1
|
Liu G, Wang Q, Chen H, Wang Y, Zhou X, Bao D, Wang N, Sun J, Huang F, Yang M, Zhang H, Yan P, Li X, Shi J, Fu J. Plant-derived monoterpene S-linalool and β-ocimene generated by CsLIS and CsOCS-SCZ are key chemical cues for attracting parasitoid wasps for suppressing Ectropis obliqua infestation in Camellia sinensis L. PLANT, CELL & ENVIRONMENT 2024; 47:913-927. [PMID: 38168880 DOI: 10.1111/pce.14803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Insect-induced plant volatile organic compounds (VOCs) may function as either direct defence molecules to deter insects or indirect defence signals to attract the natural enemies of the invading insects. Tea (Camellia sinensis L.), an important leaf-based beverage crop, is mainly infested by Ectropis obliqua which causes the most serious damage. Here, we report a mechanistic investigation of tea plant-derived VOCs in an indirect defence mechanism against E. obliqua. Parasitoid wasp Parapanteles hyposidrae, a natural enemy of E. obliqua, showed strong electrophysiological response and selection behaviour towards S-linalool and β-ocimene, two monoterpenes with elevated emission from E. obliqua-damaged tea plants. Larvae frass of E. obliqua, which also released S-linalool and β-ocimene, was found to attract both mated female or male Pa. hyposidrae according to gas chromatography-electroantennogram detection and Y-tube olfactometer assays. In a field setting, both S-linalool and β-ocimene were effective in recruiting both female and male Pa. hyposidrae wasps. To understand the molecular mechanism of monoterpenes-mediated indirect defence in tea plants, two novel monoterpene synthase genes, CsLIS and CsOCS-SCZ, involved in the biosynthesis of S-linalool or β-ocimene, respectively, were identified and biochemically characterised. When the expression of these two genes in tea plants was inhibited by antisense oligodeoxynucleotide, both volatile emission and attraction of wasps were reduced. Furthermore, gene expression analysis suggested that the expression of CsLIS and CsOCS-SCZ is regulated by the jasmonic acid signalling pathway in the tea plant.
Collapse
Affiliation(s)
- Guanhua Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Qian Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Xiaogui Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Demeng Bao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nuo Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Juan Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Fuyin Huang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Mei Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Han Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Peng Yan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Xin Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Jiang Shi
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianyu Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|