1
|
Subramanyam S, Nemacheck JA, Hargarten AM, Sardesai N, Schemerhorn BJ, Williams CE. Multiple molecular defense strategies in Brachypodium distachyon surmount Hessian fly (Mayetiola destructor) larvae-induced susceptibility for plant survival. Sci Rep 2019; 9:2596. [PMID: 30796321 PMCID: PMC6385206 DOI: 10.1038/s41598-019-39615-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/29/2019] [Indexed: 11/24/2022] Open
Abstract
The Hessian fly is a destructive pest of wheat causing severe economic damage. Numerous genes and associated biological pathways have been implicated in defense against Hessian fly. However, due to limited genetic resources, compounded with genome complexity, functional analysis of the candidate genes are challenging in wheat. Physically, Brachypodium distachyon (Bd) exhibits nonhost resistance to Hessian fly, and with a small genome size, short life cycle, vast genetic resources and amenability to transformation, it offers an alternate functional genomic model for deciphering plant-Hessian fly interactions. RNA-sequencing was used to reveal thousands of Hessian fly-responsive genes in Bd one, three, and five days after egg hatch. Genes encoding defense proteins, stress-regulating transcription factors, signaling kinases, and secondary metabolites were strongly up-regulated within the first 24 hours of larval feeding indicating an early defense, similar to resistant wheat. Defense was mediated by a hypersensitive response that included necrotic lesions, up-regulated ROS-generating and -scavenging enzymes, and H2O2 production. Suppression of cell wall-associated proteins and increased cell permeability in Bd resembled susceptible wheat. Thus, Bd molecular responses shared similarities to both resistant and susceptible wheat, validating its suitability as a model genome for undertaking functional studies of candidate Hessian fly-responsive genes.
Collapse
Affiliation(s)
- Subhashree Subramanyam
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA. .,USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA.
| | - Jill A Nemacheck
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
| | - Andrea M Hargarten
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
| | - Nagesh Sardesai
- Corteva Agriscience, Agriculture Division of DowDuPont, Johnston, IA, 50131, USA
| | - Brandon J Schemerhorn
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA.,Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Christie E Williams
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.,USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
| |
Collapse
|
2
|
Pincebourde S, Casas J. Hypoxia and hypercarbia in endophagous insects: Larval position in the plant gas exchange network is key. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:137-153. [PMID: 26188268 DOI: 10.1016/j.jinsphys.2015.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/12/2015] [Accepted: 07/03/2015] [Indexed: 05/04/2023]
Abstract
Gas composition is an important component of any micro-environment. Insects, as the vast majority of living organisms, depend on O2 and CO2 concentrations in the air they breathe. Low O2 (hypoxia), and high CO2 (hypercarbia) levels can have a dramatic effect. For phytophagous insects that live within plant tissues (endophagous lifestyle), gas is exchanged between ambient air and the atmosphere within the insect habitat. The insect larva contributes to the modification of this environment by expiring CO2. Yet, knowledge on the gas exchange network in endophagous insects remains sparse. Our study identified mechanisms that modulate gas composition in the habitat of endophagous insects. Our aim was to show that the mere position of the insect larva within plant tissues could be used as a proxy for estimating risk of occurrence of hypoxia and hypercarbia, despite the widely diverse life history traits of these organisms. We developed a conceptual framework for a gas diffusion network determining gas composition in endophagous insect habitats. We applied this framework to mines, galls and insect tunnels (borers) by integrating the numerous obstacles along O2 and CO2 pathways. The nature and the direction of gas transfers depended on the physical structure of the insect habitat, the photosynthesis activity as well as stomatal behavior in plant tissues. We identified the insect larva position within the gas diffusion network as a predictor of risk exposure to hypoxia and hypercarbia. We ranked endophagous insect habitats in terms of risk of exposure to hypoxia and/or hypercarbia, from the more to the less risky as cambium mines>borer tunnels≫galls>bark mines>mines in aquatic plants>upper and lower surface mines. Furthermore, we showed that the photosynthetically active tissues likely assimilate larval CO2 produced. In addition, temperature of the microhabitat and atmospheric CO2 alter gas composition in the insect habitat. We predict that (i) hypoxia indirectly favors the evolution of cold-tolerant gallers, which do not perform well at high temperatures, and (ii) normoxia (ambient O2 level) in mines allows miners to develop at high temperatures. Little is known, however, about physiological and morphological adaptations to hypoxia and hypercarbia in endophagous insects. Endophagy strongly constrains the diffusion processes with cascading consequences on the evolutionary ecology of endophagous insects.
Collapse
Affiliation(s)
- Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS - Université François-Rabelais de Tours, 37200 Tours, France.
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS - Université François-Rabelais de Tours, 37200 Tours, France
| |
Collapse
|