1
|
Li B, Chen X, Ke L, Dai P, Ge Y, Liu YJ. Early-Life Sublethal Exposure to Thiacloprid Alters Adult Honeybee Gut Microbiota. Genes (Basel) 2024; 15:1001. [PMID: 39202363 PMCID: PMC11353648 DOI: 10.3390/genes15081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Thiacloprid, a neonicotinoid pesticide, is known to affect the gut microbiome of honeybees, yet studies often focus on immediate alternations during exposure, overlooking long-term microbiological impacts post-exposure. This study investigates the influences of sublethal thiacloprid administered during the larval developmental stage of honeybees on physiological changes and gut microbiota of adult honeybees. We found that thiacloprid exposure increased mortality and sugar intake in emerged honeybees. Using 16S rDNA sequencing, we analyzed intestinal microbial diversity of honeybees at one and six days post-emergence. Our findings reveal a significant but transient disruption in gut microbiota on day 1, with recovery from dysbiosis by day 6. This study emphasizes the importance of evaluating chronic sublethal exposure risks of thiacloprid to protect honeybee health.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China (L.K.)
| | - Xiasang Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China (L.K.)
| | - Li Ke
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China (L.K.)
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China (L.K.)
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong-Jun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China (L.K.)
| |
Collapse
|
2
|
Tassin de Montaigu C, Goulson D. Factors influencing butterfly and bumblebee richness and abundance in gardens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167995. [PMID: 37939959 DOI: 10.1016/j.scitotenv.2023.167995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Gardens are often depicted as green sanctuaries, providing refuges for wildlife displaced from the countryside due to intensive farming. While gardens have been recognized for their positive impact on biodiversity conservation, few studies have investigated the impact of pesticide usage in domestic gardens. In this study, we explored how butterfly and bumblebee populations in gardens across the UK are influenced by habitat quality, urbanisation level and pesticide use. To achieve this, we engaged with participants in Garden BirdWatch, a weekly garden wildlife recording scheme operated by the British Trust for Ornithology. Participants in the study provided data on the attributes of their garden and surrounding area and were asked to complete a questionnaire about their pesticide practices. Of the 417 gardens from which we obtained useful data, we found that 32.6 % had pesticides applied to. Urbanisation and garden quality were the main factors influencing insect populations. Butterfly richness was lower in suburban and urban gardens and butterfly abundance lower only in suburban gardens when compared to rural gardens, but this relationship did not hold for bumblebees. Abundance of butterflies and bumblebees, but not their species richness, increased with the habitat quality of gardens. Butterflies were lower in abundance and richness in more northerly gardens, which was not the case for bumblebees. Effects of pesticides were relatively weak, but butterfly richness was 7 % lower in gardens applying any pesticide. Overall, our study shows that garden butterfly and bumblebee abundance and richness are strongly influenced by both extrinsic and intrinsic factors, and that garden management can have an important positive effect on insect population.
Collapse
Affiliation(s)
- Cannelle Tassin de Montaigu
- School of Life Sciences, Department of Evolution, Behaviour & Environment, University of Sussex, Falmer, East Sussex, United Kingdom.
| | - Dave Goulson
- School of Life Sciences, Department of Evolution, Behaviour & Environment, University of Sussex, Falmer, East Sussex, United Kingdom
| |
Collapse
|
3
|
Hester KP, Stoner KA, Eitzer BD, Koethe RW, Lehmann DM. Pesticide residues in honey bee (Apis mellifera) pollen collected in two ornamental plant nurseries in Connecticut: Implications for bee health and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122037. [PMID: 37348699 PMCID: PMC10732578 DOI: 10.1016/j.envpol.2023.122037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Honey bees (Apis mellifera L.) are one of the most important managed pollinators of agricultural crops. While potential effects of agricultural pesticides on honey bee health have been investigated in some settings, risks to honey bees associated with exposures occurring in the plant nursery setting have received little attention. We sought to identify and quantify pesticide levels present in honey bee-collected pollen harvested in two ornamental plant nurseries (i.e., Nursery A and Nursery B) in Connecticut. From June to September 2018, pollen was collected weekly from 8 colonies using bottom-mounted pollen traps. Fifty-five unique pesticides (including related metabolites) were detected: 24 insecticides, 20 fungicides, and 11 herbicides. Some of the pesticide contaminants detected in the pollen had not been applied by the nurseries, indicating that the honey bee colonies did not exclusively forage on pollen at their respective nursery. The average number of pesticides per sample was similar at both nurseries (i.e., 12.9 at Nursery A and 14.2 at Nursery B). To estimate the potential risk posed to honey bees from these samples, we utilized the USEPA's BeeREX tool to calculate risk quotients (RQs) for each pesticide within each sample. The median aggregate RQ for nurse bees was 0.003 at both nurseries, well below the acute risk level of concern (LOC) of ≥0.4. We also calculated RQs for larvae due to their increased sensitivity to certain pesticides. In total, 6 samples had larval RQs above the LOC (0.45-2.51), resulting from the organophosphate insecticide diazinon. Since 2015, the frequency and amount of diazinon detected in pollen increased at one of our study locations, potentially due to pressure to reduce the use of neonicotinoid insecticides. Overall, these data highlight the importance of considering all life stages when estimating potential risk to honey bee colonies from pesticide exposure.
Collapse
Affiliation(s)
- K P Hester
- Center for Public Health and Environmental Assessment, Health and Environmental Effects Assessment Division, Integrated Health Assessment Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - K A Stoner
- Retired, Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - B D Eitzer
- Retired, Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - R W Koethe
- Region 1 Office, Land, Chemicals and Redevelopment Division, RCRA Waste, Underground Storage Tanks and Pesticides Section, U.S. Environmental Protection Agency, Boston, MA, 02109, USA
| | - D M Lehmann
- Center for Public Health and Environmental Assessment, Health and Environmental Effects Assessment Division, Integrated Health Assessment Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
4
|
Azpiazu C, Medina P, Sgolastra F, Moreno-Delafuente A, Viñuela E. Pesticide residues in nectar and pollen of melon crops: Risk to pollinators and effects of a specific pesticide mixture on Bombus terrestris (Hymenoptera: Apidae) micro-colonies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121451. [PMID: 36933818 DOI: 10.1016/j.envpol.2023.121451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Residues detected in pollen collected by honey bees are often used to estimate pesticide exposure in ecotoxicological studies. However, for a more accurate assessment of pesticides effect on foraging pollinators, residues found directly on flowers are a more realistic exposure approximation. We conducted a multi-residue analysis of pesticides on pollen and nectar of melon flowers collected from five fields. The cumulative chronic oral exposure Risk Index (RI) was calculated for Apis mellifera, Bombus terrestris and Osmia bicornis to multiple pesticides. However, this index could underestimate the risk since sublethal or synergistic effects are not considered. Therefore, a mixture containing three of the most frequently detected pesticides in our study was tested for synergistic impact on B. terrestris micro-colonies through a chronic oral toxicity test. According to the result, pollen and nectar samples contained numerous pesticide residues, including nine insecticides, nine fungicides, and one herbicide. Eleven of those were not applied by farmers during the crop season, revealing that melon agroecosystems may be pesticide contaminated environments. The primary contributor to the chronic RI was imidacloprid and O. bircornis is at greatest risk for lethality resulting from chronic oral exposure at these sites. In the bumblebee micro-colony bioassay, dietary exposure to acetamiprid, chlorpyrifos and oxamyl at residue level concentration, showed no effects on worker mortality, drone production or drone size and no synergies were detected when pesticide mixtures were evaluated. In conclusion, our findings have significant implications for improving pesticide risk assessment schemes to guarantee pollinator conservation. In particular, bee pesticide risk assessment should not be limited to acute exposure effects to isolated active ingredients in honey bees. Instead, risk assessments should consider the long-term pesticide exposure effects in both pollen and nectar on a range of bees that reflect the diversity of natural ecosystems and the synergistic potential among pesticide formulations.
Collapse
Affiliation(s)
- Celeste Azpiazu
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Madrid, Spain; Institute of Evolutionary Biology (CSIC- Universitat Pompeu Fabra), Barcelona, Spain; CREAF-Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola Del Vallès), Catalonia, Spain.
| | - Pilar Medina
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Madrid, Spain
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Ana Moreno-Delafuente
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Madrid, Spain; Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Alcalá de Henares, Madrid, Spain
| | - Elisa Viñuela
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Madrid, Spain
| |
Collapse
|
5
|
Lehmann DM. Protocol for Initiating and Monitoring Bumble Bee Microcolonies with Bombus impatiens (Hymenoptera: Apidae). Bio Protoc 2022; 12:e4451. [PMID: 35864899 PMCID: PMC9257840 DOI: 10.21769/bioprotoc.4451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/29/2022] Open
Abstract
Populations of some bumble bee species are in decline, prompting the need to better understand bumble bee biology and for assessing the effects of environmental stressors on these important pollinators. Microcolonies have been successfully used for investigating a range of endpoints, including behavior, gut microbiome, nutrition, development, pathogens, and the effects of pesticide exposure on bumble bee health. Here, we present a step-by-step protocol for initiating, maintaining, and monitoring microcolonies with Bombus impatiens . This protocol has been successfully used in two pesticide exposure-effects studies and can be easily expanded to investigate other aspects of bumble bee biology.
Collapse
Affiliation(s)
- David M. Lehmann
- Center for Public Health and Environmental Assessment (CPHEA), Health and Environmental Effects Assessment Division, Integrated Health Assessment Branch, U.S. - Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
,
*For correspondence:
| |
Collapse
|