1
|
Caobelli F, Dweck MR, Albano D, Gheysens O, Georgoulias P, Nekolla S, Lairez O, Leccisotti L, Lubberink M, Massalha S, Nappi C, Rischpler C, Saraste A, Hyafil F. Hybrid cardiovascular imaging. A clinical consensus statement of the european association of nuclear medicine (EANM) and the european association of cardiovascular imaging (EACVI) of the ESC. Eur J Nucl Med Mol Imaging 2025; 52:1095-1118. [PMID: 39436435 PMCID: PMC11754344 DOI: 10.1007/s00259-024-06946-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/06/2024] [Indexed: 10/23/2024]
Abstract
Hybrid imaging consists of a combination of two or more imaging modalities, which equally contribute to image information. To date, hybrid cardiovascular imaging can be performed by either merging images acquired on different scanners, or with truly hybrid PET/CT and PET/MR scanners. The European Association of Nuclear Medicine (EANM), and the European Association of Cardiovascular Imaging (EACVI) of the European Society of Cardiology (ESC) aim to review clinical situations that may benefit from the use of hybrid cardiac imaging and provide advice on acquisition protocols providing the most relevant information to reach diagnosis in various clinical situations.
Collapse
Affiliation(s)
- Federico Caobelli
- Department of Nuclear Medicine, University Hospital Bern, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland.
| | - Marc R Dweck
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Domenico Albano
- Department of Nuclear Medicine, University of Brescia, Brescia, Italy
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc and Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Panagiotis Georgoulias
- Department of Nuclear Medicine, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Stephan Nekolla
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Olivier Lairez
- National Institute of Health and Medical Research (INSERM), I2MC, U1297, Toulouse, France
| | - Lucia Leccisotti
- Department of Nuclear Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marc Lubberink
- Department of Surgical Sciences/Nuclear Medicine & PET, Uppsala University, Uppsala, Sweden
| | | | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | | | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Fabien Hyafil
- Department of Nuclear Medicine, AP-HP, European Hospital Georges-Pompidou, University of Paris-Cité, 75015, Paris, France
| |
Collapse
|
2
|
Jukema RA, Raijmakers PG, Hoshino M, Driessen RS, van Diemen PA, Knuuti J, Maaniitty T, Twisk J, Kooistra RA, Timmer J, Reiber JHC, van der Harst P, Cramer MJ, van der Hoef T, Knaapen P, Danad I. Evaluation and clinical applicability of angiography-derived assessment of coronary microcirculatory resistance: a [ 15O]H 2O PET study. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2025; 41:37-46. [PMID: 39652209 DOI: 10.1007/s10554-024-03279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/27/2024] [Indexed: 01/19/2025]
Abstract
The introduction of wire-free microcirculatory resistance index from functional angiography (angio-IMR) promises swift detection of coronary microvascular dysfunction, however it has not been properly validated. We sought to validate angio-IMR against invasive IMR and PET derived microvascular resistance (MVR). Moreover, we studied if angio-IMR could aid in the detection of ischemia with non-obstructive coronary arteries (INOCA). In this investigator-initiated study symptomatic patients underwent [15O]H2O positron emission tomography (PET) and invasive angiography with 3-vessel fractional flow reserve (FFR). Invasive IMR was measured in 40 patients. Angio-IMR and QFR were computed retrospectively. MVR was defined as the ratio of mean distal coronary pressure to PET derived coronary flow. PET and QFR/angio-IMR analyses were performed by blinded core labs. The right coronary artery was excluded. A total of 211 patients (mean age 61 ± 9, 148 (70%) male) with 312 vessels with successful angio-IMR analyses were included. Angio-IMR correlated moderately with invasive IMR (r = 0.48, p < 0.01), whereas no correlation was found between angio-IMR and MVR (r=-0.07, p = 0.25). Angio-IMR did not differ for vessels without obstructive coronary artery disease (CAD) (FFR-) but with reduced stress perfusion (PET+) compared to vessels without obstructive CAD (FFR-) with normal stress perfusion (PET-) (median 28.19 IQR 20.42-38.99 vs. 31.67 IQR 23.47-40.63, p = 0.40). Angio-IMR correlated moderately with invasively measured IMR, whereas angio-IMR did not correlate with PET derived MVR. Moreover, angio-IMR did not reliably identify patients with INOCA.
Collapse
Affiliation(s)
- Ruurt A Jukema
- Departments of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pieter G Raijmakers
- Radiology, Nuclear Medicine & PET Research, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Masahiro Hoshino
- Departments of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Cardiology, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Roel S Driessen
- Departments of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pepijn A van Diemen
- Departments of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, Turku, Finland
- Clinical Physiology, Nuclear Medicine and PET, Turku University Hospital, Turku, Finland
| | - Teemu Maaniitty
- Turku PET Centre, University of Turku, Turku, Finland
- Clinical Physiology, Nuclear Medicine and PET, Turku University Hospital, Turku, Finland
| | - Jos Twisk
- Epidemiology & Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Pim van der Harst
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Maarten J Cramer
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Tim van der Hoef
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Paul Knaapen
- Departments of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ibrahim Danad
- Departments of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.
| |
Collapse
|
3
|
El Kadi S, Porter TR, Hopman LHGA, Verouden NC, van Rossum AC, Danad I, Kamp O. Echocardiography-derived regional strain for assessment of non-culprit stenosis and prediction of systolic function recovery in acute STEMI. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2025; 41:63-72. [PMID: 39630353 DOI: 10.1007/s10554-024-03287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 01/19/2025]
Abstract
To compare echocardiographic regional longitudinal strain with quantitative coronary angiography and assess temporal changes in regional strain in patients with STEMI and multivessel coronary artery disease. Thirty-two patients with STEMI and multivessel coronary artery disease underwent coronary angiography with 3D quantification and baseline echocardiography. Regional longitudinal strain was measured as the average strain of three adjacent myocardial segments (RLS-3S) with the most impaired strain values. Forty-one stenosed vessels were identified (9 LAD [19%], 21 LCx [50%] and 11 RCA [31%]). RLS-3S did not correlate with diameter stenosis, area stenosis or minimal luminal diameter. Receiver operating curve analysis of RLS-3S for hemodynamic significant lesions (defined as positive fractional flow reserve or composite of ≥ 70% diameter stenosis and minimal luminal diameter < 1.2 mm) demonstrated an area under the curve of 0.63 (95% CI 0.45-0.76) with an optimal cut-off value of < 9.8%. Sensitivity and specificity of RLS-3S was 86% (42-100) and 48% (31-66). RLS-3S < 9.8% at baseline in remote myocardium subtended by the stenosed coronary vessel predicted benefit from percutaneous coronary intervention in terms of regional functional recovery. RLS-3S does not correlate with individual coronary angiography measures and moderately predicts hemodynamically significant lesions. RLS-3S could be used to predict regional functional recovery after additional revascularization.
Collapse
Affiliation(s)
- Soufiane El Kadi
- Amsterdam UMC, location VUmc, Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
- Department of Cardiology, Amsterdam UMC - location VUmc, ZH 4C 99, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Thomas R Porter
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Luuk H G A Hopman
- Amsterdam UMC, location VUmc, Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Niels C Verouden
- Amsterdam UMC, location VUmc, Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Albert C van Rossum
- Amsterdam UMC, location VUmc, Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Ibrahim Danad
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Otto Kamp
- Amsterdam UMC, location VUmc, Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
4
|
van Diemen PA, de Winter RW, Schumacher SP, Everaars H, Bom MJ, Jukema RA, Somsen YB, Raijmakers PG, Kooistra RA, Timmer J, Maaniitty T, Robbers LF, von Bartheld MB, Demirkiran A, van Rossum AC, Reiber JH, Knuuti J, Underwood SR, Nagel E, Knaapen P, Driessen RS, Danad I. The diagnostic performance of quantitative flow ratio and perfusion imaging in patients with prior coronary artery disease. Eur Heart J Cardiovasc Imaging 2023; 25:116-126. [PMID: 37578007 PMCID: PMC10735295 DOI: 10.1093/ehjci/jead197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
AIMS In chronic coronary syndrome (CCS) patients with documented coronary artery disease (CAD), ischaemia detection by myocardial perfusion imaging (MPI) and an invasive approach are viable diagnostic strategies. We compared the diagnostic performance of quantitative flow ratio (QFR) with single-photon emission computed tomography (SPECT), positron emission tomography (PET), and cardiac magnetic resonance imaging (CMR) in patients with prior CAD [previous percutaneous coronary intervention (PCI) and/or myocardial infarction (MI)]. METHODS AND RESULTS This PACIFIC-2 sub-study evaluated 189 CCS patients with prior CAD for inclusion. Patients underwent SPECT, PET, and CMR followed by invasive coronary angiography with fractional flow reserve (FFR) measurements of all major coronary arteries (N = 567), except for vessels with a sub-total or chronic total occlusion. Quantitative flow ratio computation was attempted in 488 (86%) vessels with measured FFR available (FFR ≤0.80 defined haemodynamically significant CAD). Quantitative flow ratio analysis was successful in 334 (68%) vessels among 166 patients and demonstrated a higher accuracy (84%) and sensitivity (72%) compared with SPECT (66%, P < 0.001 and 46%, P = 0.001), PET (65%, P < 0.001 and 58%, P = 0.032), and CMR (72%, P < 0.001 and 33%, P < 0.001). The specificity of QFR (87%) was similar to that of CMR (83%, P = 0.123) but higher than that of SPECT (71%, P < 0.001) and PET (67%, P < 0.001). Lastly, QFR exhibited a higher area under the receiver operating characteristic curve (0.89) than SPECT (0.57, P < 0.001), PET (0.66, P < 0.001), and CMR (0.60, P < 0.001). CONCLUSION QFR correlated better with FFR in patients with prior CAD than MPI, as reflected in the higher diagnostic performance measures for detecting FFR-defined, vessel-specific, significant CAD.
Collapse
Affiliation(s)
- Pepijn A van Diemen
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Ruben W de Winter
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Stefan P Schumacher
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Henk Everaars
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Michiel J Bom
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Ruurt A Jukema
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Yvemarie B Somsen
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Pieter G Raijmakers
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | - Teemu Maaniitty
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Lourens F Robbers
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Martin B von Bartheld
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Ahmet Demirkiran
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Albert C van Rossum
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | | | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Eike Nagel
- Institute of Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, University Hospital Frankfurt am Main, Frankfurt am Main, Germany
| | - Paul Knaapen
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Roel S Driessen
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Ibrahim Danad
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
5
|
Westra J, Rasmussen LD, Eftekhari A, Winther S, Karim SR, Johansen JK, Hammid O, Søndergaard HM, Ejlersen JA, Gormsen LC, Mogensen LJH, Bøttcher M, Holm NR, Christiansen EH. Coronary Artery Stenosis Evaluation by Angiography-Derived FFR: Validation by Positron Emission Tomography and Invasive Thermodilution. JACC Cardiovasc Imaging 2023; 16:1321-1331. [PMID: 37052562 DOI: 10.1016/j.jcmg.2023.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Fractional flow reserve (FFR) derived from invasive coronary angiography (QFR) is promising for evaluation of intermediate coronary artery stenosis. OBJECTIVES The authors aimed to compare the diagnostic performance of QFR and the guideline-recommended invasive FFR using 82Rubidium positron emission tomography (82Rb-PET) myocardial perfusion imaging as reference standard. METHODS This is a prospective, observational study of symptomatic patients with suspected obstructive coronary artery disease on coronary computed tomography angiography (≥50% diameter stenosis in ≥1 vessel). All patients were referred to 82Rb-PET and invasive coronary angiography with FFR and QFR assessment of all intermediate (30%-90% diameter stenosis) stenoses. Main analyses included a comparison of the ability of QFR and FFR to identify reduced myocardial blood flow (<2 mL/g/min) during vasodilation and/or relative perfusion abnormalities (summed stress score ≥4 in ≥2 adjacent segments). RESULTS A total of 250 patients (320 vessels) with indication for invasive physiological assessment were included. The continuous relationship of 82Rb-PET stress myocardial blood flow per 0.10 increase in FFR was +0.14 mL/g/min (95% CI: 0.07-0.21 mL/g/min) and +0.08 mL/g/min (95% CI: 0.02-0.14 mL/g/min) per 0.10 QFR increase. Using 82Rb-PET as reference, QFR and FFR had similar diagnostic performance on both a per-patient level (accuracy: 73%; 95% CI: 67%-79%; vs accuracy: 71%; 95% CI: 64%-78%) and per-vessel level (accuracy: 70%; 95% CI: 64%-75%; vs accuracy: 68%; 95% CI: 62%-73%). The per-vessel feasibility was 84% (95% CI: 80%-88%) for QFR and 88% (95% CI: 85%-92%) for FFR by intention-to-diagnose analysis. CONCLUSIONS With 82Rb-PET as reference modality, the wire-free QFR solution showed similar diagnostic accuracy as invasive FFR in evaluation of intermediate coronary stenosis. (DAN-NICAD - Danish Study of Non-Invasive Diagnostic Testing in Coronary Artery Disease; NCT02264717).
Collapse
Affiliation(s)
- Jelmer Westra
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; Department of Cardiology, Linköping University Hospital, Linköping, Sweden.
| | | | - Ashkan Eftekhari
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Simon Winther
- Department of Cardiology, Gødstrup Hospital, Herning, Denmark
| | | | - Jane Kirk Johansen
- Department of Cardiology, Regional Hospital Central Jutland, Silkeborg, Denmark
| | - Osama Hammid
- Department of Cardiology, Regional Hospital East Jutland, Randers, Denmark
| | | | - June Anita Ejlersen
- Department of Clinical Physiology, Regional Hospital Central Jutland, Viborg, Denmark; Department of Nuclear Medicine, Hospital Unit West, Herning, Denmark
| | - Lars C Gormsen
- Department of Nuclear Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Morten Bøttcher
- Department of Cardiology, Gødstrup Hospital, Herning, Denmark
| | | | | |
Collapse
|
6
|
Siekkinen R, Han C, Maaniitty T, Teräs M, Knuuti J, Saraste A, Teuho J. A retrospective evaluation of Bayesian-penalized likelihood reconstruction for [ 15O]H 2O myocardial perfusion imaging. J Nucl Cardiol 2023; 30:1602-1612. [PMID: 36656496 PMCID: PMC10371909 DOI: 10.1007/s12350-022-03164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/05/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND New Block-Sequential-Regularized-Expectation-Maximization (BSREM) image reconstruction technique has been introduced for clinical use mainly for oncologic use. Accurate and quantitative image reconstruction is essential in myocardial perfusion imaging with positron emission tomography (PET) as it utilizes absolute quantitation of myocardial blood flow (MBF). The aim of the study was to evaluate BSREM reconstruction for quantitation in patients with suspected coronary artery disease (CAD). METHODS AND RESULTS We analyzed cardiac [15O]H2O PET studies of 177 patients evaluated for CAD. Differences between BSREM and Ordered-Subset-Expectation-Maximization with Time-Of-Flight (TOF) and Point-Spread-Function (PSF) modeling (OSEM-TOF-PSF) in terms of MBF, perfusable tissue fraction, and vascular volume fraction were measured. Classification of ischemia was assessed between the algorithms. OSEM-TOF-PSF and BSREM provided similar global stress MBF in patients with ischemia (1.84 ± 0.21 g⋅ml-1⋅min-1 vs 1.86 ± 0.21 g⋅ml-1⋅min-1) and no ischemia (3.26 ± 0.34 g⋅ml-1⋅min-1 vs 3.28 ± 0.34 g⋅ml-1⋅min-1). Global resting MBF was also similar (0.97 ± 0.12 g⋅ml-1⋅min-1 and 1.12 ± 0.06 g⋅ml-1⋅min-1). The largest mean relative difference in MBF values was 7%. Presence of myocardial ischemia was classified concordantly in 99% of patients using OSEM-TOF-PSF and BSREM reconstructions CONCLUSION: OSEM-TOF-PSF and BSREM image reconstructions produce similar MBF values and diagnosis of myocardial ischemia in patients undergoing [15O]H2O PET due to suspected obstructive coronary artery disease.
Collapse
Affiliation(s)
- Reetta Siekkinen
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Chunlei Han
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Teemu Maaniitty
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Mika Teräs
- Department of Medical Physics, Turku University Hospital, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
- Heart Centre, Turku University Hospital, Turku, Finland
| | - Jarmo Teuho
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|
7
|
Cho SG, Lee JE, Kim HY, Song HC, Kim YH. Association between myocardial ischemia and plaque characteristics in chronic total occlusion. J Nucl Cardiol 2023; 30:388-398. [PMID: 35836093 DOI: 10.1007/s12350-022-03020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Myocardial ischemia varies in chronic total occlusion (CTO) despite the occluded artery. We analyzed whether it is associated with the plaque characteristics of the occluded segment. METHODS We retrospectively enrolled 100 patients with CTO who underwent myocardial perfusion single-photon emission computed tomography (SPECT) and coronary computed tomography angiography (CCTA) within 2 months. CTO-related ischemia was classified as moderate to severe (summed difference score [SDS] of the CTO territory ≥ 5) or mild or none (SDS < 5) on SPECT. Using CCTA, the atherosclerotic plaques of the occluded segment were subdivided into low-density (- 100-30 HU), intermediate-density (31-350 HU), and high-density (351-1000 HU) plaques. The plaque composition was compared according to the severity of CTO-related ischemia. RESULTS Moderate-to-severe CTO-related ischemia (n = 23) showed significantly higher proportion of intermediate-density plaques (72.4% vs. 64.0%), intermediate/low-density (7.10 vs. 3.65) and intermediate-to-high/low-density (7.78 vs. 3.80) plaque ratios, frequent shorter occlusion (30% vs. 6%), and lower volume (26.5 mm3 vs. 58.8 mm3) and proportion (11.4% vs. 20.8%) of low-density plaques. Multivariable analysis revealed significant associations between higher proportion of intermediate-density plaques and moderate-to-severe CTO-related ischemia, independent of occlusion length. CONCLUSION Higher proportion of intermediate-density plaques in the occluded segment was associated with the moderate-to-severe CTO-related ischemia.
Collapse
Affiliation(s)
- Sang-Geon Cho
- Department of Nuclear Medicine, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea
| | - Jong Eun Lee
- Department of Radiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hyung Yoon Kim
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Ho-Chun Song
- Department of Nuclear Medicine, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Yun-Hyeon Kim
- Department of Radiology, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Radiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
8
|
Algarni M, Al-Rezqi A, Saeed F, Alsaeedi A, Ghabban F. Multi-constraints based deep learning model for automated segmentation and diagnosis of coronary artery disease in X-ray angiographic images. PeerJ Comput Sci 2022; 8:e993. [PMID: 35721418 PMCID: PMC9202622 DOI: 10.7717/peerj-cs.993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The detection of coronary artery disease (CAD) from the X-ray coronary angiography is a crucial process which is hindered by various issues such as presence of noise, insufficient contrast of the input images along with the uncertainties caused by the motion due to respiration and variation of angles of vessels. METHODS In this article, an Automated Segmentation and Diagnosis of Coronary Artery Disease (ASCARIS) model is proposed in order to overcome the prevailing challenges in detection of CAD from the X-ray images. Initially, the preprocessing of the input images was carried out by using the modified wiener filter for the removal of both internal and external noise pixels from the images. Then, the enhancement of contrast was carried out by utilizing the optimized maximum principal curvature to preserve the edge information thereby contributing to increasing the segmentation accuracy. Further, the binarization of enhanced images was executed by the means of OTSU thresholding. The segmentation of coronary arteries was performed by implementing the Attention-based Nested U-Net, in which the attention estimator was incorporated to overcome the difficulties caused by intersections and overlapped arteries. The increased segmentation accuracy was achieved by performing angle estimation. Finally, the VGG-16 based architecture was implemented to extract threefold features from the segmented image to perform classification of X-ray images into normal and abnormal classes. RESULTS The experimentation of the proposed ASCARIS model was carried out in the MATLAB R2020a simulation tool and the evaluation of the proposed model was compared with several existing approaches in terms of accuracy, sensitivity, specificity, revised contrast to noise ratio, mean square error, dice coefficient, Jaccard similarity, Hausdorff distance, Peak signal-to-noise ratio (PSNR), segmentation accuracy and ROC curve. DISCUSSION The results obtained conclude that the proposed model outperforms the existing approaches in all the evaluation metrics thereby achieving optimized classification of CAD. The proposed method removes the large number of background artifacts and obtains a better vascular structure.
Collapse
Affiliation(s)
- Mona Algarni
- College of Computer Science and Engineering, Taibah University, Medina, Saudi Arabia
- Computer Science and Artificial Intelligence Department, University of Prince Mugrin, Medina, Saudi Arabia
| | - Abdulkader Al-Rezqi
- College of Medicine, King Saud bin Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Saeed
- College of Computer Science and Engineering, Taibah University, Medina, Saudi Arabia
- School of Computing and Digital Technology, University of Birmingham, Birmingham, United Kingdom
| | - Abdullah Alsaeedi
- College of Computer Science and Engineering, Taibah University, Medina, Saudi Arabia
| | - Fahad Ghabban
- College of Computer Science and Engineering, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
9
|
Schumacher SP, Everaars H, Stuijfzand WJ, van Diemen PA, Driessen RS, Bom MJ, de Winter RW, Somsen YBO, Huynh JW, van Loon RB, van de Ven PM, van Rossum AC, Opolski MP, Nap A, Knaapen P. Viability and functional recovery after chronic total occlusion percutaneous coronary intervention. Catheter Cardiovasc Interv 2021; 98:E668-E676. [PMID: 34329539 PMCID: PMC9291134 DOI: 10.1002/ccd.29888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/03/2021] [Accepted: 07/10/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study evaluated myocardial viability as well as global and regional functional recovery after successful chronic coronary total occlusion (CTO) percutaneous coronary intervention (PCI) using sequential quantitative cardiac magnetic resonance (CMR) imaging. BACKGROUND The patient benefits of CTO PCI are being questioned. METHODS In a single high-volume CTO PCI center patients were prospectively scheduled for CMR at baseline and 3 months after successful CTO PCI between 2013 and 2018. Segmental wall thickening (SWT) and percentage late gadolinium enhancement (LGE) were quantitatively measured per segment. Viability was defined as dysfunctional myocardium (<2.84 mm SWT) with no or limited scar (≤50% LGE). RESULTS A total of 132 patients were included. Improvement of left ventricular ejection fraction was modest after CTO PCI (from 48.1 ± 11.8 to 49.5 ± 12.1%, p < 0.01). CTO segments with viability (N = 216, [31%]) demonstrated a significantly higher increase in SWT (0.80 ± 1.39 mm) compared to CTO segments with pre-procedural preserved function (N = 456 [65%], 0.07 ± 1.43 mm, p < 0.01) or extensive scar (LGE >50%, N = 26 [4%], -0.08 ± 1.09 mm, p < 0.01). Patients with ≥2 CTO segments viability showed more SWT increase in the CTO territory compared to patients with 0-1 segment viability (0.49 ± 0.93 vs. 0.12 ± 0.98 mm, p = 0.03). CONCLUSIONS Detection of dysfunctional myocardial segments without extensive scar (≤50% LGE) as a marker for viability on CMR aids in identifying patients with significant regional functional recovery after CTO PCI.
Collapse
Affiliation(s)
- Stefan P. Schumacher
- Department of CardiologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Henk Everaars
- Department of CardiologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Wijnand J. Stuijfzand
- Department of CardiologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Pepijn A. van Diemen
- Department of CardiologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Roel S. Driessen
- Department of CardiologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Michiel J. Bom
- Department of CardiologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Ruben W. de Winter
- Department of CardiologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Yvemarie B. O. Somsen
- Department of CardiologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Jennifer W. Huynh
- Department of CardiologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Ramon B. van Loon
- Department of CardiologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Peter M. van de Ven
- Department of Epidemiology and BiostatisticsAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Albert C. van Rossum
- Department of CardiologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Maksymilian P. Opolski
- Department of Interventional Cardiology and AngiologyInstitute of CardiologyWarsawPoland
| | - Alexander Nap
- Department of CardiologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Paul Knaapen
- Department of CardiologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
10
|
Schumacher SP, Kockx M, Stuijfzand WJ, Driessen RS, van Diemen PA, Bom MJ, Everaars H, Raijmakers PG, Boellaard R, van Rossum AC, Opolski MP, Nap A, Knaapen P. Ischaemic burden and changes in absolute myocardial perfusion after chronic total occlusion percutaneous coronary intervention. EUROINTERVENTION 2020; 16:e462-e471. [DOI: 10.4244/eij-d-19-00631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
van Diemen PA, Driessen RS, Kooistra RA, Stuijfzand WJ, Raijmakers PG, Boellaard R, Schumacher SP, Bom MJ, Everaars H, de Winter RW, van de Ven PM, Reiber JH, Min JK, Leipsic JA, Knuuti J, Underwood RS, van Rossum AC, Danad I, Knaapen P. Comparison Between the Performance of Quantitative Flow Ratio and Perfusion Imaging for Diagnosing Myocardial Ischemia. JACC Cardiovasc Imaging 2020; 13:1976-1985. [PMID: 32305469 DOI: 10.1016/j.jcmg.2020.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/12/2019] [Accepted: 02/05/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This study compared the performance of the quantitative flow ratio (QFR) with single-photon emission computed tomography (SPECT) and positron emission tomography (PET) myocardial perfusion imaging (MPI) for the diagnosis of fractional flow reserve (FFR)-defined coronary artery disease (CAD). BACKGROUND QFR estimates FFR solely based on cine contrast images acquired during invasive coronary angiography (ICA). Head-to-head studies comparing QFR with noninvasive MPI are lacking. METHODS A total of 208 (624 vessels) patients underwent technetium-99m tetrofosmin SPECT and [15O]H2O PET imaging before ICA in conjunction with FFR measurements. ICA was obtained without using a dedicated QFR acquisition protocol, and QFR computation was attempted in all vessels interrogated by FFR (552 vessels). RESULTS QFR computation succeeded in 286 (52%) vessels. QFR correlated well with invasive FFR overall (R = 0.79; p < 0.001) and in the subset of vessels with an intermediate (30% to 90%) diameter stenosis (R = 0.76; p < 0.001). Overall, per-vessel analysis demonstrated QFR to exhibit a superior sensitivity (70%) in comparison with SPECT (29%; p < 0.001), whereas it was similar to PET (75%; p = 1.000). Specificity of QFR (93%) was higher than PET (79%; p < 0.001) and not different from SPECT (96%; p = 1.000). As such, the accuracy of QFR (88%) was superior to both SPECT (82%; p = 0.010) and PET (78%; p = 0.004). Lastly, the area under the receiver operating characteristics curve of QFR, in the overall sample (0.94) and among vessels with an intermediate lesion (0.90) was higher than SPECT (0.63 and 0.61; p < 0.001 for both) and PET (0.82; p < 0.001 and 0.77; p = 0.002), respectively. CONCLUSIONS In this head-to-head comparative study, QFR exhibited a higher diagnostic value for detecting FFR-defined significant CAD compared with perfusion imaging by SPECT or PET.
Collapse
Affiliation(s)
- Pepijn A van Diemen
- Department of Cardiology Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Roel S Driessen
- Department of Cardiology Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Wynand J Stuijfzand
- Department of Cardiology Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Pieter G Raijmakers
- Department of Radiology, Nuclear Medicine, and PET Research, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ronald Boellaard
- Department of Radiology, Nuclear Medicine, and PET Research, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Stefan P Schumacher
- Department of Cardiology Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Michiel J Bom
- Department of Cardiology Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Henk Everaars
- Department of Cardiology Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ruben W de Winter
- Department of Cardiology Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Peter M van de Ven
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - James K Min
- Institute for Cardiovascular Imaging, Weill-Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| | - Jonathan A Leipsic
- Department of Medicine and Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Richard S Underwood
- Department of Nuclear Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Albert C van Rossum
- Department of Cardiology Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ibrahim Danad
- Department of Cardiology Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Paul Knaapen
- Department of Cardiology Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Choo KS. Clinical Application of Lesion-specific Measurement of Myocardial Blood Flow in the Left Anterior Descending Artery Using Hybrid Positron Emission Tomography-computed Tomography. J Cardiovasc Imaging 2020; 28:106-108. [PMID: 32233164 PMCID: PMC7114453 DOI: 10.4250/jcvi.2019.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/06/2020] [Accepted: 03/08/2020] [Indexed: 11/22/2022] Open
Affiliation(s)
- Ki Seok Choo
- Department of Radiology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea.
| |
Collapse
|
13
|
Maaniitty T, Knuuti J, Saraste A. 15O-Water PET MPI: Current Status and Future Perspectives. Semin Nucl Med 2020; 50:238-247. [PMID: 32284110 DOI: 10.1053/j.semnuclmed.2020.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myocardial perfusion imaging with 15O-water positron emission tomography (PET) is a validated tool for quantitative measurement of myocardial blood flow (MBF) and myocardial flow reserve (MFR). Current scanner and software technology enable quantification of global and regional MBF in clinical PET myocardial perfusion imaging studies. Reduced stress MBF or MFR measured by 15O-water PET accurately detects hemodynamically significant coronary artery stenosis defined by intracoronary fractional flow reserve (FFR) measurement in patients with suspected obstructive coronary artery disease (CAD). Furthermore, MBF and MFR provide prognostic information on mortality and risk of myocardial infarction. Clinical experience in some centers indicates that clinical application of 15O-water PET in evaluation of CAD is feasible and guides management decisions on revascularization. This review discusses basic concepts of measuring MBF with 15O-water PET and reviews clinical studies on its application in evaluation of obstructive CAD.
Collapse
Affiliation(s)
- Teemu Maaniitty
- Turku PET Centre, University of Turku, Turku, Finland; Department of Clinical Physiology, Nuclear Medicine and PET, Turku University Hospital, Turku, Finland.
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, Turku, Finland; Department of Clinical Physiology, Nuclear Medicine and PET, Turku University Hospital, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, University of Turku, Turku, Finland; Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
14
|
Cho SG, Kim HS, Cho JY, Kim JH, Bom HS. Diagnostic Value of Lesion-specific Measurement of Myocardial Blood Flow Using Hybrid PET/CT. J Cardiovasc Imaging 2020; 28:94-105. [PMID: 32052606 PMCID: PMC7114456 DOI: 10.4250/jcvi.2019.0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/22/2019] [Accepted: 11/27/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND We evaluated whether lesion-specific measurement of myocardial blood flow (MBF) and flow reserve (MFR) by hybrid imaging of myocardial perfusion positron emission tomography (PET) and coronary computed tomography (CT) can provide additional diagnostic value. METHODS Forty-three patients with stable angina underwent N-13 ammonia PET and coronary CT before invasive coronary angiography (CAG). The lesion-specific MBF was calculated from the average MBF of the myocardial segments downstream of a coronary stenosis using hybrid PET/CT images. The hyperemic MBF, resting MBF, and MFR were measured for the left anterior descending artery (LAD) using conventional and lesion-specific methods. The diagnostic accuracy was compared between the two methods for significant LAD stenoses (≥ 70% reference diameter on CAG). RESULTS There were 19 significant LAD stenoses. The sensitivity, specificity, negative predictive value, positive predictive value, and accuracy were 71%, 68%, 74%, 65%, and 70% for conventional hyperemic MBF (optimal cutoff = 2.15 mL/min/g), 79%, 63%, 74%, 65%, and 70% for conventional MFR (optimal cutoff = 1.82), 83%, 74%, 80%, 78%, and 80% for lesion-specific hyperemic MBF (optimal cutoff = 1.75 mL/min/g), and 79%, 79%, 83%, 75%, and 79% for lesion-specific MFR (optimal cutoff = 1.86), respectively. The lesion-specific measurement was more accurate and had a better linear correlation with anatomical stenosis severity for both hyperemic MBF and MFR. CONCLUSIONS Lesion-specific measurement using hybrid PET/CT imaging showed significant improvement in the diagnostic accuracy of PET-measured hyperemic MBF and MFR.
Collapse
Affiliation(s)
- Sang Geon Cho
- Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Hyeon Sik Kim
- Medical Photonics Research Center, Korea Photonics Technology Institute, Gwangju, Korea
| | - Jae Yeong Cho
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Ju Han Kim
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Hee Seung Bom
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Jeollanam-do, Korea.
| |
Collapse
|
15
|
Caobelli F. Left ventricular segmentation in myocardial perfusion positron emission tomography: tailor-made or prêt-à-porter? Eur Heart J Cardiovasc Imaging 2019; 20:502-503. [DOI: 10.1093/ehjci/jey216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Federico Caobelli
- Department of Nuclear Medicine, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Petersgraben 4, CH Basel, Switzerland
| |
Collapse
|