1
|
Jalali H, Rahimian S, Shahsavarian N, Norouzi R, Ahmadiyeh Z, Najafi H, Golchin H. The organoid modeling approach to understanding the mechanisms underlying neurodegeneration: A comprehensive review. Life Sci 2024; 358:123198. [PMID: 39486620 DOI: 10.1016/j.lfs.2024.123198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Neurodegenerative diseases (NDs) are severe disorders of the nervous system, and their causes are still not completely understood. Modeling the complex pathological mechanisms underlying NDs has long posed a significant challenge, as traditional in vitro and animal models often fail to accurately recapitulate the disease phenotypes observed in humans; however, the rise of organoid technology has opened new approaches for developing innovative disease models that can better capture the nuances of the human nervous system. Organoid platforms hold promise for contributing to the design of future clinical trials and advancing our understanding of these devastating neurological conditions and accelerate the discovery of effective, personalized therapies. This comprehensive review discusses the recent advancements in neural organoid technology and explores the potential of patient-derived organoids for modeling NDs conditions and presents findings related to the mechanisms of their development or progress.
Collapse
Affiliation(s)
- Hanieh Jalali
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Sana Rahimian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nasim Shahsavarian
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Rozhan Norouzi
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Zahra Ahmadiyeh
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hossein Najafi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hasti Golchin
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
2
|
Celik D, Campisi M, Cannella L, Pavanello S. The effect of low birth weight as an intrauterine exposure on the early onset of sarcopenia through possible molecular pathways. J Cachexia Sarcopenia Muscle 2024; 15:770-780. [PMID: 38553412 PMCID: PMC11154781 DOI: 10.1002/jcsm.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 06/07/2024] Open
Abstract
Sarcopenia, a musculoskeletal disease characterized by the progressive loss of skeletal muscle mass, strength, and physical performance, presents significant challenges to global public health due to its adverse effects on mobility, morbidity, mortality, and healthcare costs. This comprehensive review explores the intricate connections between sarcopenia and low birth weight (LBW), emphasizing the developmental origins of health and disease (DOHaD) hypothesis, inflammatory processes (inflammaging), mitochondrial dysfunction, circadian rhythm disruptions, epigenetic mechanisms, and genetic variations revealed through genome-wide studies (GWAS). A systematic search strategy was developed using PubMed to identify relevant English-language publications on sarcopenia, LBW, DOHaD, inflammaging, mitochondrial dysfunction, circadian disruption, epigenetic mechanisms, and GWAS. The publications consist of 46.2% reviews, 21.2% cohort studies, 4.8% systematic reviews, 1.9% cross-sectional studies, 13.4% animal studies, 4.8% genome-wide studies, 5.8% epigenome-wide studies, and 1.9% book chapters. The review identified key factors contributing to sarcopenia development, including the DOHaD hypothesis, LBW impact on muscle mass, inflammaging, mitochondrial dysfunction, the influence of clock genes, the role of epigenetic mechanisms, and genetic variations revealed through GWAS. The DOHaD theory suggests that LBW induces epigenetic alterations during foetal development, impacting long-term health outcomes, including the early onset of sarcopenia. LBW correlates with reduced muscle mass, grip strength, and lean body mass in adulthood, increasing the risk of sarcopenia. Chronic inflammation (inflammaging) and mitochondrial dysfunction contribute to sarcopenia, with LBW linked to increased oxidative stress and dysfunction. Disrupted circadian rhythms, regulated by genes such as BMAL1 and CLOCK, are associated with both LBW and sarcopenia, impacting lipid metabolism, muscle mass, and the ageing process. Early-life exposures, including LBW, induce epigenetic modifications like DNA methylation (DNAm) and histone changes, playing a pivotal role in sarcopenia development. Genome-wide studies have identified candidate genes and variants associated with lean body mass, muscle weakness, and sarcopenia, providing insights into genetic factors contributing to the disorder. LBW emerges as a potential early predictor of sarcopenia development, reflecting the impact of intrauterine exposures on long-term health outcomes. Understanding the complex interplay between LBW with inflammaging, mitochondrial dysfunction, circadian disruption, and epigenetic factors is essential for elucidating the pathogenesis of sarcopenia and developing targeted interventions. Future research on GWAS and the underlying mechanisms of LBW-associated sarcopenia is warranted to inform preventive strategies and improve public health outcomes.
Collapse
Affiliation(s)
- Dilek Celik
- Department of Pharmceutical and Pharmacological SciencesUniversity of PaduaPaduaItaly
| | - Manuela Campisi
- Department of Cardiac Thoracic Vascular Sciences and Public HealthUniversity of PaduaPaduaItaly
| | - Luana Cannella
- Department of Cardiac Thoracic Vascular Sciences and Public HealthUniversity of PaduaPaduaItaly
| | - Sofia Pavanello
- Department of Cardiac Thoracic Vascular Sciences and Public HealthUniversity of PaduaPaduaItaly
- University Hospital of PadovaPaduaItaly
| |
Collapse
|
3
|
Garay YC, Cejas RB, Perondi MC, Gutiérrez MC, Parodi P, Ferrero FA, Lardone RD, Valdomero A, Cuadra GR, Irazoqui FJ. Perinatal Protein Restriction Impacts Nuclear O-GalNAc Glycosylation in Cells of Liver and Brain Structures of the Rat. J Nutr 2023; 153:979-987. [PMID: 36870540 DOI: 10.1016/j.tjnut.2023.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Post-translational modifications are key factors in the modulation of nuclear protein functions controlling cell physiology and an individual's health. OBJECTIVES This study examined the influence of protein restriction during the perinatal period on the nuclear O-N-acetylgalactosamine (O-GalNAc) glycosylation of cells from the liver and parts of the brain in the rat. METHODS Pregnant Wistar rats were divided into 2 groups on day 14 of pregnancy and fed ad libitum 1 of 2 isocaloric diets containing 24% (well-fed) or 8% (protein-restricted diet) casein until the end of the experiment. Male pups were studied after weaning at 30 d of life. Animals and their organ/tissues (liver, cerebral cortex, cerebellum and hippocampus) were weighed. Cell nuclei were purified, and the presence in nucleus and cytoplasm of all factors required for the initiation of O-GalNAc glycan biosynthesis, i.e., the sugar donor (UDP-GalNAc), enzyme activity (ppGalNAc-transferase) and the glycosylation product (O-GalNAc glycans), were evaluated by western blotting, fluorescent microscopy, enzyme activity, enzyme-lectin sorbent assay and mass spectrometry. RESULTS The perinatal protein deficit reduced progeny weight, as well as the cerebral cortex and cerebellum weight. UDP-GalNAc levels in the cytoplasm and nuclei of the liver, the cerebral cortex, cerebellum, or hippocampus were not affected by the perinatal dietary protein deficits. However, this deficiency affected the ppGalNAc-transferase activity localized in the cerebral cortex and hippocampus cytoplasm as well as in the liver nucleus, thus reducing the "writing" ppGalNAc-transferase activity of O-GalNAc glycans. In addition, liver nucleoplasm from protein-restricted offspring revealed a significant reduction in the expression of O-GalNAc glycans on important nuclear proteins. CONCLUSIONS Our results report an association between the consumption of a protein-restricted diet by the dam and her progeny with the modulation in the offspring' liver nuclei O-GalNAc glycosylation, which may ultimately regulate nuclear protein functions.
Collapse
Affiliation(s)
- Yohana Camila Garay
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, the Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, the Córdoba, Argentina
| | - Romina Beatriz Cejas
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, the Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, the Córdoba, Argentina
| | - Maria Cecilia Perondi
- Instituto de Farmacología Experimental de Córdoba, IFEC, CONICET, and Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, the Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, the Córdoba, Argentina
| | - Maria Cecilia Gutiérrez
- Instituto de Farmacología Experimental de Córdoba, IFEC, CONICET, and Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, the Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, the Córdoba, Argentina
| | - Pedro Parodi
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, the Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, the Córdoba, Argentina
| | - Franco Alejandro Ferrero
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, the Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, the Córdoba, Argentina
| | - Ricardo Dante Lardone
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, the Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, the Córdoba, Argentina
| | - Analía Valdomero
- Instituto de Farmacología Experimental de Córdoba, IFEC, CONICET, and Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, the Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, the Córdoba, Argentina
| | - Gabriel Ricardo Cuadra
- Instituto de Farmacología Experimental de Córdoba, IFEC, CONICET, and Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, the Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, the Córdoba, Argentina
| | - Fernando José Irazoqui
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, the Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, the Córdoba, Argentina.
| |
Collapse
|
4
|
Olmedo-Suárez MÁ, Ramírez-Díaz I, Pérez-González A, Molina-Herrera A, Coral-García MÁ, Lobato S, Sarvari P, Barreto G, Rubio K. Epigenetic Regulation in Exposome-Induced Tumorigenesis: Emerging Roles of ncRNAs. Biomolecules 2022; 12:513. [PMID: 35454102 PMCID: PMC9032613 DOI: 10.3390/biom12040513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, including pollutants and lifestyle, constitute a significant role in severe, chronic pathologies with an essential societal, economic burden. The measurement of all environmental exposures and assessing their correlation with effects on individual health is defined as the exposome, which interacts with our unique characteristics such as genetics, physiology, and epigenetics. Epigenetics investigates modifications in the expression of genes that do not depend on the underlying DNA sequence. Some studies have confirmed that environmental factors may promote disease in individuals or subsequent progeny through epigenetic alterations. Variations in the epigenetic machinery cause a spectrum of different disorders since these mechanisms are more sensitive to the environment than the genome, due to the inherent reversible nature of the epigenetic landscape. Several epigenetic mechanisms, including modifications in DNA (e.g., methylation), histones, and noncoding RNAs can change genome expression under the exogenous influence. Notably, the role of long noncoding RNAs in epigenetic processes has not been well explored in the context of exposome-induced tumorigenesis. In the present review, our scope is to provide relevant evidence indicating that epigenetic alterations mediate those detrimental effects caused by exposure to environmental toxicants, focusing mainly on a multi-step regulation by diverse noncoding RNAs subtypes.
Collapse
Affiliation(s)
- Miguel Ángel Olmedo-Suárez
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Decanato de Ciencias de la Salud, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Sagrario Lobato
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
5
|
Histone deacetylase HDA-4-mediated epigenetic regulation in space-flown C. elegans. NPJ Microgravity 2021; 7:33. [PMID: 34471121 PMCID: PMC8410859 DOI: 10.1038/s41526-021-00163-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/03/2021] [Indexed: 02/04/2023] Open
Abstract
Epigenetic changes during long-term spaceflight are beginning to be studied by NASA's twin astronauts and other model organisms. Here, we evaluate the epigenetic regulation of gene expression in space-flown C. elegans by comparing wild type and histone deacetylase (hda)-4 mutants. Expression levels of 39 genes were consistently upregulated in all four generations of adult hda-4 mutants grown under microgravity compared with artificial Earth-like gravity (1G). In contrast, in the wild type, microgravity-induced upregulation of these genes occurred a little. Among these genes, 11 contain the domain of unknown function 19 (DUF-19) and are located in a cluster on chromosome V. When compared with the 1G condition, histone H3 trimethylation at lysine 27 (H3K27me3) increased under microgravity in the DUF-19 containing genes T20D4.12 to 4.10 locus in wild-type adults. On the other hand, this increase was also observed in the hda-4 mutant, but the level was significantly reduced. The body length of wild-type adults decreased slightly but significantly when grown under microgravity. This decrease was even more pronounced with the hda-4 mutant. In ground-based experiments, one of the T20D4.11 overexpressing strains significantly reduced body length and also caused larval growth retardation and arrest. These results indicate that under microgravity, C. elegans activates histone deacetylase HDA-4 to suppress overregulation of several genes, including the DUF-19 family. In other words, the expression of certain genes, including negative regulators of growth and development, is epigenetically fine-tuned to adapt to the space microgravity.
Collapse
|
6
|
Cho Y, Song MK, Ryu JC. DNA methylome signatures as epigenetic biomarkers of hexanal associated with lung toxicity. PeerJ 2021; 9:e10779. [PMID: 33604181 PMCID: PMC7868067 DOI: 10.7717/peerj.10779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/23/2020] [Indexed: 11/23/2022] Open
Abstract
Background Numerous studies have investigated the relationship of environmental exposure, epigenetic effects, and human diseases. These linkages may contribute to the potential toxicity mechanisms of environmental chemicals. Here, we investigated the epigenetic pulmonary response of hexanal, a major indoor irritant, following inhalation exposure in F-344 rats. Methods Based on DNA methylation profiling in gene promoter regions, we identified hexanal-characterized methylated sites and target genes using an unpaired t-test with a fold-change cutoff of ≥ 3.0 and a p-value < 0.05. We also conducted an integrated analysis of DNA methylation and mRNA expression data to identify core anti-correlated target genes of hexanal exposure. To further investigate the potential key biological processes and pathways of core DNA methylated target genes, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed. Results Thirty-six dose-dependent methylated genes and anti-correlated target genes of DNA methylation and mRNA in lung tissue of hexanal exposed F-344 rats were identified. These genes were involved in diverse biological processes such as neuroactive ligand-receptor interaction, protein kinase cascade, and intracellular signaling cascade associated with pulmonary toxicity. These results suggest that novel DNA methylation-based epigenetic biomarkers of exposure to hexanal and elucidate the potential pulmonary toxicological mechanisms of action of hexanal.
Collapse
Affiliation(s)
- Yoon Cho
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Mi-Kyung Song
- Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Jae-Chun Ryu
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
7
|
Iyer H, Wahul AB, P K A, Sawant BS, Kumar A. A BRD's (BiRD's) eye view of BET and BRPF bromodomains in neurological diseases. Rev Neurosci 2021; 32:403-426. [PMID: 33661583 DOI: 10.1515/revneuro-2020-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/11/2020] [Indexed: 01/18/2023]
Abstract
Neurological disorders (NLDs) are among the top leading causes for disability worldwide. Dramatic changes in the epigenetic topography of the brain and nervous system have been found in many NLDs. Histone lysine acetylation has prevailed as one of the well characterised epigenetic modifications in these diseases. Two instrumental components of the acetylation machinery are the evolutionarily conserved Bromodomain and PHD finger containing (BRPF) and Bromo and Extra terminal domain (BET) family of proteins, also referred to as acetylation 'readers'. Several reasons, including their distinct mechanisms of modulation of gene expression and their property of being highly tractable small molecule targets, have increased their translational relevance. Thus, compounds which demonstrated promising results in targeting these proteins have advanced to clinical trials. They have been established as key role players in pathologies of cancer, cardiac diseases, renal diseases and rheumatic diseases. In addition, studies implicating the role of these bromodomains in NLDs are gaining pace. In this review, we highlight the findings of these studies, and reason for the plausible roles of all BET and BRPF members in NLDs. A comprehensive understanding of their multifaceted functions would be radical in the development of therapeutic interventions.
Collapse
Affiliation(s)
- Harish Iyer
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Abhipradnya B Wahul
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Annapoorna P K
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Bharvi S Sawant
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Arvind Kumar
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
8
|
Thakur IS, Roy D. Environmental DNA and RNA as Records of Human Exposome, Including Biotic/Abiotic Exposures and Its Implications in the Assessment of the Role of Environment in Chronic Diseases. Int J Mol Sci 2020; 21:ijms21144879. [PMID: 32664313 PMCID: PMC7402316 DOI: 10.3390/ijms21144879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Most of environment-related diseases often result from multiple exposures of abiotic and/or biotic stressors across various life stages. The application of environmental DNA/RNA (eDNA/eRNA) to advance ecological understanding has been very successfully used. However, the eminent extension of eDNA/eRNA-based approaches to estimate human exposure to biotic and/or abiotic environmental stressors to understand the environmental causes of chronic diseases has yet to start. Here, we introduce the potential of eDNA/eRNA for bio-monitoring of human exposome and health effects in the real environmental or occupational settings. This review is the first of its kind to discuss how eDNA/eRNA-based approaches can be applied for assessing the human exposome. eDNA-based exposome assessment is expected to rely on our ability to capture the genome- and epigenome-wide signatures left behind by individuals in the indoor and outdoor physical spaces through shedding, excreting, etc. Records of eDNA/eRNA exposome may reflect the early appearance, persistence, and presence of biotic and/or abiotic-exposure-mediated modifications in these nucleic acid molecules. Functional genome- and epigenome-wide mapping of eDNA offer great promise to help elucidate the human exposome. Assessment of longitudinal exposure to physical, biological, and chemical agents present in the environment through eDNA/eRNA may enable the building of an integrative causal dynamic stochastic model to estimate environmental causes of human health deficits. This model is expected to incorporate key biological pathways and gene networks linking individuals, their geographic locations, and random multi-hits of environmental factors. Development and validation of monitoring of eDNA/eRNA exposome should seriously be considered to introduce into safety and risk assessment and as surrogates of chronic exposure to environmental stressors. Here we highlight that eDNA/eRNA reflecting longitudinal exposure of both biotic and abiotic environmental stressors may serve as records of human exposome and discuss its application as molecular tools for understanding the toxicogenomics basis of environment-related health deficits.
Collapse
Affiliation(s)
- Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Correspondence: (I.S.T.); (D.R.); Tel.: +91-2670-4321 (I.S.T.); +1-30-5348-1694 (D.R.)
| | - Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Correspondence: (I.S.T.); (D.R.); Tel.: +91-2670-4321 (I.S.T.); +1-30-5348-1694 (D.R.)
| |
Collapse
|
9
|
Hu J, Askary AM, Thurman TJ, Spiller DA, Palmer TM, Pringle RM, Barrett RDH. The Epigenetic Signature of Colonizing New Environments in Anolis Lizards. Mol Biol Evol 2020; 36:2165-2170. [PMID: 31147693 DOI: 10.1093/molbev/msz133] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Founder populations often show rapid divergence from source populations after colonizing new environments. Epigenetic modifications can mediate phenotypic responses to environmental change and may be an important mechanism promoting rapid differentiation in founder populations. Whereas many long-term studies have explored the extent to which divergence between source and founder populations is genetically heritable versus plastic, the role of epigenetic processes during colonization remains unclear. To investigate epigenetic modifications in founding populations, we experimentally colonized eight small Caribbean islands with brown anole lizards (Anolis sagrei) from a common source population. We then quantitatively measured genome-wide DNA methylation in liver tissue using reduced representation bisulfite sequencing of individuals transplanted onto islands with high- versus low-habitat quality. We found that lizard sex and habitat quality explained a significant proportion of epigenetic variation. Differentially methylated cytosines mapped to genes that encode proteins with functions likely to be relevant to habitat change (e.g., signal transduction, immune response, circadian rhythm). This study provides experimental evidence of a relationship between epigenetic responses and the earliest stages of colonization of novel environments in nature and suggests that habitat quality influences the nature of these epigenetic modifications.
Collapse
Affiliation(s)
- Juntao Hu
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Arash M Askary
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Timothy J Thurman
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada.,Smithsonian Tropical Research Institute, Panamá, República de Panamá
| | - Dave A Spiller
- Section of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA
| | - Todd M Palmer
- Mpala Research Centre, Nanyuki, Kenya.,Department of Biology, University of Florida, Gainesville, FL
| | - Robert M Pringle
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ
| | - Rowan D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
El Khoury D, Fayjaloun S, Nassar M, Sahakian J, Aad PY. Updates on the Effect of Mycotoxins on Male Reproductive Efficiency in Mammals. Toxins (Basel) 2019; 11:E515. [PMID: 31484408 PMCID: PMC6784030 DOI: 10.3390/toxins11090515] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
Mycotoxins are ubiquitous and unavoidable harmful fungal products with the ability to cause disease in both animals and humans, and are found in almost all types of foods, with a greater prevalence in hot humid environments. These mycotoxins vary greatly in structure and biochemical effects; therefore, by better understanding the toxicological and pathological aspects of mycotoxins, we can be better equipped to fight the diseases, as well as the biological and economic devastations, they induce. Multiple studies point to the association between a recent increase in male infertility and the increased occurrence of these mycotoxins in the environment. Furthermore, understanding how mycotoxins may induce an accumulation of epimutations during parental lifetimes can shed light on their implications with respect to fertility and reproductive efficiency. By acknowledging the diversity of mycotoxin molecular function and mode of action, this review aims to address the current limited knowledge on the effects of these chemicals on spermatogenesis and the various endocrine and epigenetics patterns associated with their disruptions.
Collapse
Affiliation(s)
- Diala El Khoury
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Salma Fayjaloun
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Marc Nassar
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Joseph Sahakian
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Pauline Y Aad
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon.
| |
Collapse
|
11
|
Varizhuk A, Isaakova E, Pozmogova G. DNA G-Quadruplexes (G4s) Modulate Epigenetic (Re)Programming and Chromatin Remodeling: Transient Genomic G4s Assist in the Establishment and Maintenance of Epigenetic Marks, While Persistent G4s May Erase Epigenetic Marks. Bioessays 2019; 41:e1900091. [PMID: 31379012 DOI: 10.1002/bies.201900091] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/09/2019] [Indexed: 01/07/2023]
Abstract
Here, the emerging data on DNA G-quadruplexes (G4s) as epigenetic modulators are reviewed and integrated. This concept has appeared and evolved substantially in recent years. First, persistent G4s (e.g., those stabilized by exogenous ligands) were linked to the loss of the histone code. More recently, transient G4s (i.e., those formed upon replication or transcription and unfolded rapidly by helicases) were implicated in CpG island methylation maintenance and de novo CpG methylation control. The most recent data indicate that there are direct interactions between G4s and chromatin remodeling factors. Finally, multiple findings support the indirect participation of G4s in chromatin reshaping via interactions with remodeling-related transcription factors (TFs) or damage responders. Here, the links between the above processes are analyzed; also, how further elucidation of these processes may stimulate the progress of epigenetic therapy is discussed, and the remaining open questions are highlighted.
Collapse
Affiliation(s)
- Anna Varizhuk
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435, Russia
| | - Ekaterina Isaakova
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435, Russia
| | - Galina Pozmogova
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435, Russia
| |
Collapse
|
12
|
Fuso A, Lucarelli M. CpG and Non-CpG Methylation in the Diet–Epigenetics–Neurodegeneration Connection. Curr Nutr Rep 2019; 8:74-82. [DOI: 10.1007/s13668-019-0266-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Sobolewski M, Singh G, Schneider JS, Cory-Slechta DA. Different Behavioral Experiences Produce Distinctive Parallel Changes in, and Correlate With, Frontal Cortex and Hippocampal Global Post-translational Histone Levels. Front Integr Neurosci 2018; 12:29. [PMID: 30072878 PMCID: PMC6060276 DOI: 10.3389/fnint.2018.00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/29/2018] [Indexed: 12/29/2022] Open
Abstract
While it is clear that behavioral experience modulates epigenetic profiles, it is less evident how the nature of that experience influences outcomes and whether epigenetic/genetic "biomarkers" could be extracted to classify different types of behavioral experience. To begin to address this question, male and female mice were subjected to either a Fixed Interval (FI) schedule of food reward, or a single episode of forced swim followed by restraint stress, or no explicit behavioral experience after which global expression levels of two activating (H3K9ac and H3K4me3) and two repressive (H3K9me2 and H3k27me3) post-translational histone modifications (PTHMs), were measured in hippocampus (HIPP) and frontal cortex (FC). The specific nature of the behavioral experience differentiated profiles of PTHMs in a sex- and brain region-dependent manner, with all 4 PTHMs changing in parallel in response to different behavioral experiences. These different behavioral experiences also modified the pattern of correlations of PTHMs both within and across FC and HIPP. Unexpectedly, highly robust correlations were found between global PTHM levels and behavioral performances, suggesting that global PTHMs may provide a higher-order pattern recognition function. Further efforts are needed to determine the generality of such findings and what characteristics of behavioral experience are critical for modulating PTHM responses.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Garima Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jay S. Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Deborah A. Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|