | | | | | | | | | | | | |
Collapse
|
11
|
Antitumor and HIV-1 Reverse Transcriptase Inhibitory Activities of a Hemagglutinin and a Protease Inhibitor from Mini-Black Soybean. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:851396. [PMID: 21527979 PMCID: PMC3057713 DOI: 10.1155/2011/851396] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 10/18/2010] [Accepted: 01/10/2011] [Indexed: 01/15/2023]
Abstract
Protease inhibitors (PIs) and hemagglutinins are defense proteins produced by many organisms. From Chinese mini-black soybeans, a 17.5-kDa PI was isolated using chromatography on Q-Sepharose, SP-Sepharose, and DEAE-cellulose. A 25-kDa hemagglutinin was purified similarly, but using Superdex 75 instead of DEAE-cellulose in the final step. The PI inhibited trypsin and chymotrypsin (IC50 = 7.2 and 8.8 μM). Its trypsin inhibitory activity was stable from pH 2 to pH 13 and from 0°C to 70°C. The hemagglutinin activity of the hemagglutinin was stable from pH 2 to pH 13 and from 0°C to 75°C. The results indicated that both PI and hemagglutinin were relatively thermostable and pH-stable. The trypsin inhibitory activity was inhibited by dithiothreitol, signifying the importance of the disulfide bond to the activity. The hemagglutinating activity was inhibited most potently by D (+)-raffinose and N-acetyl-D-galactosamine, suggesting that the hemagglutinin was specific for these two sugars. Both PI and hemagglutinin inhibited HIV-1 reverse transcriptase (IC50 = 3.2 and 5.5 μM), proliferation of breast cancer cells (IC50 = 9.7 and 3.5 μM), and hepatoma cells (IC50 = 35 and 6.2 μM), with relatively high potencies.
Collapse
|