1
|
Serhan CN, Bäck M, Chiurchiù V, Hersberger M, Mittendorfer B, Calder PC, Waitzberg DL, Stoppe C, Klek S, Martindale RG. Expert consensus report on lipid mediators: Role in resolution of inflammation and muscle preservation. FASEB J 2024; 38:e23699. [PMID: 38805158 DOI: 10.1096/fj.202400619r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
This meeting report presents a consensus on the biological aspects of lipid emulsions in parenteral nutrition, emphasizing the unanimous support for the integration of lipid emulsions, particularly those containing fish oil, owing to their many potential benefits beyond caloric provision. Lipid emulsions have evolved from simple energy sources to complex formulations designed to improve safety profiles and offer therapeutic benefits. The consensus highlights the critical role of omega-3 polyunsaturated fatty acids (PUFAs), notably eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), found in fish oil and other marine oils, for their anti-inflammatory properties, muscle mass preservation, and as precursors to the specialized pro-resolving mediators (SPMs). SPMs play a significant role in immune modulation, tissue repair, and the active resolution of inflammation without impairing host defense mechanisms. The panel's agreement underscores the importance of incorporating fish oil within clinical practices to facilitate recovery in conditions like surgery, critical illness, or immobility, while cautioning against therapies that might disrupt natural inflammation resolution processes. This consensus not only reaffirms the role of specific lipid components in enhancing patient outcomes, but also suggests a shift towards nutrition-based therapeutic strategies in clinical settings, advocating for the proactive evidence-based use of lipid emulsions enriched with omega-3 PUFAs. Furthermore, we should seek to apply our knowledge concerning DHA, EPA, and their SPM derivatives, to produce more informative randomized controlled trial protocols, thus allowing more authoritative clinical recommendations.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Hale Building for Transformative Medicine, Boston, Massachusetts, USA
| | - Magnus Bäck
- Department of Medicine Solna, Karolinska Institute, Solna, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
- INSERM U1116, Université de Lorraine, Nancy University Hospital, Vandoeuvre les Nancy, France
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council of Rome, Rome, Italy
- Laboratory of Resolution of Neuroinflammation, European Center for Brain Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bettina Mittendorfer
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Department of Nutrition & Exercise Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Philip C Calder
- Faculty of Medicine, University of Southampton and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Dan L Waitzberg
- Department of Gastroenterology, School of Medicine, University of Sao Paulo, Hospital das Clínicas LIM 35, Ganep-Human Nutrition, Sao Paulo, Brazil
| | - Christian Stoppe
- Department of Anesthesiology, Intensive Care, Emergency, and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité Berlin, Berlin, Germany
| | - Stanislaw Klek
- Surgical Oncology Clinic, The Maria Sklodowska-Curie National Cancer Institute, Krakow, Poland
| | - Robert G Martindale
- Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Liu Q, Liu Z, Wu D, Wang S. Relationship between Polyunsaturated Fatty Acid Metabolism and Atherosclerosis. Rev Cardiovasc Med 2024; 25:142. [PMID: 39076540 PMCID: PMC11263998 DOI: 10.31083/j.rcm2504142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 07/31/2024] Open
Abstract
Multiple factors cause atherosclerosis, meaning its pathogenesis is complex, and has not been fully elucidated. Polyunsaturated fatty acids are a member of the fatty acid family, which are critical nutrients for mammalian growth and development. The types of polyunsaturated fatty acids ingested, their serum levels, and fatty acid desaturase can influence the atherosclerotic disease progression. The fatty acid desaturase gene cluster can regulate fatty acid desaturase activity and further affect atherosclerosis. This study reviewed the research progress on the effects of polyunsaturated fatty acids on atherosclerosis regulated by fatty acid desaturase and the relationship between genetic variants of the fatty acid desaturase gene cluster and atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Qiulei Liu
- Department of Vascular Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Zhaoxuan Liu
- Department of Vascular Surgery, Central Hospital Affiliated to Shandong First Medical University, 250013 Jinan, Shandong, China
| | - Ding Wu
- Department of Vascular Surgery, Central Hospital Affiliated to Shandong First Medical University, 250013 Jinan, Shandong, China
| | - Sheng Wang
- Department of Vascular Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| |
Collapse
|
3
|
Regnault V, Lacolley P, Laurent S. Arterial Stiffness: From Basic Primers to Integrative Physiology. Annu Rev Physiol 2024; 86:99-121. [PMID: 38345905 DOI: 10.1146/annurev-physiol-042022-031925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The elastic properties of conductance arteries are one of the most important hemodynamic functions in the body, and data continue to emerge regarding the importance of their dysfunction in vascular aging and a range of cardiovascular diseases. Here, we provide new insight into the integrative physiology of arterial stiffening and its clinical consequence. We also comprehensively review progress made on pathways/molecules that appear today as important basic determinants of arterial stiffness, particularly those mediating the vascular smooth muscle cell (VSMC) contractility, plasticity and stiffness. We focus on membrane and nuclear mechanotransduction, clearance function of the vascular wall, phenotypic switching of VSMCs, immunoinflammatory stimuli and epigenetic mechanisms. Finally, we discuss the most important advances of the latest clinical studies that revisit the classical therapeutic concepts of arterial stiffness and lead to a patient-by-patient strategy according to cardiovascular risk exposure and underlying disease.
Collapse
|
4
|
Bäck M, Latini R. Metabolic syndrome cardiovascular risk prevention by omega-3 polyunsaturated fatty acids. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead115. [PMID: 38035039 PMCID: PMC10684293 DOI: 10.1093/ehjopen/oead115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Affiliation(s)
- Magnus Bäck
- CArdiovascularREsolution of INflammation to promote HEALTH (CARE-IN-HEALTH) Consortium
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Nancy University Hospital, University of Lorraine and INSERM U1116, 9 avenue de la Foret de Haye, BP 20199, 54505 Vandoeuvre les Nancy Cedex, France
| | - Roberto Latini
- CArdiovascularREsolution of INflammation to promote HEALTH (CARE-IN-HEALTH) Consortium
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri—IRCCS, Via Mario Negri, 2, 20156 Milano, Italy
| |
Collapse
|
5
|
Kagawa T, Ohgami N, He T, Tazaki A, Ohnuma S, Naito H, Yajima I, Chen D, Deng Y, Tamura T, Kondo T, Wakai K, Kato M. Elevated arsenic level in fasting serum via ingestion of fish meat increased the risk of hypertension in humans and mice. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead074. [PMID: 37671121 PMCID: PMC10475452 DOI: 10.1093/ehjopen/oead074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023]
Abstract
Aims There has been a shortage of human studies to elucidate the association between serum arsenic levels and the prevalence of hypertension. This study multidirectionally investigated associations among arsenic exposure, dietary ingestion, and the risk of hypertension by combined human epidemiological and mouse experimental studies. Methods and results This study focused on the total arsenic level in fasting serum, a biomarker of arsenic exposure. Associations among ingestion frequencies of 54 diet items of Japanese food separated into six categories, total arsenic level in fasting serum, and the prevalence of hypertension were investigated in 2709 general people in Japan. Logistic regression analysis demonstrated a dose-dependent association between serum arsenic level and hypertension and a positive association between the ingestion of fish meat and hypertension. Further analysis showed that the latter association was fully mediated by increased fasting serum arsenic levels in humans. Similarly, oral exposure to the putative human-equivalent dose of arsenic species mixture with the same ratios in a common fish meat in Japan increased systolic blood pressure and arsenic levels in fasting serum in mice. Conclusion This interdisciplinary approach suggests that fish-meat ingestion is a potential risk factor for arsenic-mediated hypertension. Because the increased consumption of fish meat is a recent global trend, health risks of the increased ingestion of arsenic via fish meat should be further investigated.
Collapse
Affiliation(s)
- Takumi Kagawa
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Department of Hygiene, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470–1192, Japan
| | - Tingchao He
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Department of Hygiene, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470–1192, Japan
| | - Akira Tazaki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Shoko Ohnuma
- Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Hisao Naito
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Ichiro Yajima
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Dijie Chen
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yuqi Deng
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Department of Hygiene, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470–1192, Japan
| | - Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Takaaki Kondo
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
6
|
Schmidt MA, Jones JA, Mason CE. Optimizing human performance in extreme environments through precision medicine: From spaceflight to high-performance operations on Earth. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e27. [PMID: 38550927 PMCID: PMC10953751 DOI: 10.1017/pcm.2023.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 04/12/2024]
Abstract
Humans operating in extreme environments often conduct their operations at the edges of the limits of human performance. Sometimes, they are required to push these limits to previously unattained levels. As a result, their margins for error in execution are much smaller than that found in the general public. These same small margins for error that impact execution may also impact risk, safety, health, and even survival. Thus, humans operating in extreme environments have a need for greater refinement in their preparation, training, fitness, and medical care. Precision medicine (PM) is uniquely suited to address the needs of those engaged in these extreme operations because of its depth of molecular analysis, derived precision countermeasures, and ability to match each individual (and his or her specific molecular phenotype) with any given operating context (environment). Herein, we present an overview of a systems approach to PM in extreme environments, which affords clinicians one method to contextualize the inputs, processes, and outputs that can form the basis of a formal practice. For the sake of brevity, this overview is focused on molecular dynamics, while providing only a brief introduction to the also important physiologic and behavioral phenotypes in PM. Moreover, rather than a full review, it highlights important concepts, while using only selected citations to illustrate those concepts. It further explores, by demonstration, the basic principles of using functionally characterized molecular networks to guide the practical application of PM in extreme environments. At its core, PM in extreme environments is about attention to incremental gains and losses in molecular network efficiency that can scale to produce notable changes in health and performance. The aim of this overview is to provide a conceptual overview of one approach to PM in extreme environments, coupled with a selected suite of practical considerations for molecular profiling and countermeasures.
Collapse
Affiliation(s)
- Michael A. Schmidt
- Sovaris Aerospace, Boulder, CO, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, USA
| | - Jeffrey A. Jones
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Bäck M. Icosapent ethyl in cardiovascular prevention: Resolution of inflammation through the eicosapentaenoic acid - resolvin E1 - ChemR23 axis. Pharmacol Ther 2023:108439. [PMID: 37201735 DOI: 10.1016/j.pharmthera.2023.108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Cardiovascular outcome trials on omega-3 fatty acids have generated contradictory results but indicate a dose-dependent beneficial effect of eicosapentaenoic acid (EPA). Beneficial cardiovascular effects of EPA may in addition to triglyceride lowering be mediated through alternative mechanisms of action. In this review, the link between EPA and a resolution of atherosclerotic inflammation is addressed. EPA is a substrate for the enzymatic metabolism into the lipid mediator resolvin E1 (RvE1), which activates the receptor ChemR23 to transduce an active resolution of inflammation. This has been shown to dampen the immune response and provide atheroprotective responses in different models. The intermediate EPA metabolite 18-HEPE emerges as a biomarker of EPA metabolism towards proresolving mediators in observational studies. Genetic variations within the EPA-RvE1-ChemR23 axis affecting the response to EPA may open up for precision medicine to identify responders and non-responders to EPA and fish oil supplementation. In conclusion, activation of the EPA-RvE1-ChemR23 axis towards a resolution of inflammation may contribute to beneficial effects in cardiovascular prevention.
Collapse
Affiliation(s)
- Magnus Bäck
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, Stockholm, Sweden; Translational Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Université de Lorraine, Inserm, DCAC, Nancy, France; CHRU Nancy, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
8
|
Bäck M, Banach M, Braunschweig F, De Rosa S, Gimelli A, Kahan T, Ketelhuth DFJ, Lancellotti P, Larsson SC, Mellbin L, Nagy E, Savarese G, Szummer K, Wahl D. Highlights from 2022 in EHJ Open. EUROPEAN HEART JOURNAL OPEN 2022; 2:oeac084. [PMID: 36600883 PMCID: PMC9801405 DOI: 10.1093/ehjopen/oeac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Magnus Bäck
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, 17177 Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
- Nancy University Hospital, University of Lorraine and INSERM U1116, 54511 Nancy, France
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz and Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Frieder Braunschweig
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, 17177 Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Alessia Gimelli
- Cardiovascular and Imaging Departments, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Thomas Kahan
- Department of Cardiology, Danderyd University Hospital, Stockohlm, Sweden
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Daniel F J Ketelhuth
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Patrizio Lancellotti
- GIGA Cardiovascular Sciences, University of Liège Hospital, Centre Hospitalier Universitaire Sart Tilman, Liège, Belgium
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Linda Mellbin
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, 17177 Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Edit Nagy
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, 17177 Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Gianluigi Savarese
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, 17177 Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Karolina Szummer
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, 17177 Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Denis Wahl
- Nancy University Hospital, University of Lorraine and INSERM U1116, 54511 Nancy, France
| | | |
Collapse
|