1
|
Jia H, Chen X, Shen J, Liu R, Hou P, Yue S. Label-Free Fiber-Optic Raman Spectroscopy for Intravascular Coronary Atherosclerosis and Plaque Detection. ACS OMEGA 2024; 9:27789-27797. [PMID: 38973848 PMCID: PMC11223210 DOI: 10.1021/acsomega.4c01611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
The rupture of atherosclerotic plaques remains one of the leading causes of morbidity and mortality worldwide. The plaques have certain pathological characteristics including a fibrous cap, inflammation, and extensive lipid deposition in a lipid core. Various invasive and noninvasive imaging techniques can interrogate structural aspects of atheroma; however, the composition of the lipid core in coronary atherosclerosis and plaques cannot be accurately detected. Fiber-optic Raman spectroscopy has the capability of in vivo rapid and accurate biomarker detection as an emerging omics technology. Previous studies demonstrated that an intravascular Raman spectroscopic technique may assess and manage the therapeutic and medication strategies intraoperatively. The Raman spectral information identified plaque depositions consisting of lipids, triglycerides, and cholesterol esters as the major components by comparing normal region and early plaque formation region with histology. By focusing on the composition of plaques, we could identify the subgroups of plaques accurately and rapidly by Raman spectroscopy. Collectively, this fiber-optic Raman spectroscopy opens up new opportunities for coronary atherosclerosis and plaque detection, which would assist optimal surgical strategy and instant postoperative decision-making. In this paper, we will review the advancement of label-free fiber-optic Raman probe spectroscopy and its applications of coronary atherosclerosis and atherosclerotic plaque detection.
Collapse
Affiliation(s)
- Hao Jia
- Key
Laboratory of Biomechanics and Mechanobiology (Beihang University),
Ministry of Education, Institute of Medical Photonics, Beijing Advanced
Innovation Center for Biomedical Engineering, School of Biological
Science and Medical Engineering, Beihang
University, Beijing 100191, China
| | - Xun Chen
- Key
Laboratory of Biomechanics and Mechanobiology (Beihang University),
Ministry of Education, Institute of Medical Photonics, Beijing Advanced
Innovation Center for Biomedical Engineering, School of Biological
Science and Medical Engineering, Beihang
University, Beijing 100191, China
| | - Jianghao Shen
- Key
Laboratory of Biomechanics and Mechanobiology (Beihang University),
Ministry of Education, Institute of Medical Photonics, Beijing Advanced
Innovation Center for Biomedical Engineering, School of Biological
Science and Medical Engineering, Beihang
University, Beijing 100191, China
| | - Rujia Liu
- Key
Laboratory of Biomechanics and Mechanobiology (Beihang University),
Ministry of Education, Institute of Medical Photonics, Beijing Advanced
Innovation Center for Biomedical Engineering, School of Biological
Science and Medical Engineering, Beihang
University, Beijing 100191, China
| | - Peipei Hou
- Department
of Cardiology, The People’s Hospital
of China Medical University, Shenyang 110016, China
| | - Shuhua Yue
- Key
Laboratory of Biomechanics and Mechanobiology (Beihang University),
Ministry of Education, Institute of Medical Photonics, Beijing Advanced
Innovation Center for Biomedical Engineering, School of Biological
Science and Medical Engineering, Beihang
University, Beijing 100191, China
| |
Collapse
|
2
|
Nong JC, You W, Xu T, Meng PN, Xu Y, Wu XQ, Wu ZM, Tao BL, Guo YJ, Yang S, Yin DL, Ye F. Dynamic natural morphologies and component changes in nonculprit subclinical atherosclerosis in patients with acute coronary syndrome at 1-year follow-up and clinical significance at 3-year follow-up. Atherosclerosis 2022; 356:1-8. [DOI: 10.1016/j.atherosclerosis.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
|
3
|
Edvardsen T, Haugaa KH, Petersen SE, Gimelli A, Donal E, Maurer G, Popescu BA, Cosyns B. The year 2018 in the European Heart Journal - Cardiovascular Imaging: Part I. Eur Heart J Cardiovasc Imaging 2019; 20:858-865. [PMID: 31211353 DOI: 10.1093/ehjci/jez133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/17/2019] [Indexed: 12/18/2022] Open
Abstract
The European Heart Journal - Cardiovascular Imaging has become one of the leading multimodality cardiovascular imaging journal, since it was launched in 2012. The impact factor is an impressive 8.366 and it is now established as one of the top 10 cardiovascular journals. The journal is the most important cardiovascular imaging journal in Europe. The most important studies from 2018 will be highlighted in two reports. Part I of the review will focus on studies about myocardial function and risk prediction, myocardial ischaemia, and emerging techniques in cardiovascular imaging, while Part II will focus on valvular heart disease, heart failure, cardiomyopathies, and congenital heart disease.
Collapse
Affiliation(s)
- Thor Edvardsen
- Department of Cardiology, Centre of Cardiological Innovation, Oslo University Hospital, Rikshospitalet, Nydalen, Sognsvannsveien 20, NO-0424Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Sognsvannsveien 20, Oslo, Norway
| | - Kristina H Haugaa
- Department of Cardiology, Centre of Cardiological Innovation, Oslo University Hospital, Rikshospitalet, Nydalen, Sognsvannsveien 20, NO-0424Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Sognsvannsveien 20, Oslo, Norway
| | - Steffen E Petersen
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, UK.,William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Alessia Gimelli
- Fondazione Toscana/CNR G. Monasterio, Via Moruzzi 1, Pisa, Italy
| | - Erwan Donal
- Cardiology Department and CIC-IT1414, CHU Rennes, 6 Rue H Le Guillou, Rennes, France.,LTSI INSERM 1099, University Rennes-1, Rue H Le Guillou, Rennes, France
| | - Gerald Maurer
- Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Wien, Austria
| | - Bogdan A Popescu
- University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Department of Cardiology, Emergency Institute of Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Sos. Fundeni 258, Sector 2, Bucharest, Romania
| | - Bernard Cosyns
- Department of Cardiology, CHVZ (Centrum voor Hart en Vaatziekten), ICMI (In Vivo Cellular and Molecular Imaging) Laboratory, Universitair Ziekenhuis Brussel, 109 Laarbeeklaan, Brussels, Belgium
| |
Collapse
|