1
|
Ricci F, Khanji MY, Bisaccia G, Cipriani A, Di Cesare A, Ceriello L, Mantini C, Zimarino M, Fedorowski A, Gallina S, Petersen SE, Bucciarelli-Ducci C. Diagnostic and Prognostic Value of Stress Cardiovascular Magnetic Resonance Imaging in Patients With Known or Suspected Coronary Artery Disease: A Systematic Review and Meta-analysis. JAMA Cardiol 2023; 8:662-673. [PMID: 37285143 PMCID: PMC10248816 DOI: 10.1001/jamacardio.2023.1290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/12/2023] [Indexed: 06/08/2023]
Abstract
Importance The clinical utility of stress cardiovascular magnetic resonance imaging (CMR) in stable chest pain is still debated, and the low-risk period for adverse cardiovascular (CV) events after a negative test result is unknown. Objective To provide contemporary quantitative data synthesis of the diagnostic accuracy and prognostic value of stress CMR in stable chest pain. Data Sources PubMed and Embase databases, the Cochrane Database of Systematic Reviews, PROSPERO, and the ClinicalTrials.gov registry were searched for potentially relevant articles from January 1, 2000, through December 31, 2021. Study Selection Selected studies evaluated CMR and reported estimates of diagnostic accuracy and/or raw data of adverse CV events for participants with either positive or negative stress CMR results. Prespecified combinations of keywords related to the diagnostic accuracy and prognostic value of stress CMR were used. A total of 3144 records were evaluated for title and abstract; of those, 235 articles were included in the full-text assessment of eligibility. After exclusions, 64 studies (74 470 total patients) published from October 29, 2002, through October 19, 2021, were included. Data Extraction and Synthesis This systematic review and meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Main Outcomes and Measures Diagnostic odds ratios (DORs), sensitivity, specificity, area under the receiver operating characteristic curve (AUROC), odds ratio (OR), and annualized event rate (AER) for all-cause death, CV death, and major adverse cardiovascular events (MACEs) defined as the composite of myocardial infarction and CV death. Results A total of 33 diagnostic studies pooling 7814 individuals and 31 prognostic studies pooling 67 080 individuals (mean [SD] follow-up, 3.5 [2.1] years; range, 0.9-8.8 years; 381 357 person-years) were identified. Stress CMR yielded a DOR of 26.4 (95% CI, 10.6-65.9), a sensitivity of 81% (95% CI, 68%-89%), a specificity of 86% (95% CI, 75%-93%), and an AUROC of 0.84 (95% CI, 0.77-0.89) for the detection of functionally obstructive coronary artery disease. In the subgroup analysis, stress CMR yielded higher diagnostic accuracy in the setting of suspected coronary artery disease (DOR, 53.4; 95% CI, 27.7-103.0) or when using 3-T imaging (DOR, 33.2; 95% CI, 19.9-55.4). The presence of stress-inducible ischemia was associated with higher all-cause mortality (OR, 1.97; 95% CI, 1.69-2.31), CV mortality (OR, 6.40; 95% CI, 4.48-9.14), and MACEs (OR, 5.33; 95% CI, 4.04-7.04). The presence of late gadolinium enhancement (LGE) was associated with higher all-cause mortality (OR, 2.22; 95% CI, 1.99-2.47), CV mortality (OR, 6.03; 95% CI, 2.76-13.13), and increased risk of MACEs (OR, 5.42; 95% CI, 3.42-8.60). After a negative test result, pooled AERs for CV death were less than 1.0%. Conclusion and Relevance In this study, stress CMR yielded high diagnostic accuracy and delivered robust prognostication, particularly when 3-T scanners were used. While inducible myocardial ischemia and LGE were associated with higher mortality and risk of MACEs, normal stress CMR results were associated with a lower risk of MACEs for at least 3.5 years.
Collapse
Affiliation(s)
- Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- William Harvey Research Institute, Barts Biomedical Research Centre, National Institute for Health and Care Research, Queen Mary University London, Charterhouse Square, London, United Kingdom
| | - Mohammed Y. Khanji
- William Harvey Research Institute, Barts Biomedical Research Centre, National Institute for Health and Care Research, Queen Mary University London, Charterhouse Square, London, United Kingdom
- Newham University Hospital, Barts Health NHS Trust, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London, United Kingdom
| | - Giandomenico Bisaccia
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alberto Cipriani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Annamaria Di Cesare
- Cardiology Unit, Rimini Hospital, Local Health Authority of Romagna, Rimini, Italy
| | - Laura Ceriello
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Cesare Mantini
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Marco Zimarino
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Artur Fedorowski
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Sabina Gallina
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Steffen E. Petersen
- Newham University Hospital, Barts Health NHS Trust, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London, United Kingdom
- The Alan Turing Institute, London, United Kingdom
- Health Data Research UK, London, United Kingdom
| | - Chiara Bucciarelli-Ducci
- Royal Brompton and Harefield Hospitals, Guys and St Thomas NHS Trust London, London, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, Kings College London, London, United Kingdom
| |
Collapse
|
2
|
Károlyi M, Gotschy A, Polacin M, Plein S, Paetsch I, Jahnke C, Frick M, Gebker R, Alkadhi H, Kozerke S, Manka R. Diagnostic performance of 3D cardiac magnetic resonance perfusion in elderly patients for the detection of coronary artery disease as compared to fractional flow reserve. Eur Radiol 2023; 33:339-347. [PMID: 35984513 PMCID: PMC9755092 DOI: 10.1007/s00330-022-09040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVES In patients of advanced age, the feasibility of myocardial ischemia testing might be limited by age-related comorbidities and falling compliance abilities. Therefore, we aimed to test the accuracy of 3D cardiac magnetic resonance (CMR) stress perfusion in the elderly population as compared to reference standard fractional flow reserve (FFR). METHODS Fifty-six patients at age 75 years or older (mean age 79 ± 4 years, 35 male) underwent 3D CMR perfusion imaging and invasive coronary angiography with FFR in 5 centers using the same study protocol. The diagnostic accuracy of CMR was compared to a control group of 360 patients aged below 75 years (mean age 61 ± 9 years, 262 male). The percentage of myocardial ischemic burden (MIB) relative to myocardial scar burden was further analyzed using semi-automated software. RESULTS Sensitivity, specificity, and positive and negative predictive values of 3D perfusion CMR deemed similar for both age groups in the detection of hemodynamically relevant (FFR < 0.8) stenosis (≥ 75 years: 86%, 83%, 92%, and 75%; < 75 years: 87%, 80%, 82%, and 85%; p > 0.05 all). While MIB was larger in the elderly patients (15% ± 17% vs. 9% ± 13%), the diagnostic accuracy of 3D CMR perfusion was high in both elderly and non-elderly populations to predict pathological FFR (AUC: 0.906 and 0.866). CONCLUSIONS 3D CMR perfusion has excellent diagnostic accuracy for the detection of hemodynamically relevant coronary stenosis, independent of patient age. KEY POINTS • The increasing prevalence of coronary artery disease in elderly populations is accompanied with a larger ischemic burden of the myocardium as compared to younger individuals. • 3D cardiac magnetic resonance perfusion imaging predicts pathological fractional flow reserve in elderly patients aged ≥ 75 years with high diagnostic accuracy. • Ischemia testing with 3D CMR perfusion imaging has similarly high accuracy in the elderly as in younger patients and it might be particularly useful when other non-invasive techniques are limited by aging-related comorbidities and falling compliance abilities.
Collapse
Affiliation(s)
- Mihály Károlyi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Alexander Gotschy
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Malgorzata Polacin
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sven Plein
- Multidisciplinary Cardiovascular Research Centre & the Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Ingo Paetsch
- Department of Electrophysiology, HELIOS Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Cosima Jahnke
- Department of Electrophysiology, HELIOS Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Michael Frick
- Department of Cardiology, Pneumology, Angiology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Robert Manka
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Michallek F, Nakamura S, Ota H, Ogawa R, Shizuka T, Nakashima H, Wang YN, Ito T, Sakuma H, Dewey M, Kitagawa K. Fractal analysis of 4D dynamic myocardial stress-CT perfusion imaging differentiates micro- and macrovascular ischemia in a multi-center proof-of-concept study. Sci Rep 2022; 12:5085. [PMID: 35332236 PMCID: PMC8948301 DOI: 10.1038/s41598-022-09144-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/17/2022] [Indexed: 12/30/2022] Open
Abstract
Fractal analysis of dynamic, four-dimensional computed tomography myocardial perfusion (4D-CTP) imaging might have potential for noninvasive differentiation of microvascular ischemia and macrovascular coronary artery disease (CAD) using fractal dimension (FD) as quantitative parameter for perfusion complexity. This multi-center proof-of-concept study included 30 rigorously characterized patients from the AMPLIFiED trial with nonoverlapping and confirmed microvascular ischemia (nmicro = 10), macrovascular CAD (nmacro = 10), or normal myocardial perfusion (nnormal = 10) with invasive coronary angiography and fractional flow reserve (FFR) measurements as reference standard. Perfusion complexity was comparatively high in normal perfusion (FDnormal = 4.49, interquartile range [IQR]:4.46-4.53), moderately reduced in microvascular ischemia (FDmicro = 4.37, IQR:4.36-4.37), and strongly reduced in macrovascular CAD (FDmacro = 4.26, IQR:4.24-4.27), which allowed to differentiate both ischemia types, p < 0.001. Fractal analysis agreed excellently with perfusion state (κ = 0.96, AUC = 0.98), whereas myocardial blood flow (MBF) showed moderate agreement (κ = 0.77, AUC = 0.78). For detecting CAD patients, fractal analysis outperformed MBF estimation with sensitivity and specificity of 100% and 85% versus 100% and 25%, p = 0.02. In conclusion, fractal analysis of 4D-CTP allows to differentiate microvascular from macrovascular ischemia and improves detection of hemodynamically significant CAD in comparison to MBF estimation.
Collapse
Affiliation(s)
- Florian Michallek
- grid.6363.00000 0001 2218 4662Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Satoshi Nakamura
- grid.260026.00000 0004 0372 555XDepartment of Radiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Hideki Ota
- grid.69566.3a0000 0001 2248 6943Department of Advanced MRI Collaborative Research, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Ryo Ogawa
- grid.459909.80000 0004 0640 6159Saiseikai Matsuyama Hospital, Matsuyama, Japan
| | | | - Hitoshi Nakashima
- grid.416799.4National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Yi-Ning Wang
- grid.413106.10000 0000 9889 6335Peking Union Medical College Hospital, Beijing, China
| | - Tatsuro Ito
- grid.31432.370000 0001 1092 3077Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hajime Sakuma
- grid.260026.00000 0004 0372 555XDepartment of Radiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Marc Dewey
- grid.6363.00000 0001 2218 4662Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Kakuya Kitagawa
- grid.260026.00000 0004 0372 555XDepartment of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
4
|
Ullah W, Roomi S, Abdullah HM, Mukhtar M, Ali Z, Ye P, Haas DC, Figueredo VM. Diagnostic Accuracy of Cardiac Magnetic Resonance Versus Fractional Flow Reserve: A Systematic Review and Meta-Analysis. Cardiol Res 2020; 11:145-154. [PMID: 32494324 PMCID: PMC7239594 DOI: 10.14740/cr1028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Background Fractional flow reserve (FFR) is considered the gold standard for diagnosis of coronary artery disease (CAD). Stress Cardiac magnetic resonance (SCMR) has been recently gaining traction as a non-invasive alternative to FFR. Methods Studies comparing the diagnostic accuracy of SCMR versus FFR were identified and analyzed using Review Manager (RevMan) 5.3 and Stata software. Results A total of 28 studies, comprising 2,387 patients, were included. The pooled sensitivity and specificity for SCMR were 86% and 86% at the patient level, and 82% and 88% at the vessel level, respectively. When the patient-level data were stratified based on the FFR thresholds, higher sensitivity and specificity (both 90%) were noted with the higher cutoff (0.75) and lower cutoff (0.8), respectively. At the vessel level, sensitivity and specificity at the lower FFR threshold were significantly higher at 88% and 89%, compared to the corresponding values for higher cutoff at 0.75. Similarly, meta-regression analysis of SCMR at higher (3T) resolution showed a higher sensitivity of 87% at the patient level and higher specificity of 90% at the vessel level. The highest sensitivity and specificity of SCMR (92% and 94%, respectively) were noted in studies with CAD prevalence greater than 60%. Conclusions SCMR has high diagnostic accuracy for CAD comparable to FFR at a spatial resolution of 3T and an FFR cut-off of 0.80. An increase in CAD prevalence further improved the specificity of SCMR.
Collapse
Affiliation(s)
- Waqas Ullah
- Internal Medicine, Abington Hospital-Jefferson Health, Abington, PA, USA
| | - Sohaib Roomi
- Internal Medicine, Abington Hospital-Jefferson Health, Abington, PA, USA
| | - Hafez M Abdullah
- Internal Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Maryam Mukhtar
- Internal Medicine, Fauji Foundation Hospital, Rawalpindi, Pakistan
| | - Zain Ali
- Internal Medicine, Abington Hospital-Jefferson Health, Abington, PA, USA
| | - Ping Ye
- Internal Medicine, University of South Dakota, Sioux Falls, SD, USA.,Avera Research Institute, Avera Health, Sioux Falls, SD, USA
| | - Donald C Haas
- Abington Hospital-Jefferson Health, Abington, PA, USA
| | | |
Collapse
|
5
|
Coronary artery disease in post-menopausal women: are there appropriate means of assessment? Clin Sci (Lond) 2018; 132:1937-1952. [DOI: 10.1042/cs20180067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023]
Abstract
The recognition of sex differences in cardiovascular disease, particularly the manifestations of coronary artery disease (CAD) in post-menopausal women, has introduced new challenges in not only understanding disease mechanisms but also identifying appropriate clinical means of assessing the efficacy of management strategies. For example, the majority of treatment algorithms for CAD are derived from the study of males, focus on epicardial stenoses, and inadequately account for the small intramyocardial vessel disease in women. However, newer investigational modalities, including stress perfusion cardiac magnetic resonance imaging and positron emission tomography are providing enhanced diagnostic accuracy and prognostication for women with microvascular disease. Moreover, these investigations may soon be complemented by simpler screening tools such as retinal vasculature imaging, as well as novel biomarkers (e.g. heat shock protein 27). Hence, it is vital that robust, sex-specific cardiovascular imaging modalities and biomarkers continue to be developed and are incorporated into practice guidelines that are used to manage women with CAD, as well as gauge the efficacy of any new treatment modalities. This review provides an overview of some of the sex differences in CAD and highlights emerging advances in the investigation of CAD in post-menopausal women.
Collapse
|