1
|
Staton T, Williams DT. A meta-analytic investigation of the potential for plant volatiles and sex pheromones to enhance detection and management of Lepidopteran pests. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:725-734. [PMID: 37855152 DOI: 10.1017/s0007485323000457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Effective early detection, monitoring and management methods are critical for reducing the impacts of insect pests in agriculture and forestry. Combining host plant volatiles with sex pheromones could enhance trapping methodologies, whilst the use of non-host volatiles could improve the effectiveness of pest management through repellency effects. In this meta-analysis approach, we analysed 51 studies that used electroantennograms (EAG), wind tunnels and/or field traps to evaluate the antennal and behavioural responses of Lepidoptera to sex pheromones combined with attractant or repellent plant volatiles. Proposed attractant plant volatiles had a positive association with female Lepidoptera responses to sex pheromone, but effects on males were highly variable, with unexpected repellency reported in some studies. Proposed repellent plant volatiles were significantly or near-significantly negatively associated with male attraction to sex pheromones but were scarcely studied. Sub-group analysis identified that male responses to sex pheromone were reduced when the dose of attractant plant volatile relative to sex pheromone was increased. Green-leaf volatiles were associated with the strongest positive effects for males in field traps. Multiple-compound attractant plant volatile blends were less effective than single compounds in field studies. Our analysis demonstrates, (i) the potential value of combining host plant volatiles with sex pheromones to capture females rather than only males, (ii) the importance of identifying appropriate host plant volatiles and optimal relative doses, and (iii) the potential for non-host plant volatile use in pest management strategies.
Collapse
Affiliation(s)
- Tom Staton
- Forest Research, Alice Holt Lodge, Farnham, UK
| | | |
Collapse
|
2
|
Li C, Wu Y, Yin X, Gong Z, Xing H, Miao J, Wang S, Liu J, Na R, Li QX. Modular synthesis of the pheromone (2S,7S)-2,7-nonanediyl dibutyrate and its racemate and their field efficacy to control orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). PEST MANAGEMENT SCIENCE 2023; 79:97-104. [PMID: 36087296 DOI: 10.1002/ps.7177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/16/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Sudden outbreaks of the orange wheat blossom midge, Sitodiplosis mosellana (Géhin) cause huge wheat yield losses. Use of sex pheromones is more efficient than laborious egg counting to monitor these hidden-concealed insects. Quick synthesis of the sex pheromones is therefore required to meet the sudden outbreak needs. RESULTS A synthetic approach of stereospecific and racemic S. mosellana pheromones was presented. This method afforded the stereospecific and racemic S. mosellana pheromones in three steps and high enantioselectivity (> 98% ee for (2S,7S)-2,7-nonanediyl dibutyrate) in less than 1 day with 74% and 73% overall yields, respectively, whereas most conventional methods require longer synthesis time with less than 40% yield. The synthesis routes could quickly and economically afford the pheromones, starting from synthon (S)-but-3-yn-2-ol (1a) or but-3-yn-2-ol (1b), through the same three-step processes of coupling, reduction, and esterification. The Y-tube olfactometer results showed significant attractiveness of the synthetic stereospecific and racemic sex pheromones to S. mosellana males relative to the blank control (P < 0.001). Field trials also demonstrated significant attractiveness of the synthetic stereospecific and racemic sex pheromones relative to the blank control (P < 0.001). CONCLUSION This modular approach is conducive to the deployment of field traps and timely responses to S. mosellana outbreaks and can be a time-saving and cost-effective tool to manage S. mosellana. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Changkai Li
- Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xinming Yin
- Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zhongjun Gong
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongxia Xing
- Seed Control Station of Agriculture and Rural Bureau, Handan, China
| | - Jin Miao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shuzhi Wang
- Institute of Plant Protection, Luoyang Academy of Agriculture and Forestry Sciences, Luoyang, China
| | - Jia Liu
- Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Risong Na
- Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
3
|
Flores MF, Bergmann J, Ballesteros C, Arraztio D, Curkovic T. Development of Monitoring and Mating Disruption against the Chilean Leafroller Proeulia auraria (Lepidoptera: Tortricidae) in Orchards. INSECTS 2021; 12:insects12070625. [PMID: 34357285 PMCID: PMC8307431 DOI: 10.3390/insects12070625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022]
Abstract
The leafroller Proeulia auraria (Clarke) (Lepidoptera: Tortricidae) is a native, polyphagous, and growing pest of several fruit crops in Chile; it also has quarantine importance to several markets, thus tools for management are needed. Using synthetic pheromone compounds, we conducted field trials to optimize the blend for monitoring, and to determine the activity period of rubber septa aged under field conditions. We concluded that septa loaded with 200 μg of E11-14:OAc + 60 μg E11-14:OH allowed for efficient trap captures for up to 10 weeks. Using this blend, we studied the phenology of adult males in vineyards, apple, and blueberry orchards, identifying two long flight cycles per season, lasting from September to May and suggesting 2-3 generations during the season. No or low adult activity was observed during January and between late May and late August. Furthermore, mating disruption (MD) field trials showed that application of 250 pheromone point sources using the dispenser wax matrix SPLAT (Specialized Pheromone and Lure Application Technology, 10.5% pheromone) with a total of 78 g/ha of the blend described above resulted in trap shutdown immediately after application, and mating disruption >99% in all orchards for at least 5 months. We concluded that MD is feasible for P. auraria, needing now the development of a commercial product and the strategy (and protocols) necessary to control this pest in conventional and organic orchards in Chile. As far as we know, this is the first report on MD development against a South American tortricid pest.
Collapse
Affiliation(s)
- M. Fernanda Flores
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Avda. Universidad 330, Curauma, Valparaíso 2340000, Chile or (M.F.F.); (J.B.)
- Agroadvance SpA. Camino Melipilla, Peñaflor, Santiago 9710000, Chile
| | - Jan Bergmann
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Avda. Universidad 330, Curauma, Valparaíso 2340000, Chile or (M.F.F.); (J.B.)
| | - Carolina Ballesteros
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - Diego Arraztio
- Facultad de Ciencias Agronómicas, Universidad de Chile, Avda. Santa Rosa 11315, La Pintana, Santiago 8820808, Chile;
| | - Tomislav Curkovic
- Facultad de Ciencias Agronómicas, Universidad de Chile, Avda. Santa Rosa 11315, La Pintana, Santiago 8820808, Chile;
- Correspondence:
| |
Collapse
|
4
|
Tian K, Liu W, Feng LK, Huang TY, Wang GR, Lin KJ. Functional characterization of pheromone receptor candidates in codling moth Cydia pomonella (Lepidoptera: Tortricidae). INSECT SCIENCE 2021; 28:445-456. [PMID: 32369668 DOI: 10.1111/1744-7917.12775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Sex pheromones serve a critical role in Lepidopterans finding mates. Male moths perceive and react to sex pheromones emitted by conspecific females through a delicate pheromone communication system. Pheromone receptors (PRs) are the key sensory elements at the beginning of that process. The codling moth (Cydia pomnonella) is an important pome fruit pest globally and a serious invasive species in China. Pheromone-based techniques have been used successfully in monitoring and controlling this species. We conducted ribonucleic acid sequencing analysis of the codling moth antennal transcriptome and identified 66 odorant receptors (ORs) in a population from Xinjiang province, China, of which 14 were PRs, including two novel PRs (CpomOR2e and CpomOR73). Four PRs that contain full-length open reading frames (CpomOR1, OR2a, OR5, OR7) and four PRs with ligands that have not been reported previously (CpomOR1, OR2a, OR5, OR7) were selected to deorphanize in the heterologous Xenopus oocyte expression system. Specifically, we found that CpomOR2a and CpomOR5 responded to (E,E)-8, 10-dodecadien-1-yl acetate (codlemone acetate). Furthermore, CpomOR5 (EC50 = 1.379 × 10-8 mol/L) was much more sensitive to codlemone acetate than CpomOR2a (EC50 = 1.663 × 10-6 mol/L). Since codlemone acetate is an important component of C. pomonella sex pheromone, our results improve the current understanding of pheromone communication in codling moths and will be helpful for the development of pest management strategies.
Collapse
Affiliation(s)
- Ke Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li-Kai Feng
- Institute of Plant Protection, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Tian-Yu Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Ke-Jian Lin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Tian Z, Li Y, Zhou T, Ye X, Li R, Liu J. Structure dynamics reveal key residues essential for the sense of 1-dodecanol by Cydia pomonella pheromone binding protein 2 (CpomPBP2). PEST MANAGEMENT SCIENCE 2020; 76:3667-3675. [PMID: 32418321 DOI: 10.1002/ps.5915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/29/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cydia pomonella, a worldwide quarantine fruit pest, causes great damage to fruit production every year. Sex pheromone-mediated control of C. pomonella has been widely used. As an indispensable ingredient of commercial sex attractants, 1-dodecanol (Dod) works to synergize the effect of codlemone in attracting male moths of C. pomonella. The interactions between Dod and its transporter protein, C. pomonella pheromone-binding protein 2 (CpomPBP2), provide inspiration for chemical optimizations to improve the synergistic effects of Dod. RESULTS In this research, molecular simulations and biological verifications were used in combination to uncover key residues in CpomPBP2 essential for sensing Dod. After performing 150 ns molecular dynamics (MD) simulations, the C1-C12 chain of Dod was found to be locked by the van der Waals energy contributed by the hydrophobic residues Phe12, Leu68, and Ile113, whereas the -OH part of Dod was anchored by the H-bond derived from Glu98 and the salt-bridge derived from Arg109. Because of the importance of these two electrostatic interactions, Glu98 and Arg109 were further verified as key residues in determining the binding affinity between Dod and CpomPBP2. In addition, interactions unfavorable to the binding of Dod were described. CONCLUSION The research detailed the discovery of key residues involved in CpomPBP2-Dod interactions. Our results provide guidance and caution for the prospective discovery, optimization, and design of novel chemicals with a similar or stronger synergistic effect to codlemone in controlling C. pomonella.
Collapse
Affiliation(s)
- Zhen Tian
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yue Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tong Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuan Ye
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Gonzalez F, Borrero‐Echeverry F, Jósvai JK, Strandh M, Unelius CR, Tóth M, Witzgall P, Bengtsson M, Walker WB. Odorant receptor phylogeny confirms conserved channels for sex pheromone and host plant signals in tortricid moths. Ecol Evol 2020; 10:7334-7348. [PMID: 32760532 PMCID: PMC7391548 DOI: 10.1002/ece3.6458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 11/09/2022] Open
Abstract
The search for mates and food is mediated by volatile chemicals. Insects sense food odorants and sex pheromones through odorant receptors (ORs) and pheromone receptors (PRs), which are expressed in olfactory sensory neurons. Molecular phylogenetics of ORs, informed by behavioral and functional data, generates sound hypotheses for the identification of semiochemicals driving olfactory behavior. Studying orthologous receptors and their ligands across taxa affords insights into the role of chemical communication in reproductive isolation and phylogenetic divergence. The female sex pheromone of green budworm moth Hedya nubiferana (Lepidoptera, Totricidae) is a blend of two unsaturated acetates, only a blend of both elicits male attraction. Females produce in addition codlemone, which is the sex pheromone of another tortricid, codling moth Cydia pomonella. Codlemone also attracts green budworm moth males. Concomitantly, green budworm and codling moth males are attracted to the host plant volatile pear ester. A congruent behavioral response to the same pheromone and plant volatile in two tortricid species suggests co-occurrence of dedicated olfactory channels. In codling moth, one PR is tuned to both compounds, the sex pheromone codlemone and the plant volatile pear ester. Our phylogenetic analysis finds that green budworm moth expresses an orthologous PR gene. Shared ancestry, and high levels of amino acid identity and sequence similarity, in codling and green budworm moth PRs offer an explanation for parallel attraction of both species to the same compounds. A conserved olfactory channel for a sex pheromone and a host plant volatile substantiates the alliance of social and habitat signals in insect chemical communication. Field attraction assays confirm that in silico investigations of ORs afford powerful predictions for an efficient identification of behavior-modifying semiochemicals, for an improved understanding of the mechanisms of host plant attraction in insect herbivores and for the further development of sustainable insect control.
Collapse
Affiliation(s)
- Francisco Gonzalez
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
- ChemTica InternacionalHerediaCosta Rica
| | - Felipe Borrero‐Echeverry
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
- Corporación Colombiana de Investgación AgropecuariaAgrosaviaMosqueraColombia
| | | | - Maria Strandh
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
- Molecular Ecology and Evolution LabDepartment of BiologyLund UniversityLundSweden
| | | | - Miklós Tóth
- Plant Protection Institute CARBudapestHungary
| | - Peter Witzgall
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Marie Bengtsson
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - William B. Walker
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
- Faculty of Forestry and Wood SciencesCzech University of Life SciencesPragueCzech Republic
| |
Collapse
|
7
|
Sarles L, Fassotte B, Boullis A, Lognay G, Verhaeghe A, Markó I, Verheggen FJ. Improving the Monitoring of the Walnut Husk Fly (Diptera: Tephritidae) Using Male-Produced Lactones. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2032-2037. [PMID: 30256998 DOI: 10.1093/jee/toy169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 06/08/2023]
Abstract
It is important to monitor fruit flies (Diptera: Tephritidae) efficiently to implement sustainable means of control. Attractants are often used to increase the efficiency of sticky traps deployed in orchards to monitor Lepidopterans, but remains to be developed to monitor fruit flies. Rhagoletis completa Cresson (Diptera: Tephritidae) is an invasive species in the walnut orchards of Europe, and is commonly monitored with yellow sticky traps. In this study, we collected the volatile compounds released by male and female R. completa, and identified two lactones released exclusively by males. We then formulated both lactones in long-lasting volatile dispensers, and we quantified their release rate over a 26-d period. Finally, during the entire period when female flies are present in the field, we compared the efficiency of the conventional monitoring method using unbaited yellow sticky traps with yellow sticky traps associated with a dispenser releasing both male-produced lactones. These assays were conducted in 54 walnut orchards in France, in 2017. The number of fruit flies caught with sticky traps associated with lactones dispensers was increased by up to 10 times each week. Lactone-baited traps also allowed earlier detection in the season. These field results are promising for R. completa monitoring. A complete chiral identification of these lactones should be performed along with a clarification of their role in the sexual communication of R. completa.
Collapse
Affiliation(s)
- Landry Sarles
- Université de Liège - Gembloux Agro-Bio Tech, Entomologie Fonctionnelle et Evolutive, Passage des Déportés, Gembloux, Belgique
| | - Bérénice Fassotte
- Université de Liège - Gembloux Agro-Bio Tech, Entomologie Fonctionnelle et Evolutive, Passage des Déportés, Gembloux, Belgique
| | - Antoine Boullis
- Université de Liège - Gembloux Agro-Bio Tech, Entomologie Fonctionnelle et Evolutive, Passage des Déportés, Gembloux, Belgique
| | - Georges Lognay
- Université de Liège - Gembloux Agro-Bio Tech, Chimie analytique, Passage des Déportés, Gembloux, Belgique
| | - Agnès Verhaeghe
- Centre Technique Interprofessionnel des Fruits et Légumes, Chatte, France
| | - István Markó
- Université Catholique de Louvain-la-Neuve, Chimie organique et médicale, Louvain-la-Neuve, Belgique
| | - François J Verheggen
- Université de Liège - Gembloux Agro-Bio Tech, Entomologie Fonctionnelle et Evolutive, Passage des Déportés, Gembloux, Belgique
| |
Collapse
|
8
|
Cattaneo AM. Current Status on the Functional Characterization of Chemosensory Receptors of Cydia pomonella (Lepidoptera: Tortricidae). Front Behav Neurosci 2018; 12:189. [PMID: 30210318 PMCID: PMC6120436 DOI: 10.3389/fnbeh.2018.00189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/06/2018] [Indexed: 11/13/2022] Open
Abstract
Cydia pomonella (Lepidoptera: Tortricidae) is a major pest of apple, pear and walnuts. For its control, alternative strategies targeting the olfactory system, like mating disruption, have been combined with insecticide applications. The efficacy of these strategies headed the direction of efforts for the functional characterization of codling moth chemosensory receptors to implement further control methods based on chemical sensing. With the advent of transcriptomic analysis, partial and full-length coding sequences of chemosensory receptors have been identified in antennal transcriptomes of C. pomonella. Extension of partial coding sequences to full-length by polymerase chain reaction (PCR)-based techniques and heterologous expression in empty neurons of Drosophila melanogaster and in Human Embryonic Kidney cells allowed functional studies to investigate receptor activation and ligand binding modalities (deorphanization). Among different classes of antennal receptors, several odorant receptors of C. pomonella (CpomORs) have been characterized as binding kairomones (CpomOR3), pheromones (CpomOR6a) and compounds emitted by non-host plants (CpomOR19). Physiological and pharmacological studies of these receptors demonstrated their ionotropic properties, by forming functional channels with the co-receptor subunit of CpomOrco. Further investigations reported a novel insect transient receptor potential (TRPA5) expressed in antennae and other body parts of C. pomonella as a complex pattern of ribonucleic acid (RNA) splice-forms, with a possible involvement in sensing chemical stimuli and temperature. Investigation on chemosensory mechanisms in the codling moth has practical outcomes for the development of control strategies and it inspired novel trends to control this pest by integrating alternative methods to interfere with insect chemosensory communication.
Collapse
Affiliation(s)
- Alberto Maria Cattaneo
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
9
|
Knight AL, Light DM, Judd GJR, Witzgall P. Pear Ester – From Discovery to Delivery for Improved Codling Moth Management. ACS SYMPOSIUM SERIES 2018. [DOI: 10.1021/bk-2018-1294.ch008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Alan L. Knight
- Temperate Tree Fruit and Vegetable Research, Agricultural Research Service, U.S. Department of Agriculture, 5230 Konnowac Pass Road, Wapato, Washington 98951, United States
| | - Douglas M. Light
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany California 94710, United States
| | - Gary J. R. Judd
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, 4200 Highway 97, Summerland, British Columbia, Canada
| | - Peter Witzgall
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
10
|
Sarles L, Boullis A, Fassotte B, Lognay G, Verhaeghe A, Francis F, Verheggen FJ. Identification of walnut husk (Juglans regia L.) volatiles and the behavioural response of the invasive Walnut Husk Fly, Rhagoletis completa Cresson. PEST MANAGEMENT SCIENCE 2017; 73:2100-2104. [PMID: 28374545 DOI: 10.1002/ps.4584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Several European countries are important walnut (Juglans regia L.) producers. However, these countries must contend with the recent introduction of the Walnut Husk Fly, Rhagoletis completa Cresson (Diptera, Tephritidae), which is causing severe economic losses, especially in organic production. Because most Tephritid fruit flies use kairomones in their search for host plants, we hypothesise that this highly specialist species orients toward the volatile blend released by walnut husks. RESULTS We collected, identified, and quantified the volatile organic chemicals (VOCs) released by walnut husks from the most commonly cultivated variety in France (Franquette). Then, the behavioural response of R. completa toward synthetic odour blends was recorded in dual choice assays conducted in net cages. A total of 26 VOCs were identified, with α-pinene, β-pinene, trans-linalool, eugenol, and tetradecane representing the major constituents. In the dual choice assay, male and female R. completa were strongly attracted to synthetic blend that included most of the identified husk VOCs. CONCLUSION When searching for a host plant, R. completa use host fruit kairomones. The potential of these semiochemicals in monitoring and management of this quarantine pest is discussed. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Landry Sarles
- Université de Liège - Gembloux Agro-Bio Tech, Entomologie Fonctionnelle et Evolutive, Gembloux, Belgium
| | - Antoine Boullis
- Université de Liège - Gembloux Agro-Bio Tech, Entomologie Fonctionnelle et Evolutive, Gembloux, Belgium
| | - Bérénice Fassotte
- Université de Liège - Gembloux Agro-Bio Tech, Entomologie Fonctionnelle et Evolutive, Gembloux, Belgium
| | - Georges Lognay
- Université de Liège - Gembloux Agro-Bio Tech, Laboratoire de Chimie Analytique, Gembloux, Belgium
| | - Agnès Verhaeghe
- Centre Technique Interprofessionnel des Fruits et Légumes, Chatte, France
| | - Frédéric Francis
- Université de Liège - Gembloux Agro-Bio Tech, Entomologie Fonctionnelle et Evolutive, Gembloux, Belgium
| | - François J Verheggen
- Université de Liège - Gembloux Agro-Bio Tech, Entomologie Fonctionnelle et Evolutive, Gembloux, Belgium
| |
Collapse
|
11
|
Light DM, Grant JA, Haff RP, Knight AL. Addition of Pear Ester With Sex Pheromone Enhances Disruption of Mating by Female Codling Moth (Lepidoptera: Tortricidae) in Walnut Orchards Treated with Meso Dispensers. ENVIRONMENTAL ENTOMOLOGY 2017; 46:319-327. [PMID: 28158529 DOI: 10.1093/ee/nvw168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Indexed: 06/06/2023]
Abstract
We evaluated the low-density application of 50 dispensers per hectare, in contrast to the traditional >800 dispensers per hectare in apple orchards, to achieve disruption of communication of adult codling moth, Cydia pomonella (L.), in walnuts, Juglans regia (L.), using several methods. These methods included cumulative catches of male moths in traps baited with sex pheromone (Ph) or codlemone, (E,E)-8,10-dodecadien-1-ol, or a combination of codlemone, pear ester (PE), ethyl (E,Z)-2,4-decadienoate, and acetic acid, and by examining the mating status of females. These data were collected from 2011-2014 in nontreated plots and in similar plots treated with Meso dispensers loaded with codlemone (Ph Meso) or codlemone and PE (Ph + PE Meso). Male moth captures in both the Ph and combination lure traps reduced by 88-96% and 72 to 77%, respectively, compared with traps in the nontreated plots. A significantly higher proportion of female moths were nonmated in plots treated with Ph + PE Meso dispensers (33%) than in plots treated with Ph Meso (18-26%), or left nontreated (13%). In addition, significantly fewer multiple-mated females were trapped in the Ph + PE Meso-treated plots (6%) than in either Ph Meso-treated (13-18%) or nontreated plots (23%). These data suggest that the addition of PE can effectively improve Ph-based disruption of C. pomonella in walnut orchards. In addition, these data suggest that the use of low-density hand-applied dispensers can be an effective and lower-cost approach to manage this pest in the large canopy presented by walnut orchards.
Collapse
Affiliation(s)
- Douglas M Light
- Western Regional Research Center, Agricultural Research Service, USDA, 800 Buchanan St., Albany, CA 94710 (; )
| | - Joseph A Grant
- University of California Cooperative Extension, 2101 E. Earhart Ave., Suite 200, Stockton, CA 95206
| | - Ronald P Haff
- Western Regional Research Center, Agricultural Research Service, USDA, 800 Buchanan St., Albany, CA 94710 (; )
| | - Alan L Knight
- USDA, ARS, YARL, 5230 Konnowac Pass Rd., Wapato, WA 98951
| |
Collapse
|
12
|
Candidate pheromone receptors of codling moth Cydia pomonella respond to pheromones and kairomones. Sci Rep 2017; 7:41105. [PMID: 28117454 PMCID: PMC5259778 DOI: 10.1038/srep41105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/15/2016] [Indexed: 11/09/2022] Open
Abstract
Olfaction plays a dominant role in the mate-finding and host selection behaviours of the codling moth (Cydia pomonella), an important pest of apple, pear and walnut orchards worldwide. Antennal transcriptome analysis revealed a number of abundantly expressed genes related to the moth olfactory system, including those encoding the olfactory receptors (ORs) CpomOR1, CpomOR3 and CpomOR6a, which belong to the pheromone receptor (PR) lineage, and the co-receptor (CpomOrco). Using heterologous expression, in both Drosophila olfactory sensory neurones and in human embryonic kidney cells, together with electrophysiological recordings and calcium imaging, we characterize the basic physiological and pharmacological properties of these receptors and demonstrate that they form functional ionotropic receptor channels. Both the homomeric CpomOrco and heteromeric CpomOrco + OR complexes can be activated by the common Orco agonists VUAA1 and VUAA3, as well as inhibited by the common Orco antagonists amiloride derivatives. CpomOR3 responds to the plant volatile compound pear ester ethyl-(E,Z)-2,4-decadienoate, while CpomOR6a responds to the strong pheromone antagonist codlemone acetate (E,E)-8,10-dodecadien-1-yl acetate. These findings represent important breakthroughs in the deorphanization of codling moth pheromone receptors, as well as more broadly into insect ecology and evolution and, consequently, for the development of sustainable pest control strategies based on manipulating chemosensory communication.
Collapse
|
13
|
|