1
|
Ertugrul IA, Puspitarani RADA, Wijntjes B, Vervoorn MT, Ballan EM, van der Kaaij NP, van Goor H, Westenbrink BD, van der Plaats A, Nijhuis F, van Suylen V, Erasmus ME. Ex Situ Left Ventricular Pressure-Volume Loop Analyses for Donor Hearts: Proof of Concept in an Ovine Experimental Model. Transpl Int 2024; 37:12982. [PMID: 39055346 PMCID: PMC11269103 DOI: 10.3389/ti.2024.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Ex situ heart perfusion (ESHP) has emerged as an important strategy to preserve donation after brain death (DBD) and donation after circulatory death (DCD) donor hearts. Clinically, both DBD and DCD hearts are successfully preserved using ESHP. Viability assessment is currently based on biochemical values, while a reliable method for graft function assessment in a physiologic working mode is unavailable. As functional assessment during ESHP has demonstrated the highest predictive value of outcome post-transplantation, this is an important area for improvement. In this study, a novel method for ex situ assessment of left ventricular function with pressure-volume loop analyses is evaluated. Ovine hearts were functionally evaluated during normothermic ESHP with the novel pressure-volume loop system. This system provides an afterload and adjustable preload to the left ventricle. By increasing the preload and measuring end-systolic elastance, the system could successfully assess the left ventricular function. End-systolic elastance at 60 min and 120 min was 2.8 ± 1.8 mmHg/mL and 2.7 ± 0.7 mmHg/mL, respectively. In this study we show a novel method for functional graft assessment with ex situ pressure-loop analyses during ESHP. When further validated, this method for pressure-volume assessments, could be used for better graft selection in both DBD and DCD donor hearts.
Collapse
Affiliation(s)
- I. A. Ertugrul
- Department of Cardiothoracic Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - R. A. D. A. Puspitarani
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | | | - M. T. Vervoorn
- Department of Cardiothoracic Surgery, University Medical Centre Utrecht, Utrecht, Netherlands
| | - E. M. Ballan
- Department of Cardiothoracic Surgery, University Medical Centre Utrecht, Utrecht, Netherlands
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
| | - N. P. van der Kaaij
- Department of Cardiothoracic Surgery, University Medical Centre Utrecht, Utrecht, Netherlands
| | - H. van Goor
- Department of Medical Biology and Pathology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - B. D. Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | | | | | - V. van Suylen
- Department of Cardiothoracic Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - M. E. Erasmus
- Department of Cardiothoracic Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
2
|
Lactate during ex-situ heart perfusion does not predict the requirement for mechanical circulatory support following donation after circulatory death (DCD) heart transplants. J Heart Lung Transplant 2022; 41:1294-1302. [DOI: 10.1016/j.healun.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 01/16/2022] [Accepted: 02/01/2022] [Indexed: 11/22/2022] Open
|
3
|
Li J, Xue C, Ling X, Xie Y, Pavan D, Chen H, Peng Q, Lin S, Li K, Zheng S, Zhou P. A Novel Rat Model of Cardiac Donation After Circulatory Death Combined With Normothermic ex situ Heart Perfusion. Front Cardiovasc Med 2021; 8:639701. [PMID: 34368241 PMCID: PMC8342755 DOI: 10.3389/fcvm.2021.639701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: In heart transplantation, the adoption of hearts from donation after circulatory death (DCD) is considered to be a promising approach to expanding the donor pool. Normothermic ex situ heart perfusion (ESHP) is emerging as a novel preservation strategy for DCD hearts. Therefore, pre-clinical animal models of ESHP are essential to address some key issues before efficient clinical translation. We aim to develop a novel, reproducible, and economical rat model of DCD protocol combined with normothermic ESHP. Methods: Circulatory death of the anesthetized rats in the DCD group was declared when systolic blood pressure below 30 mmHg or asystole was observed after asphyxiation. Additional 15 min of standoff period was allowed to elapse. After perfusion of cold cardioplegia, the DCD hearts were excised and perfused with allogenic blood-based perfusate at constant flow for 90 min in the normothermic ESHP system. Functional assessment and blood gas analysis were performed every 30 min during ESHP. The alteration of DCD hearts submitted to different durations of ESHP (30, 60, and 90 min) in oxidative stress, apoptosis, tissue energy state, inflammatory response, histopathology, cell swelling, and myocardial infarction during ESHP was evaluated. Rats in the non-DCD group were treated similarly but not exposed to warm ischemia and preserved by the normothermic ESHP system for 90 min. Results: The DCD hearts showed compromised function at the beginning of ESHP and recovered over time, while non-DCD hearts presented better cardiac function during ESHP. The alteration of DCD hearts in oxidative stress, apoptosis, tissue energy state, histopathological changes, cell swelling, and inflammatory response didn't differ among different durations of ESHP. At the end of 90-min ESHP, DCD, and non-DCD hearts presented similarly in apoptosis, oxidative stress, inflammatory response, myocardial infarction, and histopathological changes. Moreover, the DCD hearts had lower energy storage and more evident cell swelling compared to the non-DCD hearts. Conclusion: We established a reproducible, clinically relevant, and economical rat model of DCD protocol combined with normothermic ESHP, where the DCD hearts can maintain a stable state during 90-min ESHP.
Collapse
Affiliation(s)
- Jiale Li
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuqing Xue
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Ling
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Xie
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Desai Pavan
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huimin Chen
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinbao Peng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyan Lin
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kunsheng Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Bona M, Wyss RK, Arnold M, Méndez-Carmona N, Sanz MN, Günsch D, Barile L, Carrel TP, Longnus SL. Cardiac Graft Assessment in the Era of Machine Perfusion: Current and Future Biomarkers. J Am Heart Assoc 2021; 10:e018966. [PMID: 33522248 PMCID: PMC7955334 DOI: 10.1161/jaha.120.018966] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heart transplantation remains the treatment of reference for patients experiencing end‐stage heart failure; unfortunately, graft availability through conventional donation after brain death is insufficient to meet the demand. Use of extended‐criteria donors or donation after circulatory death has emerged to increase organ availability; however, clinical protocols require optimization to limit or prevent damage in hearts possessing greater susceptibility to injury than conventional grafts. The emergence of cardiac ex situ machine perfusion not only facilitates the use of extended‐criteria donor and donation after circulatory death hearts through the avoidance of potentially damaging ischemia during graft storage and transport, it also opens the door to multiple opportunities for more sensitive monitoring of graft quality. With this review, we aim to bring together the current knowledge of biomarkers that hold particular promise for cardiac graft evaluation to improve precision and reliability in the identification of hearts for transplantation, thereby facilitating the safe increase in graft availability. Information about the utility of potential biomarkers was categorized into 5 themes: (1) functional, (2) metabolic, (3) hormone/prohormone, (4) cellular damage/death, and (5) inflammatory markers. Several promising biomarkers are identified, and recommendations for potential improvements to current clinical protocols are provided.
Collapse
Affiliation(s)
- Martina Bona
- Department of Cardiovascular Surgery InselspitalBern University Hospital Bern Switzerland.,Department for BioMedical Research University of Bern Switzerland
| | - Rahel K Wyss
- Department of Cardiovascular Surgery InselspitalBern University Hospital Bern Switzerland.,Department for BioMedical Research University of Bern Switzerland
| | - Maria Arnold
- Department of Cardiovascular Surgery InselspitalBern University Hospital Bern Switzerland.,Department for BioMedical Research University of Bern Switzerland
| | - Natalia Méndez-Carmona
- Department of Cardiovascular Surgery InselspitalBern University Hospital Bern Switzerland.,Department for BioMedical Research University of Bern Switzerland
| | - Maria N Sanz
- Department of Cardiovascular Surgery InselspitalBern University Hospital Bern Switzerland.,Department for BioMedical Research University of Bern Switzerland
| | - Dominik Günsch
- Department of Anesthesiology and Pain Medicine/Institute for Diagnostic, Interventional and Paediatric Radiology Bern University HospitalInselspitalUniversity of Bern Switzerland
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics Cardiocentro Ticino Foundation and Faculty of Biomedical Sciences Università Svizzera Italiana Lugano Switzerland
| | - Thierry P Carrel
- Department of Cardiovascular Surgery InselspitalBern University Hospital Bern Switzerland.,Department for BioMedical Research University of Bern Switzerland
| | - Sarah L Longnus
- Department of Cardiovascular Surgery InselspitalBern University Hospital Bern Switzerland.,Department for BioMedical Research University of Bern Switzerland
| |
Collapse
|
5
|
Ribeiro RVP, Alvarez JS, Yu F, Adamson MB, Paradiso E, Hondjeu ARM, Xin L, Gellner B, Degen M, Bissoondath V, Meineri M, Rao V, Badiwala MV. Comparing Donor Heart Assessment Strategies During Ex Situ Heart Perfusion to Better Estimate Posttransplant Cardiac Function. Transplantation 2020; 104:1890-1898. [PMID: 32826843 DOI: 10.1097/tp.0000000000003374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Ex situ heart perfusion (ESHP) limits ischemic periods and enables continuous monitoring of donated hearts; however, a validated assessment method to predict cardiac performance has yet to be established. We compare biventricular contractile and metabolic parameters measured during ESHP to determine the best evaluation strategy to estimate cardiac function following transplantation. METHODS Donor pigs were assigned to undergo beating-heart donation (n = 9) or donation after circulatory death (n = 8) induced by hypoxia. Hearts were preserved for 4 hours with ESHP while invasive and noninvasive (NI) biventricular contractile, and metabolic assessments were performed. Following transplantation, hearts were evaluated at 3 hours of reperfusion. Spearman correlation was used to determine the relationship between ESHP parameters and posttransplant function. RESULTS We performed 17 transplants; 14 successfully weaned from bypass (beating-heart donation versus donation after circulatory death; P = 0.580). Left ventricular invasive preload recruitable stroke work (PRSW) (r = 0.770; P = 0.009), NI PRSW (r = 0.730; P = 0.001), and NI maximum elastance (r = 0.706; P = 0.002) strongly correlated with cardiac index (CI) following transplantation. Right ventricular NI PRSW moderately correlated to CI following transplantation (r = 0.688; P = 0.003). Lactate levels were weakly correlated with CI following transplantation (r = -0.495; P = 0.043). None of the echocardiography measurements correlated with cardiac function following transplantation. CONCLUSIONS Left ventricular functional parameters, especially ventricular work and reserve, provided the best estimation of myocardial performance following transplantation. Furthermore, simple NI estimates of ventricular function proved useful in this setting. Right ventricular and metabolic measurements were limited in their ability to correlate with myocardial recovery. This emphasizes the need for an ESHP platform capable of assessing myocardial contractility and suggests that metabolic parameters alone do not provide a reliable evaluation.
Collapse
Affiliation(s)
- Roberto Vanin Pinto Ribeiro
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Juglans Souto Alvarez
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Frank Yu
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Mitchell Brady Adamson
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Emanuela Paradiso
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Arnaud Romeo Mbadjeu Hondjeu
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Liming Xin
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, Canada
- Department of Mechanical Engineering, University of Toronto, Toronto, Canada
| | - Bryan Gellner
- Department of Mechanical Engineering, University of Toronto, Toronto, Canada
| | - Maja Degen
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Ved Bissoondath
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Massimiliano Meineri
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, Canada
- Department of Anesthesia, University of Toronto, Toronto, Canada
| | - Vivek Rao
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Mitesh Vallabh Badiwala
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Saemann L, Guo Y, Ding Q, Zhou P, Karck M, Szabó G, Wenzel F. Machine perfusion of circulatory determined death hearts: A scoping review. Transplant Rev (Orlando) 2020; 34:100551. [PMID: 32498975 DOI: 10.1016/j.trre.2020.100551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Ex vivo machine perfusion (EVMP) is reported to can successfully be applied for donor heart preservation. To respond to the organ shortage, some centres also accept hearts from marginal donors such as non-heart beating donors (NHBD) or hearts donated after cardiac death (DCD) for heart transplantation (HTx). Clinical as well as preclinical science on EVMP of DCD hearts seems to be promising but the ideal perfusion practice itself appears unclear. OBJECTIVES In accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA), this systematic review scopes all EVMP techniques for human and animal DCD heart preservation and addresses three specific questions, which refer to (a) the perfusion solutions, (b) the perfusion parameters and respective target values and (c) if possible, a direct comparison between cold static storage (CSS) and EVMP. RESULTS Search results predominantly consisted of animal studies. Either perfusion with a crystalloid or blood-based solution, each with cardioplegic or non-cardioplegic properties was used. Some perfusates were supplemented with specific pharmacological medication to block pathophysiological pathways, which are involved in ischemia/reperfusion injury or edema formation. Besides normothermic EVMP with oxygenated blood, a wide range of temperature was applied in all approaches, with the lowest temperature at 4 °C. Pressure controlled anterograde Langendorff perfusion was applied mostly. If investigated, crystalloid machine perfusion was presented superior to CSS. CONCLUSIONS Only blood based EVMP was introduced into clinical practice. More research, clinical as well as preclinical, is needed to develop the ideal EVMP technique, in terms of blood or crystalloid perfusion.
Collapse
Affiliation(s)
- Lars Saemann
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, Heidelberg 69120, Germany; Faculty Medical and Life Sciences, Furtwangen University, Jakob-Kienzle-Straße 17, Villingen-Schwenningen 78054, Germany.
| | - Yuxing Guo
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, Heidelberg 69120, Germany
| | - Qingwei Ding
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, Heidelberg 69120, Germany
| | - Pengyu Zhou
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, Heidelberg 69120, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, Heidelberg 69120, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, Heidelberg 69120, Germany
| | - Folker Wenzel
- Faculty Medical and Life Sciences, Furtwangen University, Jakob-Kienzle-Straße 17, Villingen-Schwenningen 78054, Germany.
| |
Collapse
|
7
|
Aceros H, Der Sarkissian S, Borie M, Pinto Ribeiro RV, Maltais S, Stevens LM, Noiseux N. Novel heat shock protein 90 inhibitor improves cardiac recovery in a rodent model of donation after circulatory death. J Thorac Cardiovasc Surg 2020; 163:e187-e197. [PMID: 32354629 DOI: 10.1016/j.jtcvs.2020.03.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/29/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Organ donation after circulatory death (DCD) is a potential solution for the shortage of suitable organs for transplant. Heart transplantation using DCD donors is not frequently performed due to the potential myocardial damage following warm ischemia. Heat shock protein (HSP) 90 has recently been investigated as a novel target to reduce ischemia/reperfusion injury. The objective of this study is to evaluate an innovative HSP90 inhibitor (HSP90i) as a cardioprotective agent in a model of DCD heart. METHODS A DCD protocol was initiated in anesthetized Lewis rats by discontinuation of ventilation and confirmation of circulatory death by invasive monitoring. Following 15 minutes of warm ischemia, cardioplegia was perfused for 5 minutes at physiological pressure. DCD hearts were mounted on a Langendorff ex vivo heart perfusion system for reconditioning and functional assessment (60 minutes). HSP90i (0.01 μmol/L) or vehicle was perfused in the cardioplegia and during the first 10 minutes of ex vivo heart perfusion reperfusion. Following assessment, pro-survival pathway signaling was evaluated by western blot or polymerase chain reaction. RESULTS Treatment with HSP90i preserved left ventricular contractility (maximum + dP/dt, 2385 ± 249 vs 1745 ± 150 mm Hg/s), relaxation (minimum -dP/dt, -1437 ± 97 vs 1125 ± 85 mm Hg/s), and developed pressure (60.7 ± 5.6 vs 43.9 ± 4.0 mm Hg), when compared with control DCD hearts (All P = .001). Treatment abrogates ischemic injury as demonstrated by a significant reduction of infarct size (2,3,5-triphenyl-tetrazolium chloride staining) of 7 ± 3% versus 19 ± 4% (P = .03), troponin T release, and mRNA expression of Bax/Bcl-2 (P < .05). CONCLUSIONS The cardioprotective effects of HSP90i when used following circulatory death might improve transplant organ availability by expanding the use of DCD hearts.
Collapse
Affiliation(s)
- Henry Aceros
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Shant Der Sarkissian
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Canada
| | - Mélanie Borie
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Roberto Vanin Pinto Ribeiro
- Division of Cardiovascular Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Simon Maltais
- Division of Cardiovascular Surgery, Mayo Clinic, Rochester, Minn
| | - Louis-Mathieu Stevens
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Canada
| | - Nicolas Noiseux
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Canada.
| |
Collapse
|
8
|
Niederberger P, Farine E, Raillard M, Dornbierer M, Freed DH, Large SR, Chew HC, MacDonald PS, Messer SJ, White CW, Carrel TP, Tevaearai Stahel HT, Longnus SL. Heart Transplantation With Donation After Circulatory Death. Circ Heart Fail 2020; 12:e005517. [PMID: 30998395 DOI: 10.1161/circheartfailure.118.005517] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Heart transplantation remains the preferred option for improving quality of life and survival for patients suffering from end-stage heart failure. Unfortunately, insufficient supply of cardiac grafts has become an obstacle. Increasing organ availability with donation after circulatory death (DCD) may be a promising option to overcome the organ shortage. Unlike conventional donation after brain death, DCD organs undergo a period of warm, global ischemia between circulatory arrest and graft procurement, which raises concerns for graft quality. Nonetheless, the potential of DCD heart transplantation is being reconsidered, after reports of more than 70 cases in Australia and the United Kingdom over the past 3 years. Ensuring optimal patient outcomes and generalized adoption of DCD in heart transplantation, however, requires further development of clinical protocols, which in turn require a better understanding of cardiac ischemia-reperfusion injury and the various possibilities to limit its adverse effects. Thus, we aim to provide an overview of the knowledge obtained with preclinical studies in animal models of DCD heart transplantation, to facilitate and promote the most effective and efficient advancement in preclinical research. A literature search of the PubMed database was performed to identify all relevant preclinical studies in DCD heart transplantation. Specific aspects relevant for DCD heart transplantation were analyzed, including animal models, graft procurement and storage conditions, cardioprotective approaches, and graft evaluation strategies. Several potential therapeutic strategies for optimizing graft quality are identified, and recommendations for further preclinical research are provided.
Collapse
Affiliation(s)
- Petra Niederberger
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research, University of Bern, Switzerland (P.N., E.F., M.D., T.P.C., H.T.T.S., S.L.L.)
| | - Emilie Farine
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research, University of Bern, Switzerland (P.N., E.F., M.D., T.P.C., H.T.T.S., S.L.L.)
| | - Mathieu Raillard
- Experimental Surgery Unit (ESI), Experimental Surgery Unit, Department for BioMedical Research and Vetsuisse Faculty, Department of Clinical Veterinary Medicine, Institute of Anaesthesiology and Pain Therapy, University of Bern, Switzerland (M.R.)
| | - Monika Dornbierer
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research, University of Bern, Switzerland (P.N., E.F., M.D., T.P.C., H.T.T.S., S.L.L.)
| | - Darren H Freed
- Cardiac Surgery, University of Alberta, Edmonton, Canada (D.H.F., C.W.W.)
| | - Stephen R Large
- Department of Transplantation, Royal Papworth Hospital, Papworth Everard, Cambridge, United Kingdom (S.R.L., S.J.M.)
| | - Hong C Chew
- St Vincent's Hospital, University of New South Wales, Victor Chang Cardiac Research Institute, Sydney, Australia (H.C.C., P.S.M.)
| | - Peter S MacDonald
- St Vincent's Hospital, University of New South Wales, Victor Chang Cardiac Research Institute, Sydney, Australia (H.C.C., P.S.M.)
| | - Simon J Messer
- Department of Transplantation, Royal Papworth Hospital, Papworth Everard, Cambridge, United Kingdom (S.R.L., S.J.M.)
| | | | - Thierry P Carrel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research, University of Bern, Switzerland (P.N., E.F., M.D., T.P.C., H.T.T.S., S.L.L.)
| | - Hendrik T Tevaearai Stahel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research, University of Bern, Switzerland (P.N., E.F., M.D., T.P.C., H.T.T.S., S.L.L.)
| | - Sarah L Longnus
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research, University of Bern, Switzerland (P.N., E.F., M.D., T.P.C., H.T.T.S., S.L.L.)
| |
Collapse
|
9
|
Wyss RK, Méndez-Carmona N, Sanz MN, Arnold M, Segiser A, Fiedler GM, Carrel TP, Djafarzadeh S, Tevaearai Stahel HT, Longnus SL. Mitochondrial integrity during early reperfusion in an isolated rat heart model of donation after circulatory death-consequences of ischemic duration. J Heart Lung Transplant 2018; 38:647-657. [PMID: 30655178 DOI: 10.1016/j.healun.2018.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/13/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cardioprotection and graft evaluation after ischemia-reperfusion (IR) are essential in facilitating heart transplantation with donation after circulatory death. Given the key role of mitochondria in IR, we aimed to investigate the tolerance of cardiac mitochondria to warm, global ischemia and to determine the predictive value of early reperfusion mitochondria-related parameters for post-ischemic cardiac recovery. METHODS Isolated, working rat hearts underwent 0, 21, 24, 27, 30, or 33 minutes of warm, global ischemia, followed by 60 minutes of reperfusion. Functional recovery (developed pressure × heart rate) was determined at 60 minutes of reperfusion, whereas mitochondrial integrity was measured at 10 minutes of reperfusion. RESULTS Functional recovery at 60 minutes of reperfusion decreased with ≥ 27 minutes of ischemia vs no ischemia (n = 7-8/group; p < 0.01). Cytochrome c, succinate release, and mitochondrial Ca2+ content increased with ≥ 27 minutes of ischemia vs no ischemia (p < 0.05). Ischemia at ≥ 21 minutes decreased mitochondrial coupling, adenosine 5'-triphosphate content, mitochondrial Ca2+ retention capacity, and increased oxidative damage vs no ischemia (p < 0.05). Reactive oxygen species (ROS) from reverse electron transfer increased with 21 and 27 minutes of ischemia vs no ischemia and 33 minutes of ischemia (p < 0.05), whereas ROS from forward electron transfer increased only with 33 minutes of ischemia vs no ischemia (p < 0.05). Mitochondrial coupling and adenosine 5'-triphosphate content correlated positively and cytochrome c, succinate, oxidative damage, and mitochondrial Ca2+ content correlated negatively with cardiac functional recovery (p < 0.05). CONCLUSIONS Mitochondrial dysfunction occurs with shorter periods of ischemia than cardiac dysfunction. Mitochondrial coupling, ROS emission from reverse electron transfer, and calcium retention are particularly sensitive to early reperfusion injury, reflecting potential targets for cardioprotection. Indicators of mitochondrial integrity may be of aid in evaluating suitability of donation after circulatory death grafts for transplantation.
Collapse
Affiliation(s)
- Rahel K Wyss
- Department of Cardiovascular Surgery, Inselspital, University Hospital Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Natalia Méndez-Carmona
- Department of Cardiovascular Surgery, Inselspital, University Hospital Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Maria-Nieves Sanz
- Department of Cardiovascular Surgery, Inselspital, University Hospital Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Maria Arnold
- Department of Cardiovascular Surgery, Inselspital, University Hospital Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Adrian Segiser
- Department of Cardiovascular Surgery, Inselspital, University Hospital Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Georg M Fiedler
- Center of Laboratory Medicine, University Institute of Clinical Chemistry, Bern, Switzerland
| | - Thierry P Carrel
- Department of Cardiovascular Surgery, Inselspital, University Hospital Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Siamak Djafarzadeh
- Department for BioMedical Research, University of Bern, Bern, Switzerland; Department of Intensive Care Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Hendrik T Tevaearai Stahel
- Department of Cardiovascular Surgery, Inselspital, University Hospital Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Sarah L Longnus
- Department of Cardiovascular Surgery, Inselspital, University Hospital Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Farine E, Niederberger P, Wyss RK, Méndez-Carmona N, Gahl B, Fiedler GM, Carrel TP, Tevaearai Stahel HT, Longnus SL. Controlled Reperfusion Strategies Improve Cardiac Hemodynamic Recovery after Warm Global Ischemia in an Isolated, Working Rat Heart Model of Donation after Circulatory Death (DCD). Front Physiol 2016; 7:543. [PMID: 27920725 PMCID: PMC5118653 DOI: 10.3389/fphys.2016.00543] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022] Open
Abstract
Aims: Donation after circulatory death (DCD) could improve cardiac graft availability, which is currently insufficient to meet transplant demand. However, DCD organs undergo an inevitable period of warm ischemia and most cardioprotective approaches can only be applied at reperfusion (procurement) for ethical reasons. We investigated whether modifying physical conditions at reperfusion, using four different strategies, effectively improves hemodynamic recovery after warm ischemia. Methods and Results: Isolated hearts of male Wistar rats were perfused in working-mode for 20 min, subjected to 27 min global ischemia (37°C), and 60 min reperfusion (n = 43). Mild hypothermia (30°C, 10 min), mechanical postconditioning (MPC; 2x 30 s reperfusion/30 s ischemia), hypoxia (no O2, 2 min), or low pH (pH 6.8–7.4, 3 min) was applied at reperfusion and compared with controls (i.e., no strategy). After 60 min reperfusion, recovery of left ventricular work (developed pressure*heart rate; expressed as percent of pre-ischemic value) was significantly greater for mild hypothermia (62 ± 7%), MPC (65 ± 8%) and hypoxia (61 ± 11%; p < 0.05 for all), but not for low pH (45 ± 13%), vs. controls (44 ± 7%). Increased hemodynamic recovery was associated with greater oxygen consumption (mild hypothermia, MPC) and coronary perfusion (mild hypothermia, MPC, hypoxia), and with reduced markers of necrosis (mild hypothermia, MPC, hypoxia) and mitochondrial damage (mild hypothermia, hypoxia). Conclusions: Brief modifications in physical conditions at reperfusion, such as hypothermia, mechanical postconditioning, and hypoxia, improve post-ischemic hemodynamic function in our model of DCD. Cardioprotective reperfusion strategies applied at graft procurement could improve DCD graft recovery and limit further injury; however, optimal clinical approaches remain to be characterized.
Collapse
Affiliation(s)
- Emilie Farine
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Petra Niederberger
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Rahel K Wyss
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Natalia Méndez-Carmona
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Brigitta Gahl
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Georg M Fiedler
- Center of Laboratory Medicine, University Institute of Clinical Chemistry, University Hospital Inselspital, Bern, Switzerland
| | - Thierry P Carrel
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Hendrik T Tevaearai Stahel
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Sarah L Longnus
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| |
Collapse
|
11
|
Van Caenegem O, Beauloye C, Bertrand L, Horman S, Lepropre S, Sparavier G, Vercruysse J, Bethuyne N, Poncelet AJ, Gianello P, Demuylder P, Legrand E, Beaurin G, Bontemps F, Jacquet LM, Vanoverschelde JL. Hypothermic continuous machine perfusion enables preservation of energy charge and functional recovery of heart grafts in an ex vivo model of donation following circulatory death. Eur J Cardiothorac Surg 2015; 49:1348-53. [PMID: 26604296 DOI: 10.1093/ejcts/ezv409] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/13/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Cardiac transplantation using hearts from donors after circulatory death (DCD) is critically limited by the unavoidable warm ischaemia and its related unpredictable graft function. Inasmuch as hypothermic machine perfusion (MP) has been shown to improve heart preservation, we hypothesized that MP could enable the use of DCD hearts for transplantation. METHODS We recovered 16 pig hearts following anoxia-induced cardiac arrest and cardioplegia. Grafts were randomly assigned to two different groups of 4-h preservation using either static cold storage (CS) or MP (Modified LifePort© System, Organ Recovery Systems©, Itasca, Il). After preservation, the grafts were reperfused ex vivo using the Langendorff method for 60 min. Energetic charge was quantified at baseline, post-preservation and post-reperfusion by measuring lactate and high-energy phosphate levels. Left ventricular contractility parameters were assessed both in vivo prior to ischaemia and ex vivo during reperfusion. RESULTS Following preservation, the hearts that were preserved using CS exhibited higher lactate levels (57.1 ± 23.7 vs 21.4 ± 12.2 µmol/g; P < 0.001), increased adenosine monophosphate/adenosine triphosphate ratio (0.53 ± 0.25 vs 0.11 ± 0.11; P < 0.001) and lower phosphocreatine/creatine ratio (9.7 ± 5.3 vs 25.2 ± 11; P < 0.001) in comparison with the MP hearts. Coronary flow was similar in both groups during reperfusion (107 ± 9 vs 125 ± 9 ml/100 g/min heart; P = ns). Contractility decreased in the CS group, yet remained well preserved in the MP group. CONCLUSION MP preservation of DCD hearts results in improved preservation of the energy and improved functional recovery of heart grafts compared with CS.
Collapse
Affiliation(s)
- Olivier Van Caenegem
- Pôle de recherche cardiovasculaire, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium Cardiovascular Intensive Care, Cliniques universitaires Saint Luc, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de recherche cardiovasculaire, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium Cardiovascular Intensive Care, Cliniques universitaires Saint Luc, Brussels, Belgium Division of Cardiology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Luc Bertrand
- Pôle de recherche cardiovasculaire, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| | - Sandrine Horman
- Pôle de recherche cardiovasculaire, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| | - Sophie Lepropre
- Pôle de recherche cardiovasculaire, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| | - Grégory Sparavier
- Pôle de recherche cardiovasculaire, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| | | | - Noëlla Bethuyne
- Division of Cardiac Surgery, Cliniques universitaires Saint Luc, Brussels, Belgium
| | - Alain J Poncelet
- Division of Cardiac Surgery, Cliniques universitaires Saint Luc, Brussels, Belgium Pôle de chirurgie expérimentale et transplantation, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| | - Pierre Gianello
- Pôle de chirurgie expérimentale et transplantation, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| | | | - Eric Legrand
- Pôle de chirurgie expérimentale et transplantation, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| | - Gwen Beaurin
- Pôle de chirurgie expérimentale et transplantation, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Bontemps
- Pôle de biochimie et recherche métabolique, Institut de Duve, Université catholique de Louvain, Brussels, Belgium
| | - Luc M Jacquet
- Pôle de recherche cardiovasculaire, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium Cardiovascular Intensive Care, Cliniques universitaires Saint Luc, Brussels, Belgium
| | - Jean-Louis Vanoverschelde
- Pôle de recherche cardiovasculaire, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium Division of Cardiology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
12
|
Tevaearai Stahel HT, Zuckermann A, Carrel TP, Longnus SL. Hearts Not Dead after Circulatory Death. Front Surg 2015; 2:46. [PMID: 26442277 PMCID: PMC4568767 DOI: 10.3389/fsurg.2015.00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/30/2015] [Indexed: 11/16/2022] Open
Affiliation(s)
- Hendrik T Tevaearai Stahel
- Clinic for Cardiovascular Surgery, Bern University Hospital (Inselspital), University of Bern , Bern , Switzerland
| | - Andreas Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna , Vienna , Austria
| | - Thierry P Carrel
- Clinic for Cardiovascular Surgery, Bern University Hospital (Inselspital), University of Bern , Bern , Switzerland
| | - Sarah L Longnus
- Clinic for Cardiovascular Surgery, Bern University Hospital (Inselspital), University of Bern , Bern , Switzerland
| |
Collapse
|
13
|
Burn F, Ciocan S, Mendez Carmona N, Berner M, Sourdon J, Carrel TP, Tevaearai Stahel HT, Longnus SL. Oxygen-transfer performance of a newly designed, very low-volume membrane oxygenator. Interact Cardiovasc Thorac Surg 2015; 21:352-8. [DOI: 10.1093/icvts/ivv141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/24/2015] [Indexed: 11/13/2022] Open
|
14
|
Escudero D, Otero J. Intensive care medicine and organ donation: exploring the last frontiers? Med Intensiva 2015; 39:373-81. [PMID: 25841298 DOI: 10.1016/j.medin.2015.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/30/2022]
Abstract
The main, universal problem for transplantation is organ scarcity. The gap between offer and demand grows wider every year and causes many patients in waiting list to die. In Spain, 90% of transplants are done with organs taken from patients deceased in brain death but this has a limited potential. In order to diminish organ shortage, alternative strategies such as donations from living donors, expanded criteria donors or donation after circulatory death, have been developed. Nevertheless, these types of donors also have their limitations and so are not able to satisfy current organ demand. It is necessary to reduce family denial and to raise donation in brain death thus generalizing, among other strategies, non-therapeutic elective ventilation. As intensive care doctors, cornerstone to the national donation programme, we must consolidate our commitment with society and organ transplantation. We must contribute with the values proper to our specialization and try to reach self-sufficiency by rising organ obtainment.
Collapse
Affiliation(s)
- D Escudero
- Servicio de Medicina Intensiva, Hospital Universitario Central de Asturias, Oviedo, España; Unidad de Coordinación de Trasplantes y Medicina Regenerativa, Hospital Universitario Central de Asturias, Oviedo, España.
| | - J Otero
- Unidad de Coordinación de Trasplantes y Medicina Regenerativa, Hospital Universitario Central de Asturias, Oviedo, España
| |
Collapse
|
15
|
Tolboom H, Olejníčková V, Reser D, Rosser B, Wilhelm MJ, Gassmann M, Bogdanova A, Falk V. Moderate hypothermia duringex vivomachine perfusion promotes recovery of hearts donated after cardiocirculatory death. Eur J Cardiothorac Surg 2015; 49:25-31. [DOI: 10.1093/ejcts/ezv066] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/18/2015] [Indexed: 11/13/2022] Open
|
16
|
Bartkevics M, Huber S, Mathys V, Sourdon J, Dornbierer M, Carmona Mendez N, Gahl B, Carrel TP, Tevaearai Stahel HT, Longnus SL. Efficacy of mechanical postconditioning following warm, global ischaemia depends on circulating fatty acid levels in an isolated, working rat heart model. Eur J Cardiothorac Surg 2015; 49:32-9. [DOI: 10.1093/ejcts/ezv008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/02/2015] [Indexed: 11/13/2022] Open
|
17
|
Longnus SL, Mathys V, Dornbierer M, Dick F, Carrel TP, Tevaearai HT. Heart transplantation with donation after circulatory determination of death. Nat Rev Cardiol 2014; 11:354-63. [DOI: 10.1038/nrcardio.2014.45] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|