1
|
Senner CE, Dong Z, Prater M, Branco MR, Watson ED. One-carbon metabolism is required for epigenetic stability in the mouse placenta. Front Cell Dev Biol 2023; 11:1209928. [PMID: 37440923 PMCID: PMC10333575 DOI: 10.3389/fcell.2023.1209928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023] Open
Abstract
One-carbon metabolism, including the folate cycle, has a crucial role in fetal development though its molecular function is complex and unclear. The hypomorphic Mtrr gt allele is known to disrupt one-carbon metabolism, and thus methyl group availability, leading to several developmental phenotypes (e.g., neural tube closure defects, fetal growth anomalies). Remarkably, previous studies showed that some of the phenotypes were transgenerationally inherited. Here, we explored the genome-wide epigenetic impact of one-carbon metabolism in placentas associated with fetal growth phenotypes and determined whether specific DNA methylation changes were inherited. Firstly, methylome analysis of Mtrr gt/gt homozygous placentas revealed genome-wide epigenetic instability. Several differentially methylated regions (DMRs) were identified including at the Cxcl1 gene promoter and at the En2 gene locus, which may have phenotypic implications. Importantly, we discovered hypomethylation and ectopic expression of a subset of ERV elements throughout the genome of Mtrr gt/gt placentas with broad implications for genomic stability. Next, we determined that known spermatozoan DMRs in Mtrr gt/gt males were reprogrammed in the placenta with little evidence of direct or transgenerational germline DMR inheritance. However, some spermatozoan DMRs were associated with placental gene misexpression despite normalisation of DNA methylation, suggesting the inheritance of an alternative epigenetic mechanism. Integration of published wildtype histone ChIP-seq datasets with Mtrr gt/gt spermatozoan methylome and placental transcriptome datasets point towards H3K4me3 deposition at key loci. These data suggest that histone modifications might play a role in epigenetic inheritance in this context. Overall, this study sheds light on the mechanistic complexities of one-carbon metabolism in development and epigenetic inheritance.
Collapse
Affiliation(s)
- Claire E. Senner
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ziqi Dong
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Malwina Prater
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Miguel R. Branco
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Erica D. Watson
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Santilli F, Boskovic A. Mechanisms of transgenerational epigenetic inheritance: lessons from animal model organisms. Curr Opin Genet Dev 2023; 79:102024. [PMID: 36893483 DOI: 10.1016/j.gde.2023.102024] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/24/2022] [Accepted: 01/26/2023] [Indexed: 03/09/2023]
Abstract
Epigenetic inheritance is a phenomenon whereby stochastic or signal-induced changes to parental germline epigenome modulate phenotypic output in one or more subsequent generations, independently of mutations in the genomic DNA. While the number of reported epigenetic inheritance phenomena across phyla is exponentially growing, much remains to be elucidated about their mechanistic underpinnings, and their significance for organismal homeostasis and adaptation. Here, we review the most recent epigenetic inheritance examples in animal models, outlining molecular details behind environmental sensing by the germline, and the functional relationships connecting epigenetic mechanisms and phenotypic traits after fertilization. We touch upon the experimental challenges associated with studying the scope of environmental input on phenotypic outcomes between generations. Finally, we discuss the implications of mechanistic findings from model organisms for the emergent examples of parental effects in human populations.
Collapse
Affiliation(s)
- Flavio Santilli
- European Molecular Biology Laboratory Epigenetics & Neurobiology Unit, Monterotondo, RM, Italy. https://twitter.com/@santilli_flavio
| | - Ana Boskovic
- European Molecular Biology Laboratory Epigenetics & Neurobiology Unit, Monterotondo, RM, Italy.
| |
Collapse
|
3
|
Sponagel J, Devarakonda S, Rubin JB, Luo J, Ippolito JE. De novo serine biosynthesis from glucose predicts sex-specific response to antifolates in non-small cell lung cancer cell lines. iScience 2022; 25:105339. [PMID: 36325067 PMCID: PMC9619300 DOI: 10.1016/j.isci.2022.105339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death. Intriguingly, males with non-small cell lung cancer (NSCLC) have a higher mortality rate than females. Here, we investigated the role of serine metabolism as a predictive marker for sensitivity to the antifolate pemetrexed in male and female NSCLC cell lines. Using [13C6] glucose tracing in NSCLC cell lines, we found that a subset of male cells generated significantly more serine from glucose than female cells. Higher serine biosynthesis was further correlated with increased sensitivity to pemetrexed in male cells only. Concordant sex differences in metabolic gene expression were evident in NSCLC and pan-cancer transcriptome datasets, suggesting a potential mechanism with wide-reaching applicability. These data were further validated by integrating antifolate drug cytotoxicity and metabolic pathway transcriptome data from pan-cancer cell lines. Together, these findings highlight the importance of considering sex differences in cancer metabolism to improve treatment for all patients.
Collapse
Affiliation(s)
- Jasmin Sponagel
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Siddhartha Devarakonda
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua B. Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
- Siteman Cancer Center Biostatistics Shared Resource, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Joseph E. Ippolito
- Department of Radiology Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
4
|
Steane SE, Kumar V, Cuffe JSM, Moritz KM, Akison LK. Prenatal Choline Supplementation Alters One Carbon Metabolites in a Rat Model of Periconceptional Alcohol Exposure. Nutrients 2022; 14:nu14091874. [PMID: 35565848 PMCID: PMC9100923 DOI: 10.3390/nu14091874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Prenatal alcohol exposure disturbs fetal and placental growth and can alter DNA methylation (DNAm). Supplementation with the methyl donor choline can increase fetal and placental growth and restore DNAm, suggesting converging effects on one-carbon metabolism (1CM). We investigated the impact of periconceptional ethanol (PCE) exposure and prenatal choline supplementation on 1CM in maternal, placental, and fetal compartments. Female Sprague Dawley rats were given a liquid diet containing 12.5% ethanol (PCE) or 0% ethanol (control) for 4 days before and 4 days after conception. Dams were then placed on chow with different concentrations of choline (1.6 g, 2.6 g, or 7.2 g choline/kg chow). Plasma and tissues were collected in late gestation for the analysis of 1CM components by means of mass spectrometry and real-time PCR. PCE reduced placental components of 1CM, particularly those relating to folate metabolism, resulting in a 3−7.5-fold reduction in the ratio of s-adenosylmethionine:s-adenosylhomocysteine (SAM:SAH) (p < 0.0001). Choline supplementation increased placental 1CM components and the SAM:SAH ratio (3.5−14.5-fold, p < 0.0001). In the maternal and fetal compartments, PCE had little effect, whereas choline increased components of 1CM. This suggests that PCE impairs fetal development via altered placental 1CM, highlighting its role in modulating nutritional inputs to optimize fetal development.
Collapse
Affiliation(s)
- Sarah E. Steane
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; (S.E.S.); (V.K.); (J.S.M.C.); (K.M.M.)
| | - Vinod Kumar
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; (S.E.S.); (V.K.); (J.S.M.C.); (K.M.M.)
| | - James S. M. Cuffe
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; (S.E.S.); (V.K.); (J.S.M.C.); (K.M.M.)
| | - Karen M. Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; (S.E.S.); (V.K.); (J.S.M.C.); (K.M.M.)
- Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia
| | - Lisa K. Akison
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; (S.E.S.); (V.K.); (J.S.M.C.); (K.M.M.)
- Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia
- Correspondence:
| |
Collapse
|
5
|
Wilkinson AL, Menelaou K, Rakoczy J, Tan XS, Watson ED. Disruption of Folate Metabolism Causes Poor Alignment and Spacing of Mouse Conceptuses for Multiple Generations. Front Cell Dev Biol 2021; 9:723978. [PMID: 34957089 PMCID: PMC8703036 DOI: 10.3389/fcell.2021.723978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Abnormal uptake or metabolism of folate increases risk of human pregnancy complications, though the mechanism is unclear. Here, we explore how defective folate metabolism influences early development by analysing mice with the hypomorphic Mtrrgt mutation. MTRR is necessary for methyl group utilisation from folate metabolism, and the Mtrrgt allele disrupts this process. We show that the spectrum of phenotypes previously observed in Mtrrgt/gt conceptuses at embryonic day (E) 10.5 is apparent from E8.5 including developmental delay, congenital malformations, and placental phenotypes. Notably, we report misalignment of some Mtrrgt conceptuses within their implantation sites from E6.5. The degree of misorientation occurs across a continuum, with the most severe form visible upon gross dissection. Additionally, some Mtrrgt/gt conceptuses display twinning. Therefore, we implicate folate metabolism in blastocyst orientation and spacing at implantation. Skewed growth likely influences embryo development since developmental delay and heart malformations (but not defects in neural tube closure or trophoblast differentiation) associate with severe misalignment of Mtrrgt/gt conceptuses. Typically, the uterus is thought to guide conceptus orientation. To investigate a uterine effect of the Mtrrgt allele, we manipulate the maternal Mtrr genotype. Misaligned conceptuses were observed in litters of Mtrr+/+, Mtrr+/gt, and Mtrrgt/gt mothers. While progesterone and/or BMP2 signalling might be disrupted, normal decidual morphology, patterning, and blood perfusion are evident at E6.5 regardless of conceptus orientation. These observations argue against a post-implantation uterine defect as a cause of conceptus misalignment. Since litters of Mtrr+/+ mothers display conceptus misalignment, a grandparental effect is explored. Multigenerational phenotype inheritance is characteristic of the Mtrrgt model, though the mechanism remains unclear. Genetic pedigree analysis reveals that severe conceptus skewing associates with the Mtrr genotype of either maternal grandparent. Moreover, the presence of conceptus skewing after embryo transfer into a control uterus indicates that misalignment is independent of the peri- and/or post-implantation uterus and instead is likely attributed to an embryonic mechanism that is epigenetically inherited. Overall, our data indicates that abnormal folate metabolism influences conceptus orientation over multiple generations with implications for subsequent development. This study casts light on the complex role of folate metabolism during development beyond a direct maternal effect.
Collapse
Affiliation(s)
- Amy L Wilkinson
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Katerina Menelaou
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Joanna Rakoczy
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Xiu S Tan
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Erica D Watson
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Bertozzi TM, Becker JL, Blake GET, Bansal A, Nguyen DK, Fernandez-Twinn DS, Ozanne SE, Bartolomei MS, Simmons RA, Watson ED, Ferguson-Smith AC. Variably methylated retrotransposons are refractory to a range of environmental perturbations. Nat Genet 2021; 53:1233-1242. [PMID: 34326545 PMCID: PMC7611517 DOI: 10.1038/s41588-021-00898-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/18/2021] [Indexed: 12/27/2022]
Abstract
The agouti viable yellow (Avy) allele is an insertional mutation in the mouse genome caused by a variably methylated intracisternal A particle (VM-IAP) retrotransposon. Avy expressivity is sensitive to a range of early-life chemical exposures and nutritional interventions, suggesting that environmental perturbations can have long-lasting effects on the methylome. However, the extent to which VM-IAP elements are environmentally labile with phenotypic implications is unknown. Using a recently identified repertoire of VM-IAPs, we assessed the epigenetic effects of different environmental contexts. A longitudinal aging analysis indicated that VM-IAPs are stable across the murine lifespan, with only small increases in DNA methylation detected for a subset of loci. No significant effects were observed after maternal exposure to the endocrine disruptor bisphenol A, an obesogenic diet or methyl donor supplementation. A genetic mouse model of abnormal folate metabolism exhibited shifted VM-IAP methylation levels and altered VM-IAP-associated gene expression, yet these effects are likely largely driven by differential targeting by polymorphic KRAB zinc finger proteins. We conclude that epigenetic variability at retrotransposons is not predictive of environmental susceptibility.
Collapse
Affiliation(s)
| | | | - Georgina E T Blake
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Amita Bansal
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Australian National University Medical School, John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Duy K Nguyen
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust Medical Research Council Institute of Metabolic Science, Cambridge, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust Medical Research Council Institute of Metabolic Science, Cambridge, UK
| | - Marisa S Bartolomei
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erica D Watson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Defective folate metabolism causes germline epigenetic instability and distinguishes Hira as a phenotype inheritance biomarker. Nat Commun 2021; 12:3714. [PMID: 34140513 PMCID: PMC8211854 DOI: 10.1038/s41467-021-24036-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/29/2021] [Indexed: 02/02/2023] Open
Abstract
The mechanism behind transgenerational epigenetic inheritance is unclear, particularly through the maternal grandparental line. We previously showed that disruption of folate metabolism in mice by the Mtrr hypomorphic mutation results in transgenerational epigenetic inheritance of congenital malformations. Either maternal grandparent can initiate this phenomenon, which persists for at least four wildtype generations. Here, we use genome-wide approaches to reveal genetic stability in the Mtrr model and genome-wide differential DNA methylation in the germline of Mtrr mutant maternal grandfathers. We observe that, while epigenetic reprogramming occurs, wildtype grandprogeny and great grandprogeny exhibit transcriptional changes that correlate with germline methylation defects. One region encompasses the Hira gene, which is misexpressed in embryos for at least three wildtype generations in a manner that distinguishes Hira transcript expression as a biomarker of maternal phenotypic inheritance.
Collapse
|
8
|
Padmanabhan N, Menelaou K, Gao J, Anderson A, Blake GET, Li T, Daw BN, Watson ED. Abnormal folate metabolism causes age-, sex- and parent-of-origin-specific haematological defects in mice. J Physiol 2018; 596:4341-4360. [PMID: 30024025 PMCID: PMC6138292 DOI: 10.1113/jp276419] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/27/2018] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS Folate (folic acid) deficiency and mutations in folate-related genes in humans result in megaloblastic anaemia. Folate metabolism, which requires the enzyme methionine synthase reductase (MTRR), is necessary for DNA synthesis and the transmission of one-carbon methyl groups for cellular methylation. In this study, we show that the hypomorphic Mtrrgt/gt mutation in mice results in late-onset and sex-specific blood defects, including macrocytic anaemia, extramedullary haematopoiesis and lymphopenia. Notably, when either parent carries an Mtrrgt allele, blood phenotypes result in their genetically wildtype adult daughters, the effects of which are parent specific. Our data establish a new model for studying the mechanism of folate metabolism in macrocytic anaemia aetiology and suggest that assessing parental folate status might be important when diagnosing adult patients with unexplained anaemia. ABSTRACT The importance of the vitamin folate (also known as folic acid) in erythrocyte formation, maturation and/or longevity is apparent since folate deficiency in humans causes megaloblastic anaemia. Megaloblastic anaemia is a type of macrocytic anaemia whereby erythrocytes are enlarged and fewer in number. Folate metabolism is required for thymidine synthesis and one-carbon metabolism, though its specific role in erythropoiesis is not well understood. Methionine synthase reductase (MTRR) is a key enzyme necessary for the progression of folate metabolism since knocking down the Mtrr gene in mice results in hyperhomocysteinaemia and global DNA hypomethylation. We demonstrate here that abnormal folate metabolism in mice caused by Mtrrgt/gt homozygosity leads to haematopoietic phenotypes that are sex and age dependent. Specifically, Mtrrgt/gt female mice displayed macrocytic anaemia, which might be due to defective erythroid differentiation at the exclusion of haemolysis. This was associated with increased renal Epo mRNA expression, hypercellular bone marrow, and splenic extramedullary haematopoiesis. In contrast, the male response differed since Mtrrgt/gt male mice were not anaemic but did display erythrocytic macrocytosis and lymphopenia. Regardless of sex, these phenotypes were late onset. Remarkably, we also show that when either parent carries an Mtrrgt allele, a haematological defect results in their adult wildtype daughters. However, the specific phenotype was dependent upon the sex of the parent. For instance, wildtype daughters of Mtrr+/gt females displayed normocytic anaemia. In contrast, wildtype daughters of Mtrr+/gt males exhibited erythrocytic microcytosis not associated with anaemia. Therefore, abnormal folate metabolism affects adult haematopoiesis in an age-, sex- and parent-specific manner.
Collapse
Affiliation(s)
- Nisha Padmanabhan
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Katerina Menelaou
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Jiali Gao
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Alexander Anderson
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Georgina E. T. Blake
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Tanya Li
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - B. Nuala Daw
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Erica D. Watson
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| |
Collapse
|