2
|
Aitken M, Chan MV, Urzua Fresno C, Farrell A, Islam N, McInnes MDF, Iwanochko M, Balter M, Moayedi Y, Thavendiranathan P, Metser U, Veit-Haibach P, Hanneman K. Diagnostic Accuracy of Cardiac MRI versus FDG PET for Cardiac Sarcoidosis: A Systematic Review and Meta-Analysis. Radiology 2022; 304:566-579. [PMID: 35579526 DOI: 10.1148/radiol.213170] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background There is limited consensus regarding the relative diagnostic performance of cardiac MRI and fluorodeoxyglucose (FDG) PET for cardiac sarcoidosis. Purpose To perform a systematic review and meta-analysis to compare the diagnostic accuracy of cardiac MRI and FDG PET for cardiac sarcoidosis. Materials and Methods Medline, Ovid Epub, Cochrane Central Register of Controlled Trials, Embase, Emcare, and Scopus were searched from inception until January 2022. Inclusion criteria included studies that evaluated the diagnostic accuracy of cardiac MRI or FDG PET for cardiac sarcoidosis in adults. Data were independently extracted by two investigators. Summary accuracy metrics were obtained by using bivariate random-effects meta-analysis. Meta-regression was used to assess the effect of different covariates. Risk of bias was assessed using the Quality Assessment Tool for Diagnostic Accuracy Studies-2 tool. The study protocol was registered a priori in the International Prospective Register of Systematic Reviews (Prospero protocol CRD42021214776). Results Thirty-three studies were included (1997 patients, 687 with cardiac sarcoidosis); 17 studies evaluated cardiac MRI (1031 patients) and 26 evaluated FDG PET (1363 patients). Six studies directly compared cardiac MRI and PET in the same patients (303 patients). Cardiac MRI had higher sensitivity than FDG PET (95% vs 84%; P = .002), with no difference in specificity (85% vs 82%; P = .85). In a sensitivity analysis restricted to studies with direct comparison, point estimates were similar to those from the overall analysis: cardiac MRI and FDG PET had sensitivities of 92% and 81% and specificities of 72% and 82%, respectively. Covariate analysis demonstrated that sensitivity for FDG PET was highest with quantitative versus qualitative evaluation (93% vs 76%; P = .01), whereas sensitivity for MRI was highest with inclusion of T2 imaging (99% vs 88%; P = .001). Thirty studies were at risk of bias. Conclusion Cardiac MRI had higher sensitivity than fluorodeoxyglucose PET for diagnosis of cardiac sarcoidosis but similar specificity. Limitations, including risk of bias and few studies with direct comparison, necessitate additional study. © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Matthew Aitken
- From the Department of Medical Imaging, Peter Munk Cardiac Centre (M.A., M.V.C., C.U.F., P.T., U.M., P.V.H., K.H.), Division of Cardiology, Peter Munk Cardiac Centre (M.I., Y.M., P.T.), and Division of Molecular Imaging (U.M., P.V.H.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Library and Information Services (A.F.) and Toronto General Hospital Research Institute (P.T., K.H.), University Health Network, University of Toronto, Toronto, Canada; Department of Radiology and Epidemiology, University of Ottawa, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, Canada (N.I., M.D.F.M.); and Division of Respiratory Medicine, Sinai Health System, University of Toronto, Toronto, Canada (M.B.)
| | - Michael Vinchill Chan
- From the Department of Medical Imaging, Peter Munk Cardiac Centre (M.A., M.V.C., C.U.F., P.T., U.M., P.V.H., K.H.), Division of Cardiology, Peter Munk Cardiac Centre (M.I., Y.M., P.T.), and Division of Molecular Imaging (U.M., P.V.H.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Library and Information Services (A.F.) and Toronto General Hospital Research Institute (P.T., K.H.), University Health Network, University of Toronto, Toronto, Canada; Department of Radiology and Epidemiology, University of Ottawa, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, Canada (N.I., M.D.F.M.); and Division of Respiratory Medicine, Sinai Health System, University of Toronto, Toronto, Canada (M.B.)
| | - Camila Urzua Fresno
- From the Department of Medical Imaging, Peter Munk Cardiac Centre (M.A., M.V.C., C.U.F., P.T., U.M., P.V.H., K.H.), Division of Cardiology, Peter Munk Cardiac Centre (M.I., Y.M., P.T.), and Division of Molecular Imaging (U.M., P.V.H.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Library and Information Services (A.F.) and Toronto General Hospital Research Institute (P.T., K.H.), University Health Network, University of Toronto, Toronto, Canada; Department of Radiology and Epidemiology, University of Ottawa, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, Canada (N.I., M.D.F.M.); and Division of Respiratory Medicine, Sinai Health System, University of Toronto, Toronto, Canada (M.B.)
| | - Ashley Farrell
- From the Department of Medical Imaging, Peter Munk Cardiac Centre (M.A., M.V.C., C.U.F., P.T., U.M., P.V.H., K.H.), Division of Cardiology, Peter Munk Cardiac Centre (M.I., Y.M., P.T.), and Division of Molecular Imaging (U.M., P.V.H.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Library and Information Services (A.F.) and Toronto General Hospital Research Institute (P.T., K.H.), University Health Network, University of Toronto, Toronto, Canada; Department of Radiology and Epidemiology, University of Ottawa, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, Canada (N.I., M.D.F.M.); and Division of Respiratory Medicine, Sinai Health System, University of Toronto, Toronto, Canada (M.B.)
| | - Nayaar Islam
- From the Department of Medical Imaging, Peter Munk Cardiac Centre (M.A., M.V.C., C.U.F., P.T., U.M., P.V.H., K.H.), Division of Cardiology, Peter Munk Cardiac Centre (M.I., Y.M., P.T.), and Division of Molecular Imaging (U.M., P.V.H.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Library and Information Services (A.F.) and Toronto General Hospital Research Institute (P.T., K.H.), University Health Network, University of Toronto, Toronto, Canada; Department of Radiology and Epidemiology, University of Ottawa, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, Canada (N.I., M.D.F.M.); and Division of Respiratory Medicine, Sinai Health System, University of Toronto, Toronto, Canada (M.B.)
| | - Matthew D F McInnes
- From the Department of Medical Imaging, Peter Munk Cardiac Centre (M.A., M.V.C., C.U.F., P.T., U.M., P.V.H., K.H.), Division of Cardiology, Peter Munk Cardiac Centre (M.I., Y.M., P.T.), and Division of Molecular Imaging (U.M., P.V.H.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Library and Information Services (A.F.) and Toronto General Hospital Research Institute (P.T., K.H.), University Health Network, University of Toronto, Toronto, Canada; Department of Radiology and Epidemiology, University of Ottawa, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, Canada (N.I., M.D.F.M.); and Division of Respiratory Medicine, Sinai Health System, University of Toronto, Toronto, Canada (M.B.)
| | - Mark Iwanochko
- From the Department of Medical Imaging, Peter Munk Cardiac Centre (M.A., M.V.C., C.U.F., P.T., U.M., P.V.H., K.H.), Division of Cardiology, Peter Munk Cardiac Centre (M.I., Y.M., P.T.), and Division of Molecular Imaging (U.M., P.V.H.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Library and Information Services (A.F.) and Toronto General Hospital Research Institute (P.T., K.H.), University Health Network, University of Toronto, Toronto, Canada; Department of Radiology and Epidemiology, University of Ottawa, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, Canada (N.I., M.D.F.M.); and Division of Respiratory Medicine, Sinai Health System, University of Toronto, Toronto, Canada (M.B.)
| | - Meyer Balter
- From the Department of Medical Imaging, Peter Munk Cardiac Centre (M.A., M.V.C., C.U.F., P.T., U.M., P.V.H., K.H.), Division of Cardiology, Peter Munk Cardiac Centre (M.I., Y.M., P.T.), and Division of Molecular Imaging (U.M., P.V.H.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Library and Information Services (A.F.) and Toronto General Hospital Research Institute (P.T., K.H.), University Health Network, University of Toronto, Toronto, Canada; Department of Radiology and Epidemiology, University of Ottawa, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, Canada (N.I., M.D.F.M.); and Division of Respiratory Medicine, Sinai Health System, University of Toronto, Toronto, Canada (M.B.)
| | - Yasbanoo Moayedi
- From the Department of Medical Imaging, Peter Munk Cardiac Centre (M.A., M.V.C., C.U.F., P.T., U.M., P.V.H., K.H.), Division of Cardiology, Peter Munk Cardiac Centre (M.I., Y.M., P.T.), and Division of Molecular Imaging (U.M., P.V.H.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Library and Information Services (A.F.) and Toronto General Hospital Research Institute (P.T., K.H.), University Health Network, University of Toronto, Toronto, Canada; Department of Radiology and Epidemiology, University of Ottawa, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, Canada (N.I., M.D.F.M.); and Division of Respiratory Medicine, Sinai Health System, University of Toronto, Toronto, Canada (M.B.)
| | - Paaladinesh Thavendiranathan
- From the Department of Medical Imaging, Peter Munk Cardiac Centre (M.A., M.V.C., C.U.F., P.T., U.M., P.V.H., K.H.), Division of Cardiology, Peter Munk Cardiac Centre (M.I., Y.M., P.T.), and Division of Molecular Imaging (U.M., P.V.H.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Library and Information Services (A.F.) and Toronto General Hospital Research Institute (P.T., K.H.), University Health Network, University of Toronto, Toronto, Canada; Department of Radiology and Epidemiology, University of Ottawa, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, Canada (N.I., M.D.F.M.); and Division of Respiratory Medicine, Sinai Health System, University of Toronto, Toronto, Canada (M.B.)
| | - Ur Metser
- From the Department of Medical Imaging, Peter Munk Cardiac Centre (M.A., M.V.C., C.U.F., P.T., U.M., P.V.H., K.H.), Division of Cardiology, Peter Munk Cardiac Centre (M.I., Y.M., P.T.), and Division of Molecular Imaging (U.M., P.V.H.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Library and Information Services (A.F.) and Toronto General Hospital Research Institute (P.T., K.H.), University Health Network, University of Toronto, Toronto, Canada; Department of Radiology and Epidemiology, University of Ottawa, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, Canada (N.I., M.D.F.M.); and Division of Respiratory Medicine, Sinai Health System, University of Toronto, Toronto, Canada (M.B.)
| | - Patrick Veit-Haibach
- From the Department of Medical Imaging, Peter Munk Cardiac Centre (M.A., M.V.C., C.U.F., P.T., U.M., P.V.H., K.H.), Division of Cardiology, Peter Munk Cardiac Centre (M.I., Y.M., P.T.), and Division of Molecular Imaging (U.M., P.V.H.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Library and Information Services (A.F.) and Toronto General Hospital Research Institute (P.T., K.H.), University Health Network, University of Toronto, Toronto, Canada; Department of Radiology and Epidemiology, University of Ottawa, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, Canada (N.I., M.D.F.M.); and Division of Respiratory Medicine, Sinai Health System, University of Toronto, Toronto, Canada (M.B.)
| | - Kate Hanneman
- From the Department of Medical Imaging, Peter Munk Cardiac Centre (M.A., M.V.C., C.U.F., P.T., U.M., P.V.H., K.H.), Division of Cardiology, Peter Munk Cardiac Centre (M.I., Y.M., P.T.), and Division of Molecular Imaging (U.M., P.V.H.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Library and Information Services (A.F.) and Toronto General Hospital Research Institute (P.T., K.H.), University Health Network, University of Toronto, Toronto, Canada; Department of Radiology and Epidemiology, University of Ottawa, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, Canada (N.I., M.D.F.M.); and Division of Respiratory Medicine, Sinai Health System, University of Toronto, Toronto, Canada (M.B.)
| |
Collapse
|
8
|
Manabe O, Ohira H, Hirata K, Hayashi S, Naya M, Tsujino I, Aikawa T, Koyanagawa K, Oyama-Manabe N, Tomiyama Y, Magota K, Yoshinaga K, Tamaki N. Use of 18F-FDG PET/CT texture analysis to diagnose cardiac sarcoidosis. Eur J Nucl Med Mol Imaging 2018; 46:1240-1247. [PMID: 30327855 DOI: 10.1007/s00259-018-4195-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 11/28/2022]
Abstract
PURPOSE 18F-fluorodeoxyglocose positron emission tomography (FDG PET) plays a significant role in the diagnosis of cardiac sarcoidosis (CS). Texture analysis is a group of computational methods for evaluating the inhomogeneity among adjacent pixels or voxels. We investigated whether texture analysis applied to myocardial FDG uptake has diagnostic value in patients with CS. METHODS Thirty-seven CS patients (CS group), and 52 patients who underwent FDG PET/CT to detect malignant tumors with any FDG cardiac uptake (non-CS group) were studied. A total of 36 texture features from the histogram, gray-level co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), gray-level zone size matrix (GLZSM) and neighborhood gray-level difference matrix (NGLDM), were computed using polar map images. First, the inter-operator and inter-scan reproducibility of the texture features of the CS group were evaluated. Then, texture features of the patients with CS were compared to those without CS lesions. RESULTS Twenty-eight of the 36 texture features showed high inter-operator reproducibility with intraclass correlation coefficients (ICCs) over 0.80. In addition, 17 of the 36 showed high inter-scan reproducibility with ICCs over 0.80. The SUVmax showed no difference between the CS and non-CS group [7.36 ± 2.77 vs. 8.78 ± 4.65, p = 0.45, area under the curve (AUC) = 0.60]. By contrast, 16 of the 36 texture features could distinguish CS from non-CS grsoup with AUC > 0.80. Multivariate logistic regression analysis after hierarchical clustering concluded that long-run emphasis (LRE; P = 0.0004) and short-run low gray-level emphasis (SRLGE; P = 0.016) were significant independent factors that could distinguish between the CS and non-CS groups. Specifically, LRE was significantly higher in CS than in non-CS (30.1 ± 25.4 vs. 11.4 ± 4.6, P < 0.0001), with high diagnostic ability (AUC = 0.91), and had high inter-operator reproducibility (ICC = 0.98). CONCLUSIONS The texture analysis had high inter-operator and high inter-scan reproducibility. Some of texture features showed higher diagnostic value than SUVmax for CS diagnosis. Therefore, texture analysis may have a role in semi-automated systems for diagnosing CS.
Collapse
Affiliation(s)
- Osamu Manabe
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, N15 W7, Kita-Ku, Sapporo, Hokkaido, 0608638, Japan
| | - Hiroshi Ohira
- First Department of Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Kenji Hirata
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, N15 W7, Kita-Ku, Sapporo, Hokkaido, 0608638, Japan.
| | - Souichiro Hayashi
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, N15 W7, Kita-Ku, Sapporo, Hokkaido, 0608638, Japan
| | - Masanao Naya
- Department of Cardiovascular Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Ichizo Tsujino
- First Department of Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Tadao Aikawa
- Department of Cardiovascular Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Kazuhiro Koyanagawa
- Department of Cardiovascular Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Noriko Oyama-Manabe
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Yuuki Tomiyama
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, N15 W7, Kita-Ku, Sapporo, Hokkaido, 0608638, Japan
| | - Keiichi Magota
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, N15 W7, Kita-Ku, Sapporo, Hokkaido, 0608638, Japan
| | - Keiichiro Yoshinaga
- Diagnostic and Therapeutic Nuclear Medicine, National Institute of Radiological Science, Chiba, Japan
| | - Nagara Tamaki
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|