1
|
Fooladi S, Nematollahi MH, Rabiee N, Iravani S. Bacterial Cellulose-Based Materials: A Perspective on Cardiovascular Tissue Engineering Applications. ACS Biomater Sci Eng 2023. [PMID: 37146213 DOI: 10.1021/acsbiomaterials.3c00300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Today, a wide variety of bio- and nanomaterials have been deployed for cardiovascular tissue engineering (TE), including polymers, metal oxides, graphene/its derivatives, organometallic complexes/composites based on inorganic-organic components, among others. Despite several advantages of these materials with unique mechanical, biological, and electrical properties, some challenges still remain pertaining to their biocompatibility, cytocompatibility, and possible risk factors (e.g., teratogenicity or carcinogenicity), restricting their future clinical applications. Natural polysaccharide- and protein-based (nano)structures with the benefits of biocompatibility, sustainability, biodegradability, and versatility have been exploited in the field of cardiovascular TE focusing on targeted drug delivery, vascular grafts, engineered cardiac muscle, etc. The usage of these natural biomaterials and their residues offers several advantages in terms of environmental aspects such as alleviating emission of greenhouse gases as well as the production of energy as a biomass consumption output. In TE, the development of biodegradable and biocompatible scaffolds with potentially three-dimensional structures, high porosity, and suitable cellular attachment/adhesion still needs to be comprehensively studied. In this context, bacterial cellulose (BC) with high purity, porosity, crystallinity, unique mechanical properties, biocompatibility, high water retention, and excellent elasticity can be considered as promising candidate for cardiovascular TE. However, several challenges/limitations regarding the absence of antimicrobial factors and degradability along with the low yield of production and extensive cultivation times (in large-scale production) still need to be resolved using suitable hybridization/modification strategies and optimization of conditions. The biocompatibility and bioactivity of BC-based materials along with their thermal, mechanical, and chemical stability are crucial aspects in designing TE scaffolds. Herein, cardiovascular TE applications of BC-based materials are deliberated, with a focus on the most recent advancements, important challenges, and future perspectives. Other biomaterials with cardiovascular TE applications and important roles of green nanotechnology in this field of science are covered to better compare and comprehensively review the subject. The application of BC-based materials and the collective roles of such biomaterials in the assembly of sustainable and natural-based scaffolds for cardiovascular TE are discussed.
Collapse
Affiliation(s)
- Saba Fooladi
- Department of Clinical Biochemistry, Afzalipour Medical School, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Department of Clinical Biochemistry, Afzalipour Medical School, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| |
Collapse
|
2
|
Roche CD, Iyer GR, Nguyen MH, Mabroora S, Dome A, Sakr K, Pawar R, Lee V, Wilson CC, Gentile C. Cardiac Patch Transplantation Instruments for Robotic Minimally Invasive Cardiac Surgery: Initial Proof-of-concept Designs and Surgery in a Porcine Cadaver. Front Robot AI 2022; 8:714356. [PMID: 35118121 PMCID: PMC8804503 DOI: 10.3389/frobt.2021.714356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Damaged cardiac tissues could potentially be regenerated by transplanting bioengineered cardiac patches to the heart surface. To be fully paradigm-shifting, such patches may need to be transplanted using minimally invasive robotic cardiac surgery (not only traditional open surgery). Here, we present novel robotic designs, initial prototyping and a new surgical operation for instruments to transplant patches via robotic minimally invasive heart surgery. Methods: Robotic surgical instruments and automated control systems were designed, tested with simulation software and prototyped. Surgical proof-of-concept testing was performed on a pig cadaver. Results: Three robotic instrument designs were developed. The first (called “Claw” for the claw-like patch holder at the tip) operates on a rack and pinion mechanism. The second design (“Shell-Beak”) uses adjustable folding plates and rods with a bevel gear mechanism. The third (“HeartStamp”) utilizes a stamp platform protruding through an adjustable ring. For the HeartStamp, rods run through a cylindrical structure designed to fit a uniportal Video-Assisted Thorascopic Surgery (VATS) surgical port. Designed to work with or without a sterile sheath, the patch is pushed out by the stamp platform as it protrudes. Two instrument robotic control systems were designed, simulated in silico and one of these underwent early ‘sizing and learning’ prototyping as a proof-of-concept. To reflect real surgical conditions, surgery was run “live” and reported exactly (as-it-happened). We successfully picked up, transferred and released a patch onto the heart using the HeartStamp in a pig cadaver model. Conclusion: These world-first designs, early prototypes and a novel surgical operation pave the way for robotic instruments for automated keyhole patch transplantation to the heart. Our novel approach is presented for others to build upon free from restrictions or cost—potentially a significant moment in myocardial regeneration surgery which may open a therapeutic avenue for patients unfit for traditional open surgery.
Collapse
Affiliation(s)
- Christopher D. Roche
- Northern Clinical School of Medicine, Kolling Institute, University of Sydney, Sydney, NSW, Australia
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
- Department of Cardiothoracic Surgery, University Hospital of Wales, Cardiff, United Kingdom
- *Correspondence: Christopher D. Roche,
| | - Gautam R. Iyer
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Minh H. Nguyen
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Sohaima Mabroora
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Anthony Dome
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Kareem Sakr
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Rohan Pawar
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Vincent Lee
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Christopher C. Wilson
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Carmine Gentile
- Northern Clinical School of Medicine, Kolling Institute, University of Sydney, Sydney, NSW, Australia
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
| |
Collapse
|
3
|
Roche CD, Zhou Y, Zhao L, Gentile C. A World-First Surgical Instrument for Minimally Invasive Robotically-Enabled Transplantation of Heart Patches for Myocardial Regeneration: A Brief Research Report. Front Surg 2021; 8:653328. [PMID: 34692758 PMCID: PMC8526867 DOI: 10.3389/fsurg.2021.653328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Patch-based approaches to regenerating damaged myocardium include epicardial surgical transplantation of heart patches. By the time this therapy is ready for widespread clinical use, it may be important that patches can be delivered via minimally invasive and robotic surgical approaches. This brief research report describes a world-first minimally invasive patch transplantation surgical device design enabled for human operation, master-slave, and fully automated robotic control. Method: Over a 12-month period (2019-20) in our multidisciplinary team we designed a surgical instrument to transplant heart patches to the epicardial surface. The device was designed for use via uni-portal or multi-portal Video-Assisted Thorascopic Surgery (VATS). For preliminary feasibility and sizing, we used a 3D printer to produce parts of a flexible resin model from a computer-aided design (CAD) software platform in preparation for more robust high-resolution metal manufacturing. Results: The instrument was designed as a sheath containing foldable arms, <2 cm in diameter when infolded to fit minimally invasive thoracic ports. The total length was 35 cm. When the arms were projected from the sheath, three moveable mechanical arms at the distal end were designed to hold a patch. Features included: a rotational head allowing for the arms to be angled in real time, a surface with micro-attachment points for patches and a releasing mechanism to release the patch. Conclusion: This brief research report represents a first step on a potential pathway towards minimally invasive robotic epicardial patch transplantation. For full feasibility testing, future proof-of-concept studies, and efficacy trials will be needed.
Collapse
Affiliation(s)
- Christopher David Roche
- Northern Clinical School of Medicine, University of Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia.,Department of Cardiothoracic Surgery, University Hospital of Wales, Cardiff, United Kingdom
| | - Yiran Zhou
- School of Mechanical and Mechatronic Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia
| | - Liang Zhao
- School of Mechanical and Mechatronic Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia
| | - Carmine Gentile
- Northern Clinical School of Medicine, University of Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Polonchuk L, Surija L, Lee MH, Sharma P, Liu Chung Ming C, Richter F, Ben-Sefer E, Rad MA, Mahmodi Sheikh Sarmast H, Shamery WA, Tran HA, Vettori L, Haeusermann F, Filipe EC, Rnjak-Kovacina J, Cox T, Tipper J, Kabakova I, Gentile C. Towards engineering heart tissues from bioprinted cardiac spheroids. Biofabrication 2021; 13. [PMID: 34265755 DOI: 10.1088/1758-5090/ac14ca] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Currentin vivoandin vitromodels fail to accurately recapitulate the human heart microenvironment for biomedical applications. This study explores the use of cardiac spheroids (CSs) to biofabricate advancedin vitromodels of the human heart. CSs were created from human cardiac myocytes, fibroblasts and endothelial cells (ECs), mixed within optimal alginate/gelatin hydrogels and then bioprinted on a microelectrode plate for drug testing. Bioprinted CSs maintained their structure and viability for at least 30 d after printing. Vascular endothelial growth factor (VEGF) promoted EC branching from CSs within hydrogels. Alginate/gelatin-based hydrogels enabled spheroids fusion, which was further facilitated by addition of VEGF. Bioprinted CSs contracted spontaneously and under stimulation, allowing to record contractile and electrical signals on the microelectrode plates for industrial applications. Taken together, our findings indicate that bioprinted CSs can be used to biofabricate human heart tissues for long termin vitrotesting. This has the potential to be used to study biochemical, physiological and pharmacological features of human heart tissue.
Collapse
Affiliation(s)
- Liudmila Polonchuk
- F Hoffmann-La Roche AG Research and Development Division, Pharmaceutical Sciences, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel, Basel-Stadt CH-4070, Switzerland
| | - Lydia Surija
- The University of Sydney Faculty of Medicine and Health, Kolling Building, Kolling Institute, St Leonards, Sydney, NSW 2065, Australia
| | - Min Ho Lee
- The University of Sydney Faculty of Medicine and Health, Kolling Building, Kolling Institute, St Leonards, Sydney, NSW 2065, Australia
| | - Poonam Sharma
- The University of Sydney Faculty of Medicine and Health, Kolling Building, Kolling Institute, St Leonards, Sydney, NSW 2065, Australia.,The University of Newcastle Faculty of Health and Medicine, University Drive, Callaghan, NSW 2308, Australia.,University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Clara Liu Chung Ming
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Florian Richter
- The University of Sydney Faculty of Medicine and Health, Kolling Building, Kolling Institute, St Leonards, Sydney, NSW 2065, Australia
| | - Eitan Ben-Sefer
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Maryam Alsadat Rad
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Hadi Mahmodi Sheikh Sarmast
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Wafa Al Shamery
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Hien A Tran
- School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Laura Vettori
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Fabian Haeusermann
- F Hoffmann-La Roche AG Research and Development Division, Pharmaceutical Sciences, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel, Basel-Stadt CH-4070, Switzerland
| | - Elysse C Filipe
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia.,St Vincent Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Thomas Cox
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia.,St Vincent Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Joanne Tipper
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Irina Kabakova
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Carmine Gentile
- The University of Sydney Faculty of Medicine and Health, Kolling Building, Kolling Institute, St Leonards, Sydney, NSW 2065, Australia.,University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| |
Collapse
|
5
|
Wang H, Roche CD, Gentile C. Reply to Yurekli et al. Eur J Cardiothorac Surg 2021; 60:1004-1005. [PMID: 33961021 DOI: 10.1093/ejcts/ezab152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hogan Wang
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
| | - Christopher D Roche
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia.,Department of Cardiothoracic Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia.,Department of Cardiothoracic Surgery, University Hospital of Wales, Cardiff, UK
| | - Carmine Gentile
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
| |
Collapse
|
6
|
Yurekli I, Kestelli M, Cakir H. Omentopexy may not be enough. Eur J Cardiothorac Surg 2021; 60:1004. [PMID: 33961015 DOI: 10.1093/ejcts/ezab159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ismail Yurekli
- Department of Cardiovascular Surgery, Izmir Ataturk Education and Research Hospital, Izmir, Turkey
| | - Mert Kestelli
- Department of Cardiovascular Surgery, Izmir Ataturk Education and Research Hospital, Izmir, Turkey
| | - Habib Cakir
- Department of Cardiovascular Surgery, Izmir Ataturk Education and Research Hospital, Izmir, Turkey
| |
Collapse
|
7
|
Roche CD, Sharma P, Ashton AW, Jackson C, Xue M, Gentile C. Printability, Durability, Contractility and Vascular Network Formation in 3D Bioprinted Cardiac Endothelial Cells Using Alginate-Gelatin Hydrogels. Front Bioeng Biotechnol 2021; 9:636257. [PMID: 33748085 PMCID: PMC7968457 DOI: 10.3389/fbioe.2021.636257] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/01/2021] [Indexed: 12/30/2022] Open
Abstract
Background 3D bioprinting cardiac patches for epicardial transplantation are a promising approach for myocardial regeneration. Challenges remain such as quantifying printability, determining the ideal moment to transplant, and promoting vascularisation within bioprinted patches. We aimed to evaluate 3D bioprinted cardiac patches for printability, durability in culture, cell viability, and endothelial cell structural self-organisation into networks. Methods We evaluated 3D-bioprinted double-layer patches using alginate/gelatine (AlgGel) hydrogels and three extrusion bioprinters (REGEMAT3D, INVIVO, BIO X). Bioink contained either neonatal mouse cardiac cell spheroids or free (not-in-spheroid) human coronary artery endothelial cells with fibroblasts, mixed with AlgGel. To test the effects on durability, some patches were bioprinted as a single layer only, cultured under minimal movement conditions or had added fibroblast-derived extracellular matrix hydrogel (AlloECM). Controls included acellular AlgGel and gelatin methacryloyl (GELMA) patches. Results Printability was similar across bioprinters. For AlgGel compared to GELMA: resolutions were similar (200-700 μm line diameters), printing accuracy was 45 and 25%, respectively (AlgGel was 1.7x more accurate; p < 0.05), and shape fidelity was 92% (AlgGel) and 96% (GELMA); p = 0.36. For durability, AlgGel patch median survival in culture was 14 days (IQR:10-27) overall which was not significantly affected by bioprinting system or cellular content in patches. We identified three factors which reduced durability in culture: (1) bioprinting one layer depth patches (instead of two layers); (2) movement disturbance to patches in media; and (3) the addition of AlloECM to AlgGel. Cells were viable after bioprinting followed by 28 days in culture, and all BIO X-bioprinted mouse cardiac cell spheroid patches presented contractile activity starting between day 7 and 13 after bioprinting. At day 28, endothelial cells in hydrogel displayed organisation into endothelial network-like structures. Conclusion AlgGel-based 3D bioprinted heart patches permit cardiomyocyte contractility and endothelial cell structural self-organisation. After bioprinting, a period of 2 weeks maturation in culture prior to transplantation may be optimal, allowing for a degree of tissue maturation but before many patches start to lose integrity. We quantify AlgGel printability and present novel factors which reduce AlgGel patch durability (layer number, movement, and the addition of AlloECM) and factors which had minimal effect on durability (bioprinting system and cellular patch content).
Collapse
Affiliation(s)
- Christopher David Roche
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia
| | - Poonam Sharma
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia.,Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Anthony Wayne Ashton
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Chris Jackson
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Meilang Xue
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Carmine Gentile
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|